УДК 615.414
П.Б. Лубсандоржиева, Э.Г. Найданова
АНТИОКСИДАНТНАЯ АКТИВНОСТЬ ГИПОЛИПИДЕМИЧЕСКОГО СБОРА И ЕГО КОМПОНЕНТОВ IN VITRO
Институт общей и экспериментальной биологии СО РАН (Улан-Удэ)
Антиоксидантная активность отваров гиполипидемического сбора и его отдельных компонентов убывает, в ряду: черные листья, бадана > плоды, шиповника > трава горца птичьего > сбор > цветы ромашки. > плоды, боярышника > корневища аира > корни одуванчика. Фенольные антиоксиданты, содержащиеся, в извлечениях их черных листьев бадана, плодов шиповника, травы, горца птичьего вносят, значительный вклад в суммарную АОА отвара гиполипидемического сбора.
Ключевые слова: гиполипидемический сбор, антиоксидантная активность
ANTIOXIDANT ACTIVITY OF HYPOLIPIDEMIC PLANT DRUG MIXTURE AND ITS COMPONENTS IN VITRO
P.B. Lubsandorzhieva, A.G. Naidanova The Institute of General and Experimental Biology, Ulan-Ude
The antioxidant activity of components of the hypolipidemic plant mixture decoctions decreased, in the following sequence black folia bergeniae > fructus rosae > herba polygoni avicularis > plant mixture > flores chamomillae > fructus crataegi > rhizomata acori calami > radices taraxaci. Folia bergeniae, fructus rosae and herba polygoni avicularis play a major role in the antioxidant activity of hypolipidemic plant mixture displayed, by phenolic compounds containing them..
Key words: hypolipidemic plant drug mixture, antioxidant activity
В медицине и биологии антиоксиданты (АО) рассматриваются в качестве средств дополнительной неспецифической коррекции патологических состояний, протекающих на фоне усиления окислительных процессов, в частности, атеросклероза. Природные ингибиторы окисления как потенциально безопасные лекарства представляют большой интерес [2]. Основной механизм антиатеросклеро-тического эффекта антиоксидантов заключается в прямом ингибировании окисления липопротеидов низкой плотности (ЛПНП), которые имеют проате-рогенные свойства и индуцируют множество видов генов, играющих важную роль в развитии атеросклеротических повреждений. Кроме ингибирования окисления ЛПНП фенольные антиоксиданты участвуют в регуляции экспрессии генов, вовлеченных в процесс деградации липопротеинов [19].
В данной работе представляло интерес определение антиоксидантной активности in vitro 7-компонентного сбора, ранее показавшего в эксперименте выраженные гиполипидемические и адаптогенные свойства [3].
МЕТОДИКА
В состав сбора входят корневища аира болотного, корни одуванчика, соцветия ромашки аптечной, плоды шиповника, боярышника, трава горца птичьего, черные листья бадана толстолистного [3]. Фармакопейные виды сырья приобретены в аптечной сети (производитель ОАО «Красногорс-клексредства»), черные листья бадана собраны в Прибайкальском районе Бурятии (хр. Улан-Бурга-
сы) в осенний период 2002 — 2003 гг. Отвары (1:10) готовили по методу ГФ XI изд. [1]. Содержание водорастворимых веществ, извлекаемых в отвар — флавоноидов в пересчете на рутин, дубильных веществ в пересчете на таннин, полисахаридов, аскорбиновой кислоты, тритерпеновых сапонинов в пересчете на урсоловую кислоту определено по известным методикам [1, 5, 8].
Антиоксидантная активность (АОА) отваров определена по методу, основанному на способности биологической жидкости тормозить накопление продуктов, реагирующих с тиобарбитуровой кислотой в суспензии желточных липопротеидов, взятой в качестве модельной системы окисления [6]. Об АОА судили по величине С1/2 (г/л)-1, обратной концентрации отвара, необходимой для подавления образования МДА на 50 %. Результаты анализов представлены в таблице 1.
РЕЗУЛЬТАТЫ
Антиоксидантная активность отваров гиполи-пидемического сбора и его отдельных компонентов убывает в ряду: черные листья бадана > плоды шиповника > трава горца птичьего > сбор > цветы ромашки > плоды боярышника > корневища аира > корни одуванчика.
Наиболее эффективны извлечения из растений с большим содержанием полифенолов, обладающих высокой АОА [15]. Так, черные листья бадана, содержащие в большом количестве водорастворимые галлотаннины, флавоноиды (галловая и хлорогеновая кислоты, кверцетин, рутин, ди-
Таблица 1
Количественное содержание биологически активных веществ и антиоксидантная активность гиполипидемического сбора и его компонентов
Наименование отваров (1:10) С'А, (г/л)-1 Содержание БАВ, мг/мл
Дубильные в-ва Флавоноиды Аскорбиновая кислота Тритерпеновые сапонины Полисахариды
Сбор 8,0 0,82 0,13 0,07 1,87 6,9
Листья бадана 45,0 9,81 0,39 - - -
Плоды шиповника 14.2 2,08 0,23 0,74 0,34 21,8
Трава горца птичьего 12,5 0,80 0,68* 0,14 0,08 4,0
Цветы ромашки 6,7 1,05 0,45 0,07 0,54 2,78
Плоды боярышника 2,2 0,76 0,015** 1,55 6,41*** 1,80
Корневища аира 1,1 0,28 - 0,036 0,18 5,6
Корни одуванчика 0,3 0,48 - 0,078 0,22 16,0
Примечание: прочерк означает, что вещества не обнаружены; * - флавоноиды в пересчете на авикулярин; ** - в пересчете на гиперозид; *** - тритерпеновые сапонины в пересчете на олеаноловую кислоту; С3, (г/л)-1 -концентрация извлечений, необходимая для ингибирования образования МДА на 50 %.
гидрокверцетин) [4], подавляют процесс ПОЛ в наименьшей концентрации — 0,022 мг/мл. В горце птичьем содержатся эффективные антиоксиданты и их синергисты: флавоноиды (авикулярин, рутин, гиперозид, югланин, гликозиды кемпферо-ла, рамнетина, лютеолина), дубильные вещества, галловая, кофейная, хлорогеновая кислоты, скополетин, умбеллиферон, кремниевая кислота, аскорбиновая кислота, полисахариды, из которых основными являются галактуроновая кислота и ара-биноза [10].
Флавоноиды, обладающие высоким антиокси-дантным потенциалом — производные кверцети-на, лютеолина, апигенина, содержатся в ромашке [10]. Присутствие О-дигидроксильной структуры в В-кольце флавоноидов обеспечивает высокий уровень стабильности флавоноидных феноксиль-ных радикалов, участвующих в электронной делокализации и, таким образом, вносящим большой вклад в АОА [15]. Присутствующие в изученных растениях фенольные соединения — кумарины (скополетин, умбеллиферон), катехины, феноло-кислоты (кофейная, феруловая) по сравнению с флавоноидами (кверцетином) являются более слабыми АО [16]. Совместное их присутствие в растительных извлечениях существенно повышает и пролонгирует их АОА. Этот тезис получил подтверждение как для смесей из водорастворимых веществ (антоцианин мальвин с кофейной и хло-рогеновой кислотой) [14], так и для композиции из водорастворимых и липофильных веществ (рутин в комбинации с аскорбиновой кислотой и у-терпи-неном) [17].
Корреляция АОА от содержания фенольных АО (флавоноидов, проантоцианидинов, катехи-нов) наблюдалась при изучении АОА экстрактов из плодов боярышника [13]. В нашем опыте отвар боярышника по сравнению с другими видами менее активен, что можно связать с присутствием в большом количестве тритерпеновых сапонинов,
агликон которых — олеаноловая кислота не обладает значительным антиоксидантным потенциалом [11].
Высокое значение АОА плодов шиповника в данном случае обеспечивают комбинации синер-гистов — полисахаридов и органических кислот с фенольными АО: флавоноидами (гиперозид, рутин, астрагалин, гликозиды кемпферола), кислотами (галловая, коричная, феруловая, эллаговая), антоцианами, дубильными веществами [10]. Аскорбиновая кислота — сильнейший антиоксидант и синергист: ее вклад в АОА плодов шиповника составляет 23 % [7].
В диапазоне низких доз извлечений наблюдается замедление процесса ингибирования образования МДА, которое выражается в появлении небольшого плато на экспериментальной кривой. Так, в диапазоне доз 0,04 — 0,1 мг/мл отвар аира подавляет ПОЛ на 10—11 %; отвар одуванчика в интервале 0,04 — 0,5 мг/мл — на 22 — 25 %; отвар ромашки в интервале 0,02 — 0,04 мг/мл — на 14 — 16%. Такое влияние на АОА извлечений могут оказать компоненты эфирных масел, экстрагируемые горячей водой в отвар. Известно, что отдельные вещества эфирных масел значительно уступают по активности признанным фенольным антиоксидантам: АОА камфоры, борнеола, гераниола на 4 порядка ниже, чем у флавоноида рутина [11].
Основными компонентами эфирных масел ромашки признаны хамазулен, другие монотерпены и сесквитерпены (матрицин и матрикарин) [10]. При исследовании АОА эфирных масел ромашки было установлено прооксидантное действие в начале процесса, нарушение концентрационной зависимости, при этом более эффективными были продукты окисления эфирных масел ромашки [9].
В состав эфирного масла аира болотного входят 8 сесквитерпеноидов эудесманового ряда, основными из которых являются акоран, кадинен
[18]. Корни одуванчика содержат терпеновые вещества (производные тараксиновой кислоты, тараксастерол, тараксерол и др.) [12]. Присутствие в преобладающем количестве водорастворимых полисахаридов (более З0 % от суммы экстрагируемых в отвар веществ), являющихся синергиста-ми фенольных АО при недостаточном количестве последних и обусловливают низкие значения АОА одуванчика и аира.
ЗАКЛЮЧЕНИЕ
Таким образом, комбинации водорастворимых фенольных антиоксидантов с синергистами (аскорбиновой кислотой, полисахаридами) в извлечениях из черных листьев бадана, плодов шиповника, травы горца птичьего вносят значительный вклад в суммарную АОА отвара гиполипидемичес-кого сбора.
ЛИТЕРАТУРА
1. Государственная фармакопея СССР. — XI изд. — М., 1987. — Вып. 2. — 340 с.
2. Зенков Н.К. Окислительный стресс: Биохимический и патофизиологический аспекты / Н.К. Зенков, В.З. Ланкин, Е.Б. Меньщикова. — М., 2001. — 343 с.
3. Лекарственный сбор, обладающий гиполи-пидемическим и адаптогенным свойствами: Пат. № 2171679 РФ / С.М. Николаев, П.Б. Лубсандор-жиева, Э.Б. Найданова и др. Опубл. 10.08. 2001, Бюл. № 22.
4. Лубсандоржиева П.Б. Бадан толстолистный. Серия. Лекарственные растения тибетской медицины / П.Б. Лубсандоржиева. — Улан-Удэ, 2003.
— С. 27 — 31.
5. Муравьев И.А. Спектрофотометрический метод количественного определения урсоловой кислоты / И.А. Муравьев, В.В. Шатило, В.Ф. Се-менченко // Химия природ. соедин. — 1972. — № 6. — С. 738.
6. Оценка антиокислительной активности плазмы крови с применением желточных липопротеи-дов / Г.И. Клебанов, И.В. Бабенкова, Ю.О. Те-селкина и др. // Лабораторное дело. — 1988. — № 5.
— С. 59 — 62.
7. Потенциометрическое определение аскорбиновой кислоты. Оценка ее вклада в интегральную антиоксидантную способность растительного материала / И.Ф. Абдуллин, Е.Н. Турова, Г.К. Зи-ятдинова, Г.К. Будников // Журнал аналит. химии.
— 2002. — Т. 57, № 4. — С. 418 — 421.
8. Приступа Е.А. Совершенствование технологии приготовления и контроля качества витаминных
чаев / Е.А. Приступа, Д.М. Попов // Актуальные проблемы фармацевтической технологии: Науч. труды ВНИИФ. - М., 1994. - Т. 22. - С. 151-159.
9. Сизова Н.В. Содержание антиоксидантов в экстрактах растительного сырья, полученных методом сверхкритической экстракции / Н.В. Сизова, И.Ю. Попова // Химико-фармацевтический журнал. - 2006. - № 4. - С. 29-33.
10. Формазюк В.И. Энциклопедия пищевых лекарственных растений: культурные и дикорастущие растения в практической медицине / В.И. Формазюк. - Киев, 2003. - 792 с.
11. Шкарина Е.И. Изучение антиоксидантных свойств препаратов на основе лекарственного растительного сырья: Автореф. дис. ... канд. фарм. наук. - М., 2001. - 28 с.
12. Anti-carcinogenic activity of Taraxacum plant / M. Takasaki, T. Konoshima, H. Tikuda et al. // Biol. And Pharm. Bull. - 1999. - P. II, Vol. 22, N 6. -P. 606-610.
13. Antioxidant activites of Crataegus monogyna extracts / T. Baborin, F. Trotin, J. Pommery, J. Vas-seur, M. Pinkas // Planta med. - 1994. - Vol. 60, N4. - P. 323-328.
14. Antioxidant capabilities of some organic acids and their co-pigments with malvin / J.M. Dimitric Marcovic, L.M. Ignjatovic, D.A. Marcovic, J.M. Ba-ranac // J. Electroanalyt. Chem. - 2003. - P. I, Vol. 553. - P. 169-175.
15. Arora A. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system / A. Arora, M.G. Nair, G.M. Stras-burg // Free Radical Biology and Medicine. - 1998.
- Vol. 24, N 9. - P. 1355-1363.
16. Flavonoids, coumarins, and cinnamic acids as antioxidant in a micellar system. Structure - activity relationship / M. Foti, M. Piattelli, M. Tiziana, G. Ruberto // J. Agric. Food Chem. - 1996. -Vol. 44. - P. 407-501.
17. Milde J. Synergistic inhibition of low-density lipoprotein oxidation by rutin, g-terpinene, and ascorbic acid / J. Milde, E.F. Elstner, J. Grabmann // Phytomedicine. - 2004. - Vol. 11, N 2-3. -P. 105-113.
18. Nawamaki K. Sesquiternoids from Acorus calamus as germination inhibitors / K. Nawamaki, M. Kuroyanagi // Phytochemistry. - 1996. -Vol. 43, N 6. - P. 1175-1182.
19. Noriko Noguchi Novel insights into the molecular mechanisms of the antiatherosclerotic properties of antioxidants: the alternatives to radical scavenging / Noguchi Noriko // Free Rad. Biol. & Med. - 2002. - Vol. 33, N 11. - P. 1480-1489.