Научная статья на тему 'Research of the environmentally safe waste-based building materials'

Research of the environmentally safe waste-based building materials Текст научной статьи по специальности «Строительство и архитектура»

CC BY
476
63
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Вестник МГСУ
ВАК
RSCI
Ключевые слова
BIOPOSITIVE POLYMER-MINERAL COMPOSITE PRODUCTS / ENVIRONMENTAL SAFETY / MAN-MADE WASTE / БИОПОЗИТИВНЫЕ ПОЛИМЕРНО-МИНЕРАЛЬНЫЕ КОМПОЗИЦИОННЫЕ ИЗДЕЛИЯ / ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ / ТЕХНОГЕННЫЕ ОТХОДЫ

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Mymrin Vsevolod A., Tolmacheva Natalia A., Zelinskaya Elena V., Kurina Anastasia V., Garashchenko Aleksandr A.

Introduction: in the article the estimation of new ecological safety biopositive polymer-mineral composite (BPMC) building materials obtained with the use of technogenic wastes is considered. This approach is one of the ways to solve the problem of improving the environmental safety of the environment. Materials and methods: BMPC environmental safety studies were performed using microstructural, X-ray and elemental analysis methods, studying physical and mechanical properties and fire safety. Man-caused wastes inventory and classificational ecological assessment by the lif e cycle was carried out. Results: the conformity of the Baikal region man-caused wastes (such as fly ash from heat-power engineering, aluminosilicate microspheres, isolated from bottom ash wastes, marble dust (microcalcite), industrial waste of polyvinylchloride (PVC), as well as small-sized mica waste in the form of vermiculite) to the basic characteristics that allow to use this wastes in the production of BMPC-products by extrusion as fillers. The man-caused wastes ecological utilization mechanism was developed. Composition of composite materials, in which industrial PVC waste is used as the matrix, and fly ash, ash microspheres, marble dust and vermiculite as fillers, were developed. The proposed technology for the production of BPMC products allows the use of technogenic wastes in a wide range in the composition from 20 to 60 %. The new biopozitive polymer-mineral composite products properties were studied. Conclusions: the conducted studies of the composition and properties of samples obtained using different types of man-made waste in the polymer-mineral composites production proved that the production of BPMC products ensures the building materials and environmental safety through the reliable and durable materials production that comply with regulatory requirements. According to the life cycle environmental safety assessment, the waste products obtained on the basis of waste have significant advantages in terms of a technical and environmental characteristics set.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Исследование экологически безопасных строительных материалов на основе отходов

Предмет исследования: рассмотрена оценка экологической безопасности получаемых с использованием техногенных отходов новых биопозитивных полимерно-минеральных композиционных (БПМК) строительных материалов. Данный подход является одним из путей решения проблемы повышения экологической безопасности окружающей среды. Материалы и методы: использованы методы микроструктурного, рентгенофазового и элементного анализов, изучены физико-механические свойства и пожарная безопасность. Проведена инвентаризационная и классификационная экологическая оценка техногенных отходов по жизненному циклу. Результаты: определено соответствие техногенных отходов Байкальского региона: золы уноса теплоэнергетики, алюмосиликатные микросферы, выделенные из золошлаковых отходов, мраморная пыль (микрокальцит), промышленные отходы производства поливинилхлорида (ПВХ), а также отходы мелкоразмерной слюды в виде вермикулита основным характеристикам, позволяющим применять их в производстве БМПК-изделий экструзионным способом в качестве наполнителей. Разработан экологический механизм утилизации техногенных отходов; составы композиционных материалов, в которых, в качестве матрицы выступают промышленные отходы ПВХ, а в качестве наполнителей зола уноса, зольные микросферы, мраморная пыль и вермикулит. Предлагаемая технология производства БПМК-изделий позволяет использовать техногенные отходы в широком диапазоне в составе композиции от 20 до 60 %. Выполнены исследования свойств новых биопозитивных полимерно-минеральных композиционных изделий. Выводы: проведенные исследования состава и свойств образцов, полученных при использовании разных видов техногенных отходов в производстве полимерно-минеральных композитов, доказали, что производство БПМК-изделий обеспечивает экологическую безопасность строительных материалов и природной среды за счет производства надежных и долговечных материалов, которые соответствуют нормативным требованиям. По оценке экологической безопасности жизненного цикла, полученные БПМК-изделия на основе отходов, имеют значительные преимуществ по комплексу технических и экологических характеристик.

Текст научной работы на тему «Research of the environmentally safe waste-based building materials»

БЕЗОПАСНОСТЬ СТРОИТЕЛЬНЫХ СИСТЕМ.ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ В СТРОИТЕЛЬСТВЕ. ГЕОЭКОЛОГИЯ

УДК 691.175.2+504 DOI: 10.22227/1997-0935.2018.9.1143-1153

Research of the environmentally safe waste-based building materials

Vsevolod A. Mymrin1, Natalia A. Tolmacheva2, Elena V. Zelinskaya2, Anastasia V. Kurina2, Aleksandr A. Garashchenko2

1 Technological Federal University of Parana, Avenida de deputado Heitor Alencar Furtado, 5000, Ecoville, Curitiba, Brasil;

2 Irkutsk National Research Technical University (INRTU),

83 Lermontova st., Irkutsk, 664074, Russian Federation

ABSTRACT: Introduction: in the article the estimation of new ecological safety biopositive polymer-mineral composite (BPMC) building materials obtained with the use of technogenic wastes is considered. This approach is one of the ways to solve the problem of improving the environmental safety of the environment.

Materials and methods: BMPC environmental safety studies were performed using microstructural, X-ray and elemental analysis methods, studying physical and mechanical properties and fire safety. Man-caused wastes inventory and classificational ecological assessment by the lif e cycle was carried out.

Results: the conformity of the Baikal region man-caused wastes (such as fly ash from heat-power engineering, aluminosilicate microspheres, isolated from bottom ash wastes, marble dust (microcalcite), industrial waste of polyvinylchloride (PVC), e ^ as well as small-sized mica waste in the form of vermiculite) to the basic characteristics that allow to

the production of BMPC-products by extrusion as fillers. The man-caused wastes ecological utilization mechanism was i I developed. Composition of composite materials, in which industrial PVC waste is used as the matrix, and fly ash, ash C | microspheres, marble dust and vermiculite as fillers, were developed. The proposed technology for the production of BPMC G ^ products allows the use of technogenic wastes in a wide range in the composition from 20 to 60 %. The new biopozitive S c polymer-mineral composite products properties were studied. C y

Conclusions: the conducted studies of the composition and properties of samples obtained using different types of man-made waste in the polymer-mineral composites production proved that the production of BPMC products ensures the 7 building materials and environmental safety through the reliable and durable materials production that comply with regulatory o requirements. According to the life cycle environmental safety assessment, the waste products obtained on the basis of waste d _ have significant advantages in terms of a technical and environmental characteristics set. 5' $

KEY WORDS: biopositive polymer-mineral composite products, environmental safety,

_ 9

7 —

Acknowledgments: The work was carried out with the financial support of the Ministry of Education and Science of the $ 9 Russian Federation: projects within the framework of the state task № 11.8090.2017/8.9 and 5.11496.2018/11.12 0 3

FOR CITATION: Vsevolod A. Mymrin, Natalia A. Tolmacheva, Elena V. Zelinskaia, Anastasia V. Kurina, Aleksandr A. a i Garashchenko Research of the environmentally safe waste-based building materials. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2018, vol. 13, issue 9, pp. 1143-1153. DOI 10.22227/1997-0935.2018.9.1143-1153

Исследование экологически безопасных строительных материалов на основе отходов

--По

В.А. Мымрин, Н.А. Толмачева, Е.В. Зелинская, А.В. Курина, А.А. Гаращенко о П

1 Федеральный Технологический университет города Парана, Бразилия, Куритиба, Эковилль, $ 22

Проспект депутата Гектора Аленкара Фуртадо, 5000; 5' 2 Иркутский национальный исследовательский технический университет (ИРНИТУ),

664074, г. Иркутск, ул. Лермонтова, д. 83 ° Н

п

АННОТАЦИЯ: Предмет исследования: рассмотрена оценка экологической безопасности получаемых с использо- ф 3

ванием техногенных отходов новых биопозитивных полимерно-минеральных композиционных (БПМК) строительных

з ?

материалов. Данный подход является одним из путей решения проблемы повышения экологической безопасности I г окружающей среды. <я у

Материалы и методы: использованы методы микроструктурного, рентгенофазового и элементного анализов, изуче- с о ны физико-механические свойства и пожарная безопасность. Проведена инвентаризационная и классификационная экологическая оценка техногенных отходов по жизненному циклу.

Результаты: определено соответствие техногенных отходов Байкальского региона: золы уноса теплоэнергетики, алюмосиликатные микросферы, выделенные из золошлаковых отходов, мраморная пыль (микрокальцит), промышленные отходы производства поливинилхлорида (ПВХ), а также отходы мелкоразмерной слюды в виде вермикулита

Ф Я

О О

л -А

00 00

© Vsevolod A. Mymrin, Natalia A. Tolmacheva, Elena V. Zelinskaya, Anastasia V. Kurina, Aleksandr A. Garashchenko, 2018 1143

основным характеристикам, позволяющим применять их в производстве БМПК-изделий экструзионным способом в качестве наполнителей. Разработан экологический механизм утилизации техногенных отходов; составы композиционных материалов, в которых, в качестве матрицы выступают промышленные отходы ПВХ, а в качестве наполнителей — зола уноса, зольные микросферы, мраморная пыль и вермикулит. Предлагаемая технология производства БПМК-изделий позволяет использовать техногенные отходы в широком диапазоне в составе композиции от 20 до 60 %. Выполнены исследования свойств новых биопозитивных полимерно-минеральных композиционных изделий. Выводы: проведенные исследования состава и свойств образцов, полученных при использовании разных видов техногенных отходов в производстве полимерно-минеральных композитов, доказали, что производство БПМК-изделий обеспечивает экологическую безопасность строительных материалов и природной среды за счет производства надежных и долговечных материалов, которые соответствуют нормативным требованиям. По оценке экологической безопасности жизненного цикла, полученные БПМК-изделия на основе отходов, имеют значительные преимуществ по комплексу технических и экологических характеристик.

КЛЮЧЕВЫЕ СЛОВА: биопозитивные полимерно-минеральные композиционные изделия, экологическая безопасность, техногенные отходы

Благодарности: Работа выполнена при финансовой поддержке Минобрнауки РФ: проекты в рамках государственного задания № 11.8090.2017/8.9 и №5.11496.2018/11.12

ДЛЯ ЦИТИРОВАНИЯ: Мымрин В.А., Толмачева Н.А., Зелинская Е.В., Курина А.В., Гаращенко А.А. Research of the environmentally safe waste-based building materials // Вестник МГСУ. 2018. Т. 13. Вып. 9 (120). С. 1143-1153. DOI: 10.22227/1997-0935.2018.9.1143-1153

со «о

г г

О о

сч сч

СП СП

К (V

U 3 > (Л

С (Л

2 "" 00 (О

ш

г

ф

ф Ф

CZ с ^

О ш

о ^

О

со О

СО ч-

4 °

о со

ГМ <л

от

га

CL ОТ

« I

со О

О) "

О) ? °

Z от ОТ £=

ОТ ТЗ — ф

ф

о о

С w

■а

il

О (0

INTRODUCTION

The amount of accumulated and recorded production and consumption waste in the country as a whole is about 40.7 billion tons, with an annual increase of about 5.4 billion tons. Only in the Irkutsk region the volume of large-tonnage mineral and polymeric waste is:

• thermal power engineering fly ash — 85 million tons with an annual increase of 1.7 million tons;

• including aluminosilicate microspheres — more than 25 thousand tons;

• marble dust from the extraction and processing of marble in quarries — 450 thousand tons;

• industrial PVC wastes — 25 thousand tons, etc.

The existing level of large-tonnage industrial

waste use does not allow reducing the environmental load. This leads to soil degradation, underground, surface waters air environment pollution and other types of negative environmental impact.

It is known that one of the ways to reduce the negative impact on the environment is the industrial waste utilization when they are used as raw material for the building materials production. However, the volume of technogenic mineral and polymer wastes annually increases. As a consequence, existing scientific and practical approaches and implemented technologies do not solve the environmental problems of the regions to the full.

The biopositive polymer-mineral (BPMC) products creation using multi-tonnage technogenic wastes as fillers is a solution to the improving environmental safety problem. But for this it is necessary to create an environmentally sound mechanism for the various types of man-made waste disposal. This will allow to minimize

the negative load on the natural environment with the ecological and economic effect for the regions [1, 2].

As known [3, 4], the building materials production is an industry that consumes significant amounts of mineral man-caused waste. Material resources in the production of most building materials account constitute the major portion for more than 55 %. Thus, it can be argued that the industrial waste use in the construction industry is one of the ways to preserve the natural environment [5-12].

Building products biopositivity must meet the requirements of environmental friendliness at all stages of the life cycle: from the raw materials extraction to the products disposal. The use of waste repeatedly in the construction materials production leads to a reduction in the overall negative impact on the environment throughout the life cycle, because closes the waste life cycle, prolonging it in products.

Basing on the scientific literature analysis, we can assume that biopositive (environmentally friendly) construction products can be considered only if they meet the following criteria:

• raw materials ecological compatibility (resources renewability, minimum energy consumption during extraction and preparation of raw materials);

• the materials production technology ecological compatibility (minimum energy consumption in the manufacturing process, minimal environmental pollution, minimum waste amount);

• the material ecological compatibility during operation (materials should not emit harmful volatile substances into the air, should not be electrified and accumulate static charges on the surface, should not shield the geomagnetic field of the earth);

• material environmentally friendly disposal at the end of the service life (partial reuse possibility).

The materials and products improvement in the direction of their biopositivity should be carried out in accordance with an construction products objective environmental assessment. It is necessary to take into account all stages of the life cycle and the need for its complete closure. At the same time, it is necessary to analyze the load on the environment throughout the products life cycle.

It is known that all properties of building products, including polymer-mineral composites, depend on the material composition and structure [13-15]. Accordingly, the construction product environmental safety depends largely on the raw materials properties, in this case man-made waste, used as a filler in polymer composite materials.

MATERIALS AND METHODS

An analysis of numerous studies on the filling of polymers has shown that there is a number of characteristics of the filler that it must match if used in the production of mineral-polymer composites [16, 17].

We have determined the waste compliance with the main characteristics, which allow to use them in the biopositive polymer-mineral composite building materials production by extrusion as fillers. For this purpose, an inventory and classification ecological assessment of the Baikal region technogenic wastes was carried out. The following types of wastes were evaluated: fly ash from heat-power engineering; aluminosilicate micro-spheres separated from ash and slag wastes; marble dust (microcalcite); industrial waste products of polyvinyl chloride production (PVC), as well as small-sized mica waste (vermiculite). Granulometric, substantial, mineral, microstructural and elemental analyzes were studied, and the results of the physico-mechanical characteristics of these wastes were obtained.

The conducted ecological assessment showed that, in the aggregate of their properties, all listed wastes correspond to the basic criteria for their applicability as fillers. The particle size distribution falls within the range of 1-70 ^m; humidity not more than 3 %; bulk density not more than 3 kg/m3. Chemical analysis showed that the heavy metals content does not exceed the MPC; the all types of waste radioactivity corresponds to the first class of radiation safety. Thus, the use of waste with these properties makes it possible to extend their life cycle in the form of products. This, in turn, helps to reduce the negative man-caused impact on the environment of the region.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

For this purpose, an environmental mechanism for recycling man-caused wastes has been developed. Its implementation makes it possible to use all the types of waste considered in the production of new BPMC products. BMPC-products are produced by extrusion technology while optimizing technological parameters.

RESULTS

Composite materials in which industrial PVC waste is used as the matrix and fly ash, ash micro-spheres, marble dust and vermiculite as fillers were developed. The prototypes were manufactured on the modern industrial extrusion line SJZ-55/110 + YF300. The new polymer-mineral composite materials obtained as a result of experimental research — BPMC-products have a high filler content, up to 40-60 %. They are an analogue of a wood-polymer composite with various fillings from man-made waste.

Environmental safety of the natural environment and human depends entirely on the quality (properties) of the building materials used. Therefore, new biopositive polymer-mineral composite products properties studies were performed. The studies included the study of microstructure, physicomechanical properties, fire hazard, X-ray phase and elemental analyzes. This allowed to establish compliance of products with regulatory regulations and technical standards.

Microstructural analysis showed that, in the main, the samples have a homogeneous structure. The filler particles are organically incorporated into the polymer matrix and evenly distributed in it, without forming agglomerates. This results in products good strength characteristics. The presence of a blowing agent imparts a porosity to the material structure, which leads to an increase in thermal insulation properties. The exception was a sample with vermiculite. In it, the mineral filler was distributed unevenly in the polymer matrix (Fig. 1, a, b, c), vermiculite particles were loosely embedded in the polymer matrix (Fig. 1, d). Adhesion between the polymer and mineral particles is insignificant. This affects its strength properties, presented in Table 1, and the product geometry.

X-ray phase and element analysis of samples was carried out at the Federal State Budgetary Institute of Science. A.P. Vinogradova of Siberian Branch of the Russian Academy of Sciences (IHC SB RAS) using a diffractometer D8 ADVANCE Bruker equipped with a VANTEC-1 PSD detector and a mirror Gobel, with a step-by-step shooting mode in the range of diffraction angles 20 from 3 to 70 degrees. The analysis revealed the similarity of peaks related to substances defined in the original waste composition — fly ash, ash microspheres, marble dust, vermiculite. In this case, the peaks are of lower intensity. It is established that in new samples of BPMC products there is no chemical reaction between the components of the mixture during its processing. Consequently, there is no release of volatile substances and gases, as well as the hazardous compounds formation. This indicates that the use of man-made waste in BPMC products enhances the environmental safety of the natural environment by binding and stabilizing the original components in the mixture.

It has been found that with the help of fillers in polyvinyl chloride (PVC) compositions, the density, the

e е

<D (D

t О

iH

mM

G Г с"

c У

(О сл

CD CD 7

О 3 о

о ( t r a i

r 2

S м

3 Й

>< о

a -

2 CO

0 CD

2 о

Ho

1 i H =J

CD CD CD "

ем

• w

W Ы

s □

s у с о

w w ,,

2 2 О О л -А

00 00

20kV x 1,000 10pm 201B/09J11 20 50 SEM_SEI

CO CO r r

o o

tv N

en en

H (V U 3 > in E in 2 "" 00 (0

(0

0

<D <u cz ç

1= ™ o£

o ^

o =ï

CD O CD

4 °

o

CO CM

Fig. 1. Micrographs of samples: a — with fly ash; b — with fly ash and microspheres; c — with a micromramor; d — with vermiculite

Table 1. Strength characteristics of the samples obtained

Characteristics, units Sample with fly ash 50 % Sample with fly ash and microspheres 55 % Sample with micromramor 50 % Sample with vermiculite 40 %

Compressive strength, MPa 40.1386 35.0896 45.5072 32.2848

Ultimate tensile strength, MPa 18.9 19.21 19.61 16.17

Flexural strength, MPa 35.93 32.83 34.78 46.18

.f?

<D >

CO

ûl So

■n I

CO O 05 ™

9 8

CD

*Î5

Z CT OT £= in T3 — <u <u o o

■8

Ï!

Ü in

material strength, chemical resistance, heat resistance, water absorption and other technical and operational properties of products can be regulated [18-25]. The determination of the basic physico-mechanical indicators was carried out according to standard methods in accordance with GOST of the Russian Federation.

One of the fundamental consumer properties, in many respects determining the application field of building materials, is strength. The often used charac-

teristics are also the tensile, compressive and bending tensile strengths.

Samples of obtained materials with a fly ash content of 50 % (conventionally named ZU-50), with a fly ash content and 55 % fly ash microspheres (MC-55), containing 50 % (M-50) marble and with vermiculite 40 % (B-28) were selected to determine the ultimate strength. Samples were prepared in accordance with GOST 11262-80 and GOST 4651-2014. The studies

Table 2.

Characteristics, units FA-50 MS-55 M-50 W-40

Compressive strength, MPa 40.1386 35.0896 45.5072 32.2848

Ultimate tensile strength, MPa 18.9 19.21 19.61 16.17

Flexural strength, MPa 35. 93 32.83 34.78 46.18

Density, kg/dm3 1190 1182 1300-1375 1248

Charpy impact strength, kJ/m2 16.24 14.95 15.25 3-4

Coefficient of linear thermal expansion, at T = 1000 °C and t = 60 min, % -2.1 -3.5 -1.8 -2.8

Coefficient of linear thermal expansion, at T = 70 °C and t = 60 min, % -0.2 -0.1 -0.1 -0.1

Water absorption, % 0.1204 0.1620 0.0919 0.1155

Table 3. Decking specification ( FA-50)

Indicators Characteristics, units Value for FA-50 Standard for wood-plastic composite (WPC)

Water resistance in case of steeping in water for 24 hours at 20 ± 1°C Water absorption, % 0.1204 < 2

Longwise swelling, % 0.19 < 1

Edgewise swelling, % 0.31

Swelling through the thickness, % 0.37

Water resistance in case of 2-hours boiling Water absorption, % 0.36 < 5

Longwise contraction, % -1.1 < 1.5

Edgewise swelling, % 0.62

Swelling through the thickness, % 0.62

e e

<D (D t O

i H G !

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

C" c y

were carried out on 10 samples of each composition under tension and compression and on five samples during bending tests (according to GOST 4648-2014 the minimum number of samples is 5). Comparative results are presented in Table 2.

Table 3 shows the averaged characteristics for water absorption.

From Table 3 it can be seen that the products FA-50 have low values of water absorption and swelling, which characterizes their geometric stability and does not require additional measures to increase water resistance of products, unlike wood and WPC. New BMPC-products are more steady in damp environments than their analogue from WPC.

To date, GOSTs for WPC products have not been developed, therefore, a comparative analysis of the properties of BPMC products was carried out according to the technical specifications of the analogue material — WPC, developed by LLC "DPK ENGINEERING" TU 5772-002-68197540-20111 and the standards established by the Scientific- research center "Wood-polymer composites", Moscow [26]. The main

(Q en

1 TU 5772-002-68197540-2011 Profile products from woodpolymer composite.

technical characteristics of the decking from BPMC (filler — fly ash) were compared with the analogue — wood-polymer composite (WPC), with PVC and wood (pine) (Table 4).

The results shown in Table 3 showed that BPMC products are characterized by high density — over 1500 kg/m3. However, according to the economic factor, the density can be reduced to the proposed norm of 1100-1300 kg/m3 [27]. The sample is sufficiently ductile at negative temperatures. The Charpy impact strength is 10 kJ/m2, which is 2.5 times surpass the analog from WPC. The BPMC product has a high hardness of 200 N / mm2, which is almost 2 times higher than the standard (90 N / mm2), and the analog of WPC does not correspond to the norm (65 N / mm2). In BMPC products — increased values of bending strength — 52 MPa, which is 2 times more than the standard — 25 MPa. The sample from the BPMC showed a high value of the destructive load — 5292 N (at a requirement of not less than 2000 N).

Indicators of fire hazard of products are important for assessing environmental safety. To comply with the requirements of Federal Law No. 123-FZ dated 22.07.2008 "Technical Regulations on Fire Safety Requirements", samples were tested in the Fire and Explo-

O CD

C g 8 3 « ( t r

a H

t Ij CD )

r «

s m

3 ^

o

f ^

« CD

O CD

v 0

0 O

Ho

1 i H =J

CD CD CD

f?

ü ü

W ?

s □

s y c o

O ü ,,

M 2 O O a -A

» n

Table 4. Comparison of the properties of the decking from various materials

№ n/n Characteristics, units Method of control BPMC WPC PVC Woof (Pine) Norm for a terrace board from the WPC

1 Density, kg/dm3 GOST 15139-69 11801600 11501400 13801464 800 -

2 Flexural strength, MPa GOST 4648 35-52 41-52 40-47 79.5 > 25

3 Ultimate tensile strength, MPa GOST 11262 18.9 10 60-160 103.5 (along fibres) 10

4 Charpy impact strength, kJ/m2 GOST 4647 10-17 3-4 - 41,2 > 3,5

5 Water absorption for 24 hours, % GOST 19592-80 0.20 5.0 0. 262 go 5 < 5

6 Water absorption in case of 2-hours boiling, % GOST 19592-80 0.36 10.0 < 5

7 Edgewise in case of 2-hours boiling GOST 19592-80 0.62 2.94 2.0 < 1,5

8 Hardness in case of ballindentation test, N/mm2 GOST 467 200 145 120 65 > 90

9 Specific resistance to screws withdrawal, N/mm, not less than GOST 10637 330 120 >120

10 Ultimate breaking load of board with 400 mm gaps between legs , kgf/N GOST 4648 540/5292 200 > 200/2000

11 Combustibility GOST 30244-94 r2 T3-r4 r4 r4 -

12 Conditional lightfastness — color loss after 24 hours of UV irradiation GOST21903- 76 U1 U2 U6

13 Guaranteed service life, years GOST 9.407-84, GOST 52492005 10 2

eo eo

r r

O O

N N

® «»

H (V

U 3

> in

c in

2 "" HQ n

(0

0

<D <u

CZ £

1= 'g

O W

o ^ o

CD O CD

4 °

o

CO CM

CO

O in

<n

<D >

<u

c -ts

■:= œ

ûl 35

« I

CO O

05 ™

9 s

CD

CO c

CO T3

— <u <u o o

sion-Safety Laboratory (NIL PVB) of OOO PSP POZT-SENTR, Moscow. The main indicators are determined and the following values are obtained:

• flammability group in accordance with GOST 30244-94 "Building materials. Methods of testing for flammability" — the material is moderately flammable (G2);

• flame propagation group in accordance with GOST R 51032-97 "Building materials. Test method for flame propagation" — the material belongs to the group not spreading the flame (RP1);

• Smoke generation coefficient according to GOST 12.1.044-89 (ISO 4589-84) "SSBT. Fire and explosion hazard of substances and materials" — refers to a group with a moderate smoke-generating capacity (D2);

• group on flammability according to GOST 3040296 "Building materials. Tests on inflammability" — refers to the group of moderately flammable (B2);

• the toxicity index of combustion products in accordance with GOST 12.1.044-89 (ISO 4589-84) "SSBT. Fire and explosion hazard of substances and materials" — moderately hazardous (T2);

• ignition temperature according to GOST 12.1.04489 (ISO 4589-84) "SSBT. Fire and explosion hazard of substances and materials" — 330 °C;

• Autoignition temperature according to GOST 12.1.044-89 (ISO 4589-84) "SSBT. Fire and explosion hazard of substances and materials" — 538 °C.

For clarity, Table 5 provides a comparative analysis of fire hazard indicators for new BPMC products with articles made of WPC and pure PVC.

BPMC-products showed high results in terms of fire hazard in comparison with PDK and PVC products.

Thus, the conducted studies of the composition and properties of samples obtained with the use of different kinds of man-made waste in the production of polymer-mineral composites proved that the production of BPMC products ensures the ecological safety of building materials and the environment through the production of reliable and durable materials that comply with regulatory requirements.

The proposed technology for the production of BPMC products allows the use of technogenic wastes in a wide range in the composition of the composition

Table 5. Comparative characteristics of fire hazard indicators

Indicators Combustibility Propagation of the flame Inflammability Smoke generating capacity Toxicity of combustion products Temperature self-ignition, 0C

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

FA-50 % C2 RP1 — do not spread F2 — moderately flammable S2 — moderate smoke-forming ability T2 — moderately hazardous 550

FA& MS 55 % C2 RP1 F2 S2 T2 543

M-50 % C2 RP1 F2 S2 T2 543

W-40 % C2 RP1 F2 S2 T2 543

WPC C4/C3 — normally flammable RP3 — moderately distributing F3 — highly flammable S3 — high smoke-forming capacity T3 — high hazardous 390

PVC C4 — highly flammable RP3 — moderately distributing F3 — highly flammable S3 — high smoke-forming capacity T4 — extremely dangerous 454

from 20 to 60 %. After the production of prototypes, a large-scale environmental assessment of the production technology of BPMC products was carried out using known methods on the scale of total loads. It should be noted that the production of KDP-products requires the drying of wood flour to a moisture content of 3 %. In addition, with this technology, two-stage extrusion is desirable (preliminary extrusion preparation of the granulate), which entails additional loads in terms of formation of harmful emissions, dust, increase in electricity consumption, and material and time loads. Due to the replacement of wood flour with mineral waste, the issue of energy saving has been resolved, Some manufacturing processes are excluded, such as mandatory drying of raw materials and granulation, and a change in the system of preparation of raw materials reduces the consumption of electricity by a factor of 1.5. Dustiness of the air in the working zone when the dosing process is changed and the feed of raw materials in the proposed technology is reduced almost 2 times. To reduce the flammability of woodpolymer composites, fire retardants are added to the mixture, which add additional negative effects to the environment in the amount of 12 points. In the proposed technology, the role of flame retardants is played by mineral fillers, so the introduction of flame retardants is not foreseen.

Thus, the existing technology has a negative impact on the scale of the total environmental load of 39 points, whereas the proposed technology carries a negative load of only 15 points. Reducing the negative impact on the environment with the technology of production of BPMC products based on man-made waste will reduce the environmental load in the production zone, ash dumps and other places of storage of man-made waste.

A marketing analysis was conducted, on the basis of which it was established that when confirming the

environmentally friendly characteristics of this material, the construction market is ready to include these materials in the nomenclature of construction products used, in particular, for finishing. To date, marketers are predicting the most demanded appointment of biopositive polymer-mineral composite material as a decking (terraced board).

Developed BMPC-products meets modern requirements of fire and ecological safety and correspond to the policy of import substitution. They also have a more attractive cost price compared to existing industrial counterparts.

The cost of 1 m2 of decking from BPMC with the use of fly ash is 1445.15 rubles, whereas the average cost of 1 m2 of decking from the WPK is 2266.7 rubles. The difference is 821.55 rubles per square meter. A comparative calculation showed that with an equal annual volume of output, the difference in value terms would amount to 116.529 million rubles on only one production line.

The ecological effect of waste as a filler in BPMC products is associated with a reduction in areas allocated for dumping and burial. With the use of only one production line, about 1.500 tons of fly ash will be used, which will free up about 2.000 square meters of land from under the ash dumps. The effect will be about 3 million rubles a year.

Only in the Irkutsk region ash dumps occupy an area of about 2000 hectares. Estimation of the magnitude of the prevented ecological damage from soil and land degradation is carried out according to the method for determining the prevented ecological damage2 and the methodology for calculating the amount of dam-

e e

<D (D t O

i H G I

C" c y

(Q en

2 Methodology for the definition of prevented environmental damage : approved the Chairman of the State Committee of the Russian Federation on environmental protection V. I. Danilov-Danielyan. Moscow, 1999. 66 p.

CD CD 7

Ö 3 o CO

o ( t r a i

r 2

s M

3 ^

o

ff -

2 CD

0 CD v 0

2 o

Ho

1 i

H =¡

CD CD CD

f?

ü ü

W P

s □

s y c o

O ü ,,

2 2

O O

a -A

00 00

to eo

r r O O

N N

en en

H (V U 3

> in

E (A 2 "" HQ

(0

(0

0

<D <u cz £

o ^ o

CD O CD

4 °

o

CO

CM <»

age caused to soils as an object of environmental protection3. The magnitude of the prevented ecological damage when using fly ash according to the proposed technology only in the Irkutsk region during the disposal of ash disposal sites could amount to 13.000 million rubles.

CONCLUSION AND DISCUSSION

One of the ways to solve the problem of recycling polymeric wastes is to create polymer-mineral compositions (PMC), where mineral technogenic wastes can be used as a filler, allowing to vary the properties of finished composites, including lowering the hazard class of products for life cycle assessment in general, that also corresponds to the provisions of the "Strategy for the Development of the Construction Materials Industry... until 2030", the Decrees of the President of the Russian Federation, the Decrees of the Government of the Russian Federation on Supporting the Policy of Import Substitution and the development of environmentally friendly technologies and energy efficiency with the placement of plastic waste in the production of building materials and products.

Analysis and generalization of the existing methods of utilization of large-tonnage mineral wastes showed that the production of building materials based on man-made mineral waste will prolong the life cycle of materials and products and reduce environmental pressures on the environment.

Based on environmental safety, an inventory and classification evaluation of man-caused wastes of the Baikal region was carried out, in particular, ashes from different thermal power stations of the Irkutsk region and ash microspheres, marble dust, PVC industrial

3 Method of calculating the amount of damage caused to soils as an object of environmental protection : approved by the order of the Ministry of Natural Resources of Russia of June 8, 2010 № 238 (ed. 25.04.2014). Moscow, 2014. 14 p.

waste, and fine mica waste — vermiculite. The mineral, elemental and chemical compositions, as well as the physical and mechanical properties of these wastes are determined.

It is established that these wastes, in terms of their properties, meet the criteria for the applicability of their use in the production of biopositive polymer-mineral composite (BMPC) building products by extrusion, thereby reducing the negative man-caused strain on the environment of the region, prolonging the life cycle of the above wastes in the form of articles.

The possible ecological and economic effect of reducing the degradation of soils during the eradication of ash dumps due to the use of fly ash in the production of a terrace board from BPMC in the Irkutsk region is about 13 billion rubles.

Prospects for further development of the topic of environmental safety of biopositive building materials based on waste can be taken into account in planning the main directions of the development of the construction materials industry in the light of the implementation of the strategy of import substitution of products, relevant in the light of reducing the negative impact on the environment according to the "Strategy for the Development of the Building Materials Industry... until 2030"4, where the priority areas in innovative technologies for the production of building materials erialov are environmentally friendly and biopozitivnye building materials with enhanced performance properties, including strength, frost resistance, durability, providing fire and environmental safety. The topic of ecological safety of biopositive building materials can become the main priority when passing ecological expertise of projects of new technologies for creating building materials.

4 On the approval of the Strategy for the Development of Industry for the Processing, Utilization and Disposal of Production and Consumption Waste : Order of the Government of the Russian Federation 25.01.2018 № 84-r. 2018. 59 p.

CO

ûl 55

« I

CO O

CD "

CD ? °

Z CT OT != if) T3

— <u <u o o

E w

■8 iï

O in №

REFERENCES

1. Telichenko V.I., Shcherbina E.V. Ekologiches-kaya bezopasnost' stroitel'stva — innovatsionnyy po-tentsial XXI veka [Ecological safety of construction — innovative potential of the XXI century]. Stroitel'nye materialy, oborudovanie i tekhnologii XXI veka [Building materials, equipment and technologies of the XXI century]. 2007, no. 5 (100), pp. 10-15. (In Russian)

2. Slesarev M.Yu., Kuzovka T.V. Perspektiva raz-

vitiya metodologii otsenki ekologicheskoy bezopasnosti v stroitel'stve [Methodology for environmental safety

of civil engineering expected future development]. Ekologiya urbanizirovannykh territoriy [Ecology of urban areas]. 2014, no. 4, pp.6-9. (In Russian)

3. O sostoyanii i ob okhrane okruzhayushchey sredy Rossiyskoy Federatsii v 2016 godu : gosudarst-vennyy doklad [About State and environmental protection of the Russian Federation in 2016: State report]. Moscow, Ministry of Natural Resources of Russia; NIA-Nature Publ., 2017. 760 p. (In Russian)

4. Kochneva A.V., Tolmacheva N.A., Zelinskaya E.V., Burdonov A.E., Barakhtenko V.V. Utilizatsiya otkhodov dobychi mramora v proizvodstve stroitel'nykh materialov [Utilization of marble mining waste in the production of building materials]. Ekologiya i pro-myshlennost' Rossii [Ecology and industry of Russia].

2017, vol. 21, no. 11, pp. 10-14. DOI: 10.18412 / 18160395-2017-11-10-14. (In Russian)

5. Knyazeva V.P. Ekologiya. Osnovy restavratsii . [Ecology. Fundamentals of restoration], Moscow, Arkh-itektura-S Publ., 2005. 400 p. (In Russian)

6. Knyazeva V.P. Ekologicheskie aspekty vybora stroitel'nykh materialov: metod. ukazaniya [Ecological aspects of the choice of building materials : method. instructions]. Moscow, Moskovskiy arkhitekturnyy institute Publ., 2011. 23 p. (In Russian)

7. Grafkina M.V., Sviridova E.Yu., Sdobnyakova E.E. Novye podkhody k otsenke ekologicheskikh po-kazateley stroitel'nykh materialov [New approaches to the assessment of environmental indicators of building materials]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova [Bulletin of Belgorod state technological University named after V.G. Shukhov]. 2016, no. 9, pp.15-21. (In Russian)

8. Nasonova A.E., Knyazeva V.P., Zhuk P.M. Analiz sistem ekologicheski obosnovannogo vybora stroitelnykh materialov [System Analysis of Ecological Choice of Constructional Materials]. Ekologiya ur-banizirovannykh territoriy [Urban Territories Ecology]. 2012, no. 4, pp. 93-97. (In Russian)

9. Mymrin V.A., Catai R.E., Zelinskaya E.V., Tol-macheva N.A. New Construction Materials Based on Automobile Construction Sludge. Applied Mechanics and Materials. 2013, vol. 346, pp. 15-21. DOI: 10.4028/ www.scientific.net/AMM.346.15.

10. Mymrin V., Ribeiro R.A.C., Alekseev K., Zelinskaya E., Tolmacheva N., Catai R. Environment friendly ceramics from hazardous industrial wastes. Ceramics International. 2014, vol. 40, issue 7, pp. 94279437. DOI: 10.1016/j.ceramint.2014.02.014.

11. Mymrin V., Alekseev K.P., Zelinskaya E.V., Tolmacheva N.A., Catai R.E. Industrial sewage slurry utilization for red ceramics production. Construction and Building Materials. 2014, vol. 66, pp. 368-374. DOI: 10.1016/j.conbuildmat.2014.05.036.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

12. Mymrin V.A., Solyon G.J.P., Pawlowsky U., Alekseev K.P., Zelinskaya E.V., Tolmacheva N.A. et al. Structure formation processes of composites on the base of ink rejected sludge. Construction and Building Materials. 2016, vol. 102, pp. 141-148. DOI: 10.1016/j. conbuildmat.2015.10.034.

13. Telichenko V.I., Oreshkin D.V. Material-ovedcheskie aspekty geoekologicheskoy i ekologiches-koy bezopasnosti v stroitel'stve [Material science aspects of geo-ecological and environmental safety in construction]. Ekologiya urbanizirovannykh territoriy [Urban Territories Ecology]. 2015, no. 2, pp. 31-33. (In Russian)

14. Barakhtenko V.V., Burdonov A.E., Kornya-kov M.V., Zelinskaya E.V., Tolmacheva N.A. Vliyanie mineral'nykh napolniteley na protsessy goreniya polim-ernykh materialov [Influence of mineral fillers on combustion processes of polymeric materials]. Ogneupory

i tekhnicheskaya keramika [Refractories and technical ceramics]. 2016, no. 1-2, pp. 42-47. (In Russian)

15. Barakhtenko V.V., Burdonov A.E., Zelinskaya E.V., Tolmacheva N.A., Golovnina A.V., Samorokov V.E. Issledovanie svoystv sovremennykh stroitel'nykh materialov na osnove promyshlennykh otkhodov [Investigation of modern building materials based industrial waste]. Fundamental'nye issledovaniya [Fundamental research]. 2013, no. 10-12, pp. 25992603. (In Russian)

16. Lapina O.A., Lapina A.P. Ekologicheskaya otsenka stroitel'nykh materialov [Environmental assessment of building materials]. Internet-zhurnal «Naukovedenie» [Online journal "Science of science"]. 2013, no. 5, 4 p. URL: https://naukovedenie.ru/ PDF/20ergsu513.pdf. DOI: 10.0000/cyberleninka.ru/ article/n/ekologicheskaya-otsenka-stroitelnyh-materi-alov. (In Russian)

17. Nauchno-tekhnicheskiy otchet po nauchno-issledovatel 'skoy rabote v ramkakh bazovoy chasti gosudarstvennogo zadaniya v sfere nauchnoy deyatel 'nosti po godovomu etapu nauchno-issledovatel'skoy raboty № 1118po Zadaniyu № 2014/53. 2015. [Scientific and technical report on research work in the framework of the basic part of the state task in the field of scientific activity for the annual phase of research work № 1118 for the Task № 2014/53]. 2015. (In Russian)

18. Barakhtenko V.V. Ispol'zovanie zoly unosa v kachestve napolnitelya pri proizvodstve kompozitsion-nykh materialov: mon. [The use of fly ash as a filler in the production of composite materials: monograph]. Irkutsk, Irkutsk State Technical University Publ., 2014. 112 p. (In Russian)

19. Mymrin V., Alekseev K., Fortini O.M., Aibuld-inov Y.K., Pedroso C L., Nagalli A. et al. Environmentally clean materials from hazardous red mud, ground cooled ferrous slag and lime production waste. Journal of Cleaner Production. 2017, vol. 161, pp. 376-381. D0I.org/10.1016/j.jclepro.2017.05.109.

20. Mikhailova I., Vasiliev V., Mironov K. Sovre-mennye stroitel'nye materialy i tovary: sprav. [Modern building materials and goods: handbook]. Moscow, Eksmo Publ., 2006. 574 p. (In Russian)

21. Ashori A., Kiani H., Mozaffari S.A. Mechanical properties of reinforced polyvinyl chloride composites: Effect of filler form and content. Journal of Applied Polymer Science. 2011, vol. 120, issue 3, pp. 17881793. DOI: 10.1002/app.33378.

22. Mikhaylin Yu.A. Termoustoychivye polimery i polimernye materialy [Thermally stable polymers and polymeric materials]. Saint-Petersburg : Professiya Publ., 2006. 624 p. (In Russian)

23. Ingrao C., Arcidiacono C., Bezama A., Iop-polo G., Winans K., Koutinas A. et al. Sustainability issues of by-product and waste management systems to produce building material commodities. Resources, Conservation and Recycling. 2017, vol. 126, pp. A4-A5. DOI: 10.1016/j.resconrec.2017.07.039.

e e

<D (D t O

i H G I

C" c y

(Q en

CD CD 7

O 3 o CO

« ( t r a i

r «

S M

3 ^

o

f -

« CD

O CD

v 0

0 O

no

1 i

n =¡

CD CD CD

[M

ü ü « ?

s □

s y c o

O ü ,,

M 2 O O a -A

» n

24. Shafigullin L., Ganiev M., Gumerov I., Bo-brishev A., Galimov E., Galimova N. The influence of mineral fillers on mechanical properties of polyvinyl chloride composites. World Applied Sciences Journal. 2013, vol. 28, issue 2, pp. 172-175. DOI: 10.5829/ idosi.wasj.2013.28.02.13790.

25. Mymrin V., Santos C.F.G., Alekseev K., Avan-ci M.A., Kreusch M.A., Tiago Borga. Influence of kaolin clay on mechanical properties and on the structure formation processes of white ceramics with inclusion of hazard-

ous laundry sewage sludge. Applied Clay Science. 2018, vol. 155, pp. 95 102. DOI: 10.1016/j.clay.2018.01.006.

26. Protokol ispytaniy № 32/12 ot 14.12.2012 : zaklyuchenie po ispytaniyam izdeliy iz polimerno-kompozitsionnogo materiala laboratorii na-uchno-issledovatel'skogo tsentra «Drevesno-polimernye kompozity». [Test report № 32/12 14.12.2012 «Conclusion on testing of products made of polymer-composite material» of the laboratory of the research center «Woodpolymer composites»]. Moscow, 2012. 6 p. (In Russian)

Received May 7, 2018.

Adopted in final form on June 31, 2018.

Approved for publication on August 28, 2018.

to to

г г

О о

сч сч

СП СП

К (V

U 3

> (Л

С (Л

2 "" 00 M

fi

ш

г

ф

ф Ф cz Ç

1= ¥ О, Ш

о ^ о =ï со О

СО ч-

4 °

о со

ГМ £

со

га

About the authors: Vsevolod А. Mymrin — Professor, Universidade Federal Tecnológica, Paraná (UTFPR),

Curitiba, Brasil. Avenida de deputado Heitor Alencar Furtado, 5000, Ecoville, Curitiba, Brasil, [email protected];

Natalia A. Tolmacheva — senior research scientist, Irkutsk National Research Technical University (INRTU), 83 Lermontova st., Irkutsk, 664074, Russian Federation, [email protected];

Elena V. Zelinskaya — Professor, Irkutsk National Research Technical University (INRTU), 83 Lermontova st., Irkutsk, 664074, Russian Federation, [email protected];

Anastasia V. Kurina — post-graduate student аСМ-16-1, Irkutsk National Research Technical University (INRTU), 83 Lermontova st., Irkutsk, 664074, Russian Federation, [email protected].

Aleksandr A. Garashchenko — master's student ISTm-18-1, Irkutsk National Research Technical University (INRTU), 83 Lermontova st., Irkutsk, 664074, Russian Federation, [email protected].

ЛИТЕРАТУРА

ûl со

« I

со О

О) "

о ? °

Z CT CO £= CO T3 — Ф Ф о о

E w ■8

О (Л №

1. Теличенко В.И., Щербина Е.В. Экологическая безопасность строительства — инновационный потенциал XXI века // Строительные материалы, оборудование и технологии XXI века. 2007. № 5 (100). С. 10-15.

2. СлесаревМ.Ю., Кузовкина Т.В. Перспектива развития методологии оценки экологической безопасности в строительстве // Экология урбанизированных территорий. 2014. № 4. С. 6-9.

3. О состоянии и об охране окружающей среды Российской Федерации в 2016 году : государственный доклад. М. : Минприроды России; НИА-При-рода. 2017. 760 с.

4. Кочнева А.В., Толмачева Н.А., Зелинская Е.В., Бурдонов А.Е., Барахтенко В.В. Утилизация отходов добычи мрамора в производстве строительных материалов // Экология и промышленность России. 2017. Т. 21. № 11. С. 10-14. DOI: 10.18412/18160395-2017-11-10-14.

5. Князева В.П. Экология. Основы реставрации. М. : Изд-во Архитектура-С, 2005. 400 с.

6. Князева В.П. Экологические аспекты выбора строительных материалов: метод. указания. М. : МАРХИ. 2011. 23 с.

7. Графкина М.В., Свиридова Е.Ю., Сдобня-кова Е.Е. Новые подходы к оценке экологических показателей строительных материалов // Вестник

Белгородского государственного технологического университета им. В.Г. Шухова. 2016. № 9. С. 15-21.

8. Насонова А.Е., Князева В.П., Жук П.М. Анализ систем экологически обоснованного выбора строительных материалов // Экология урбанизированных территорий. 2012. № 4. С. 93-97.

9. Mymrin V., Catai R.E., Zelinskaya E.V., Tolmacheva N.A. New Construction Materials Based on Automobile Construction Sludge // Applied Mechanics and Materials. 2013. Vol. 346. Pp. 15-21. DOI: 10.4028/ www.scientific.net/AMM.346.15.

10. Mymrin V., Ribeiro R.A.C., Alekseev K., Zelinskaya E., Tolmacheva N., Catai R. Environment friendly ceramics from hazardous industrial wastes // Ceramics International. 2014. Vol. 40. Issue 7. С. 9427-9437. DOI: 10.1016/j.ceramint.2014.02.014.

11. Mymrin V., Alekseev K.P., Zelinskaya E.V., Tolmacheva N.A., Catai R.E. Industrial sewage slurry utilization for red ceramics production // Construction and Building Materials. 2014. Vol. 66. Pp. 368-374. DOI: 10.1016/j.conbuildmat.2014.05.036.

12. Mymrin V.A., Solyon G.J.P., Pawlowsky U., Alekseev K.P., Zelinskaya E.V., Tolmacheva N.A. et al. Structure formation processes of composites on the base of ink rejected sludge // Construction and Building Materials. 2016. Vol. 102. Pp. 141-148. DOI: 10.1016/j. conbuildmat.2015.10.034.

13. Теличенко В.И., Орешкин Д.В. Материало-ведческие аспекты геоэкологической и экологической безопасности в строительстве // Экология урбанизированных территорий. 2015. № 2. С. 31-33.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

14. Барахтенко В.В., Бурдонов А.Е., Корня-ков М.В., Зелинская Е.В., Толмачева Н.А. Влияние минеральных наполнителей на процессы горения полимерных материалов // Огнеупоры и техническая керамика. 2016. № 1-2. С. 42-47.

15. Барахтенко В.В., Бурдонов А.Е., Зелинская Е.В., Толмачева Н.А., Головнина А.В., Самороков В.Э. Исследование свойств современных строительных материалов на основе промышленных отходов // Фундаментальные исследования. 2013. № 10-12. С. 2599-2603.

16. Лапина О.А., Лапина А.П. Экологическая оценка строительных материалов // Интернет-журнал «Науковедение». 2013. № 5. 4 с. URL: https:// naukovedenie.ru/PDF/20ergsu513.pdf. DOI: 10.0000/ cyberleninka.ru/article/n/ekologicheskaya-otsenka-stroitelnyh-materialov.

17. Научно-технический отчет по научно-исследовательской работе в рамках базовой части государственного задания в сфере научной деятельности по годовому этапу научно-исследовательской работы № 1118 по заданию № 2014/53. 2015 г.

18. Барахтенко В.В. Использование золы уноса в качестве наполнителя при производстве композиционных материалов: мон. Иркутск : Изд-во ИрГТУ, 2014. 112 с.

19. Mymrin V., Alekseev K., Fortini O.M., Aibuldi-nov Y.K., Pedroso C.L., Nagalli A. et al. Environmentally clean materials from hazardous red mud, ground cooled ferrous slag and lime production waste // Journal of Cleaner Production. 2017. Vol. 161. Pp. 376-381. D0I.org/10.1016/j.jclepro.2017.05.109.

20. Михайлова И., Васильев В., Миронов К. Современные строительные материалы и товары: справ. М. : Эксмо. 2006. 574 с.

21. Ashori A., Kiani H., Mozaffari S.A. Mechanical properties of reinforced polyvinyl chloride composites: Effect of filler form and content // Journal of Applied Polymer Science. 2010. Vol. 120. Issue 3. Pp. 1788-1793. DOI: 10.1002/app.33378.

22. Михайлин Ю.А. Термоустойчивые полимеры и полимерные материалы. СПб. : Профессия, 2006. 624 с.

23. Ingrao C., Arcidiacono C., Bezama A., Iop-polo G., Winans K., Koutinas A. et al. Sustainability issues of by-product and waste management systems to produce building material commodities // Resources, Conservation and Recycling. 2017. Vol. 126. Pp. A4-A5. DOI: 10.1016/j.resconrec.2017.07.039.

24. Shafigullin L., Ganiev M., Gumerov I., Bo-brishev A., Galimov E., Galimova N. The influence of mineral fillers on mechanical properties of polyvinyl chloride composites // World Applied Sciences Journal. 2013. Vol. 28. Issue 2. Pp. 172-175. DOI: 10.5829/ idosi.wasj.2013.28.02.13790.

25. Mymrin V., Santos C.F.G., Alekseev K., Avan-ci M.A., Kreusch M.A., Tiago Borga. Influence of kaolin clay on mechanical properties and on the structure formation processes of white ceramics with inclusion of hazardous laundry sewage sludge // Applied Clay Science. 2018. Vol. 155. Pp. 95-102. DOI: 10.1016/j. clay.2018.01.006.

26. Протокол испытаний № 32/12 от 14.12.2012 : заключение по испытаниям изделий из полимерно-композиционного материала лаборатории научно-исследовательского центра «Древесно-полимерные композиты». М., 2012. 6 с.

e е

(D (D

t О

i H G Г

С" с У

(О сл

CD CD 7

О 3 о СО

« ( t r a i

Поступила в редакцию 7 мая 2018 г.

Принята в доработанном виде 31 июня 2018 г.

Одобрена для публикации 28 августа 2018 г.

Об авторах: Мымрин Всеволод Анатольевич — доктор геолого-минералогических наук, приглашённый профессор и исследователь Федерального университета Парана, г. Куритиба, Бразилия, Эковилль, Проспект депутата Гектора Аленкара Фуртадо, 5000;

Толмачева Наталья Анатольевна — старший научный сотрудник, Иркутский национальный исследовательский технический университет (ИРНИТУ), 664074, г. Иркутск, ул. Лермонтова, д. 83, [email protected];

Зелинская Елена Валентиновна — доктор технических наук, профессор, Иркутский национальный исследовательский технический университет (ИРНИТУ), 664074, г. Иркутск, ул. Лермонтова, д. 83, [email protected];

Курина Анастасия Владимировна — аспирант аСМ-16-1, Иркутский национальный исследовательский технический университет (ИРНИТУ), 664074, г. Иркутск, ул. Лермонтова, д. 83, [email protected];

Гаращенко Александр Алексеевич — магистрант ISTm-18-1, Иркутский национальный исследовательский технический университет (ИРНИТУ), 664074, г. Иркутск, ул. Лермонтова, д. 83, [email protected].

r «

s м

3 й

>< о

f -

« СП

О en

v 0

0 о

По

1 i n =¡ CD CD CD

ем

ü w

IЫ s □

s у с о

(D D ,,

M 2

О О

л -А

00 00

i Надоели баннеры? Вы всегда можете отключить рекламу.