Научная статья на тему 'Анализ возможности использования веб-аналитики в управлении доходностью организации'

Анализ возможности использования веб-аналитики в управлении доходностью организации Текст научной статьи по специальности «Экономика и бизнес»

CC BY
817
104
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
веб-аналитика / доходность / инструменты веб-аналитики / ROMI / регрессионный анализ. / web analytics / profitability / web analytics tools / ROMI / regression analysis.

Аннотация научной статьи по экономике и бизнесу, автор научной работы — Демкина Ольга Витальевна, Марушко Леонид Юрьевич

Рассмотрены основные инструменты веб-аналитики, используемые на практике. Проанализировано влияние показателей веб-аналитики на доходность организации. Доходность организации в статье оценивается с использованием показателя ROMI (Return on marketing investment). Посредством регрессионного анализа, доказано, что на доходность организации оказывают прямое влияние следующие показатели вебаналитики: показы, клики, CTR, рекламные расходы, средняя цена клика, конверсия.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Investigation of the role of web analytics in improving the efficiency of the organization

The basic web analytics tools used in practice are considered. The influence of web analytics indicators on the profitability of the organization is analyzed. The profitability of the organization in the article is estimated using the ROMI (Return on marketing investment) indicator. Through a regression analysis, it has been proven that the following web analytics indicators directly affect the organization’s profitability: impressions, clicks, CTR, advertising costs, average cost per click, conversion.

Текст научной работы на тему «Анализ возможности использования веб-аналитики в управлении доходностью организации»

Анализ возможности использования веб-аналитики в управлении доходностью

организации

Investigation of the role of web analytics in improving the efficiency of the organization

Ь Л московский шщ экономический

ЖУРНАЛ

DOI 10.24411/2413-046Х-2019-19085 Демкина Ольга Витальевна,

к.э.н, доцент, Государственный университет управления, РФ, г. Москва

Марушко Леонид Юрьевич, Государственный университет управления, РФ, г. Москва

Demkina Olga Vital'evna, PhD, associate Professor, State University of Management, Russia, Moscow

Marushko Leonid Yr'evich, Undergraduate student, State University of Management, Russia, Moscow

Аннотация: Рассмотрены основные инструменты веб-аналитики, используемые на практике. Проанализировано влияние показателей веб-аналитики на доходность организации. Доходность организации в статье оценивается с использованием показателя ROMI (Return on marketing investment). Посредством регрессионного анализа, доказано, что на доходность организации оказывают прямое влияние следующие показатели веб-аналитики: показы, клики, CTR, рекламные расходы, средняя цена клика, конверсия. Summary: The basic web analytics tools used in practice are considered. The influence of web analytics indicators on the profitability of the organization is analyzed. The profitability of the organization in the article is estimated using the ROMI (Return on marketing investment) indicator. Through a regression analysis, it has been proven that the following web analytics indicators directly affect the organization's profitability: impressions, clicks, CTR, advertising costs, average cost per click, conversion.

Ключевые слова: веб-аналитика, доходность, инструменты веб-аналитики, ROMI, регрессионный анализ.

Keywords: web analytics, profitability, web analytics tools, ROMI, regression analysis.

Функционирование современного бизнеса невозможно без использования средств веб-аналитики. Веб-аналитика (Web analytics) — система измерения, сбора, анализа, представления и интерпретации информации о посетителях веб-сайтов с целью повышения эффективности рекламных кампаний и оптимизации работы интернет-ресурсов. Основной задачей веб-аналитики является мониторинг посещаемости веб-сайтов, на основании данных которого определяется аудитория сайта и изучается поведение посетителей для принятия решений по развитию и расширению функциональных возможностей веб-ресурса. Веб-аналитика позволяет не только работать над улучшением сайтов, но и проводить работы по оптимизации бюджета на рекламные кампании [6,7].

На сегодняшний день наиболее распространенными инструментами веб-аналитики в России являются Yandex.Metrika (Яндекс.Метрика) и Google.Analytics (Гугл.Аналитикс) и, как правило, первый используется для поисковой системы Яндекс, а второй, соответственно, для поисковой системы Гугл. Некоторые рекламодатели используют единый инструмент для обеих поисковых систем, что, по мнению авторов, является ошибкой ввиду того, что каждый из них адаптирован под свою поисковую систему.

Принцип работы веб-инструментов состоит в создании специального счетчика - кода, который внедряется в содержимое всех веб-страниц. Одновременно с этим Yandex.Direct и Google.Analytics создают связанное с этим счетчиком хранилище данных. Посетители взаимодействуют со страницами сайта, на которых установлен счетчик. Код счетчика исполняется и передает инструментам веб-аналитики данные, как о самой странице, так и событиях, произошедших при взаимодействии с ней посетителей [6,7]. Счетчики собирают следующие данные о пользователе веб-ресурса:

- url страницы (адрес страницы, на которой побывал пользователь); источник трафика (например, таким источником может являться поисковая система Яндекс); заголовок страницы; браузер и его версия (например, Opera, Google Chrome, Safari и т.д.); устройство (мобильные телефоны и планшеты, десктопы); высота и ширина экрана; язык браузера; пол и возраст посетителей; интересы посетителей; географические данные; просмотр страницы (загрузка страницы сайта при переходе пользователя на нее); сессия (последовательность действий одного посетителя на сайте); скачивание файла (например, скачивание файла с перечнем услуг и цен на них); отказ (в Яндекс.Метрике - ситуация, при которой пользователь зашел на страницу, пробыл на ней менее 15 секунд и ушел; в Гугл.Аналитикс

- ситуация, при которой пользователь покинул сайт после просмотра одной страницы вне зависимости от времени пребывания на ней); время на сайте (время пребывания

пользователя на сайте); глубина просмотра (количество просмотренных пользователем страниц) [2].

Для того чтобы получить первичную информацию о посетителе используются utm-метки, которые добавляются к домену сайта:

- utm_source - рекламная система (например, yandex или google);

- utm_medium - тип трафика («cpc»- объявления, или «cpm»- баннеры);

- utm_campaign - название рекламной кампании;

- utm_content - содержание объявления;

- utm_term - ключевое слово [3].

Помимо счетчиков системы веб-аналитики содержат возможность установления целей и конверсий по этим целям. Под целью в данном случае понимается действие посетителя, в котором заинтересован владелец сайта. Чаще всего организации используют следующие цели: просмотр определенной страницы, нажатие какой-либо кнопки, оплата заказа и и т.д. Достижением цели будет являться ситуация, при которой пользователь выполнил все условия по достижению этой цели. Конверсия - это отношение количества целевых визитов к общему количеству визитов. Цели, как правило, присутствуют во всех рекламных кампаниях и являются способом определения ее эффективности.

Таким образом, можно выделить основные области применения систем веб-аналитики:

- определение проблемных мест на сайте и исправление ошибок;

- мониторинг доступности и стабильности работы ресурса;

- анализ и ведение статистики посещаемости, определение основных тенденций;

- исследование поведения посетителей и факторов, которые на него влияют;

- анализ эффективности проводимых рекламных кампаний;

- улучшение показателей электронной коммерции и установка целей;

- исследование результатов работы по различным маркетинговым каналам;

- выработка рекомендаций по улучшению различных аспектов работы сайта и взаимодействию с посетителями [5].

Яндекс.Директ, как и Google.Adwords имеют множество показателей, посредством которых можно детально проанализировать эффективность рекламных кампаний. К основным показателям относятся:

- CTR (коэффициент кликабельности, click-through rate), рассчитывается как число кликов по рекламным объявлениям к общему числу показов этих объявлений. Это один из наиболее часто используемых показателей на практике; за счет него можно увидеть, какая

доля пользователей не заходит на сайт рекламодателя. В том случае, если показатель кликабельности падает в динамике, может быть сделан вывод о нерелевантности (несоответствия) текста или заголовка объявления запросу пользователя;

- общий расход - общий размер затрат по той или иной рекламной кампании за определенный промежуток времени;

- средняя цена клика - средняя стоимость перехода пользователя по объявлению рекламодателя. Этот показатель является ключевым при определении эффективности рекламной кампании: если объявление релевантно, отражает потребность пользователя, то ему в поисковой выдаче будет отдаваться больший приоритет, и цена, которую рекламодатель будет платить за переход по этому объявлению, будет ниже. Вторым фактором, определяющим цену клика, является стратегия показов, которую выбирает рекламодатель, а также максимальная цена клика;

- цена цели (при наличии целей), средняя величина затрат, которые несет рекламодатель для мотивации клиента к достижению заданной им цели (например, при заказе какого-либо товара). На основе данного показателя определяется целесообразность использования некоторых ключевых слов, переходы по которым обходятся дороже стоимости определенных товаров или не выгодны с точки зрения рекламодателя;

- средняя позиция показа - среднее место, которое занимают все объявления определенной рекламной кампании. То есть в поисковой выдаче, когда пользователь вводит какой-либо запрос, он видит ряд рекламных объявлений и, как правило, выбирает те, которые расположены на первых местах. Обычно чем выше место показа объявления, тем больше пользователей заходят на сайт;

- посетители - количество посетителей за рассматриваемый период времени. Если наблюдается резкая динамика снижения количества посетителей - это признак того, что в рекламных кампаниях появились какие-либо ошибки, появляется необходимость искать причинно-следственную связь;

- новые посетители - количество посетителей, которые оказались на сайте впервые;

- процент отказов - отношение всех посетителей к посетителям, ушедших с первой страницы Рекламодатели обращает большое внимание этот показатель. В разных нишах может быть различный допустимый порог этого показателя. Универсальным считается интервал в 20-30%, то есть, в случае, если этот порог преодолевается, необходимо искать ошибки в рекламных кампаниях;

- источник трафика. Источником может быть поисковая система, социальная сеть или какой-либо другой интернет-ресурс. Анализируя источники трафика, можно ранжировать маркетинговые каналы по степени их значимости;

- глубина просмотра - количество просмотренных страниц одним пользователем. На практике, если посетитель твердо решает купить определенный товар и попадает на нужную ему страницу сайта, то он совершает покупку, соответственно, глубина просмотра будет 1. В других случаях, когда пользователь просматривает каталог в поисках нужного ему товара и уходит с 1 страницы, - это может быть признаком того, что пользователь не доверяет сайту либо он ему непонятен;

- возраст. Возраст посетителей и пол в основном определяют целевую аудиторию. Это сужает круг потенциальных клиентов, но делает их более «качественными», то есть готовыми к покупке товара/услуги;

- тип устройства (мобильный телефон, планшет, декстоп). Посредством этого показателя становится возможным просмотр отдельной статистики по разным типам устройств и определение целесообразности показа объявлений на определенном типе устройств;

- конверсия определяет общую эффективность сайта и рекламы, а также отдельных целей рекламы. На практике не существует универсального показателя конверсии, поскольку для разных рыночных ниш этот показатель может меняться;

- страницы входа - адреса страниц, на которые пользователь заходит в начале сеанса;

- страницы выхода - адреса страниц, с которых пользователь выходит в конце сеанса;

- посещаемость по времени суток - время суток, в течение которого наблюдается наибольшее количество пользователей и наоборот. Также можно определить наиболее эффективные конверсионные часы и проводить изменения в рекламных кампаниях именно для этих часов (например, повышать ставки);

- периодичность визитов - периодичность, с которой клиенты посещают сайт, если не было выполнено никакого целевого действия с первого посещения. То есть данный показатель определяет цикл сделки (какое время обычно затрачивает посетитель на совершение заказа продукции/услуги);

- время пребывания на сайте. Чем больше времени клиент проводит на сайте, тем выше вероятность совершенствования им покупки и тем сильнее его вовлеченность;

- география. Этот показатель оценивает эффективность рекламной кампании по разным регионам. По результатам анализа показателя проводятся изменения в рекламных кампаниях (например, могут запрещаться показы рекламы в некоторых неэффективных регионах или повышаться ставки в наиболее эффективных); [3, 4, 6, 7]

Система веб-аналитики оказывает прямое и существенное влияние на показатели доходности организации. В научной литературе нет четкого определения понятия «доходность организации». В общем смысле доходность актива определяется как отношение абсолютного изменения стоимости актива в течение заданного периода к его базовому значению. Таким образом, доходность представляет собой относительное изменение величины актива за заданный промежуток времени.

Под доходностью в рамках данной работы будет пониматься возврат инвестиций в маркетинг, а именно в работу рекламных кампаний. В научной литературе данный показатель называется ROMI (Return on marketing investment) и рассчитывается по формуле:

Валовая прибыль — Расходы на маркетинг

ROM1 =-£-----*100% (1)

Расходы на маркетинг

ROMI является одним из самых важных показателей в веб-аналитике, посредством которого определяется общая эффективность всех рекламных кампаний. На основе данного показателя можно сделать вывод как о нецелесообразности содержания некоторых рекламных каналов, так и наоборот - о необходимости привлечения дополнительных средств в другие рекламные каналы [1].

Базовая гипотеза настоящей работы заключается в наличии тесной взаимосвязи между изменением доходности организации и показателями веб-аналитики. На примере предприятия интернет - торговли проверим корректность выдвинутой гипотезы. В таблице 1 приведены показатели рекламных кампаний за октябрь 2018 года.

Та&лица 1.

Показателирекламных компаний за октпявръ 2OIS года

Дата Показы Клики CTR (°--0) Расходы Сруб) Средняя иена, ытика (bvtO Цена пеан Сруб О Конверсия ROMI C?-i,)

02.10.1S 214 5S 27.1 1040.13 17.93 53S.36 1 38.6

03.10.16 233 63 27.04 1252. S 19.S9 640.7S 2 51.S

04.10.16 226 50 22.12 963.52 19.27 4S1.76 2 50.7

05.10.1S 249 62 24.9 12 74 22 20.55 1274.22 1 40.2

06.10.1S 157 36 24.2 760.89 20.02 3S0.45 2 51.9

09.10.1S 311 6S 21.86 983.16 14.46 37S.49 1 42.4

10.10.16 209 50 23.92 1020.92 20.42 S75.64 2 56.8

11.10.16 1S0 35 19.44 1093.4 3 1.24 1093.4 1 37.2

12.10.18 196 40 20.41 1071.36 26.78 1071.36 1 35.7

13.10.16 137 34 24. S2 937.9 27.59 937.9 1 39.2

16.10.16 159 36 22.64 1052.33 29.23 97S.45 1 40.1

17.10.16 190 40 21.05 1101.06 27.53 1101.06 1 29.1

16.10.16 155 37 23.87 1233.99 33.35 616.99 2 48.9

19.10.16 158 37 23.42 1064.33 2S.77 212.87 5 124.7

20.10.16 214 46 21.5 960.41 20.SS 4S0.2 2 51.3

23.10.16 233 59 25.32 958.1 16.24 95S.1 1 37.7

24.10.16 246 49 19.92 1004.06 20.49 1004.06 1 37.3

25.10.16 201 39 19.4 673.94 17.2S 673.94 1 41.1

26.10.16 222 50 22.52 909.07 1S.1S 909.07 1 37.3

27.10.16 235 59 25.11 1235.3 20.94 1141.76 2 55.4

30.10.16 281 4S 17.0S 1348.41 2S.09 1072.6 2 56.8

Анализируя показатели веб-аналитики, представленные в таблице 1, справедливо сделать следующие выводы:

- наблюдается допустимое соотношение показов и кликов, о чем свидетельствует показатель СТЯ, который практически за весь месяц не опускается ниже 20%. Как было сказано ранее, в современной теории и практике не существует универсальных показателей для разных рыночных ниш, однако СТЯ считается допустимым, когда превышает отметку в 10%;

- в средствах аналитики нет механизмов, позволяющих описать степень влияния показателя СТЯ на цену клика, однако такое влияние принимается в качестве факта, то есть чем выше СТЯ, тем ниже стоимость клика, поэтому можно предположить, что цена клика в таблице 1 довольно низкая в связи с достаточно высоким уровнем СТЯ;

- ежедневные рекламные расходы находятся примерно на одном и том же уровне, что может свидетельствовать о стабильной и налаженной работе системы веб-аналитики в организации, поскольку при длительной работе рекламных кампаний неожиданные скачки расходов бюджета свидетельствуют, как правило, о появлении каких-либо ошибок;

- на базе числовых характеристик показателя ЯОМ1 можно сделать вывод о том, что рекламные кампании являются доходными, так как они полностью окупают сумму, затраченную на рекламу.

Для того чтобы подтвердить либо опровергнуть рабочую гипотезу проверим наличие корреляционной связи между показателями веб-аналитики, представленными в таблице 1 и значениями ЯОМ1. Корреляционную взаимосвязь между показателями будет рассчитана с использование коэффициента парной корреляции Пирсона г (2), результаты вычислений представлены в виде корреляционной матрицы (таблица 2).

ХиУ

где - среднее значение выборки.

В том случае, если между переменными присутствует корреляционная связь, численные значения ЯОМ1 могут быть получены посредством построения уравнения множественной линейной регрессии. Для простоты наглядного представления вычислений, введем следующие условные обозначения: Х1 - показы; Х2 - клики; Хз - СТЯ; Х4 -рекламные расходы; Х5 - средняя цена клика; Хб - конверсия; У - ЯОМ1.

Таблица 2.

Корреляционная ма/прица

х?. X* Хь У

1

Хъ 0.826925 1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

х3 -0.18257 0.394282 1

X* 0.26768 0.282459 0.083003 1

ХЕ -0.59315 -0.72402 -0.277 0.432729 1

Хь -0.21708 -0.15982 0.115158 0.16297 0.240422 1

Х7 -0.17619 -0.12974 0.10119 0.119919 0.195023 0.974153 1

У 1 1

Поскольку между переменными Х1 и Х2 наблюдается сильная корреляционная зависимость, одна из переменных, в данном случае Х2исключается из дальнейшего анализа.

Базовая модель множественной линейной регрессии имеет вид:

При помощи пакета «Анализ данных», функции «регрессия» MS Excel на основе данных таблицы 1 были определены параметры b0, Ы, b2, b3, b4, b5. Таким образом, уравнение регрессии имеет следующий вид:

Y = 73,4154 - 0,1096*! - l,4301x2 + 0,005xg - 0,93x4 + 24,31x5 (5)

Для оценки корректности построенной модели рассчитаем коэффициент детерминации (R2), используя следующее уравнение:

где ° - условная (по признакам х) дисперсия зависимой переменной (дисперсия случайной ошибки модели).

По результатам расчетом коэффициент детерминации рассматриваемой модели равен

0.7345. что говорит о приемлемом качестве рассчитанных параметров. Полученные результаты свидетельствуют о корректности выдвинутой гипотезы о наличии тесной взаимосвязи между изменением доходности организации и показателями веб-аналитики.

Список литературы

1. Агальцов В. П. Базы данных. Локальные базы данных. - М.: ИНФРА-М, 2012. - 352 с.

2. Демкина О.В., Шаламова Н.Г. Исследование роли веб-аналитики в повышении эффективности деятельности организации / О.В.Демкина, Н.Г. Шаламова // Вестник университета. - 2019. - № 5. - С. 56-61.

3. Кирилов В. В., Громов Г. Ю. Введение в реляционные базы данных. - СПб.: БХВ-Петербург, 2012. - 464 с.

4. Конверс Т., Парк Дж., Морган К. РНР 5 и MySQL. Библия пользователя. - М.: Диалектика, 2009. - 256 с.

5. Кошик А. Веб-аналитика 2.0 на практике. Тонкости и лучшие методики (+ CDROM). М.: Диалектика, 2011. 528 с.

6. Помощь // Яндекс.Директ URL: https://yandex.ru/support/direct/ (дата обращения: 12.05.2019).

7. Справка // Google реклама URL: https://support.google.com/google-ads (дата обращения: 12.05.2019).

i Надоели баннеры? Вы всегда можете отключить рекламу.