Научная статья на тему 'Zr-based heterogeni̇zed catalyti̇c systems for oli̇gomeri̇zati̇on of ethylene to olefi̇ns and oi̇l fracti̇ons'

Zr-based heterogeni̇zed catalyti̇c systems for oli̇gomeri̇zati̇on of ethylene to olefi̇ns and oi̇l fracti̇ons Текст научной статьи по специальности «Химические науки»

CC BY
94
21
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
ZIRCONIUM COMPLEXES / AMINOAND IMINOHYDROCHLORIDE LIGANDS / ETHYLENE / OLIGOMERIZATION / ZIRCONIUM KOMPLEKSLəRI / AMINOVə IMINOHIDROXLORID LIQANDLAR / ETILEN / OLIQOMERLəşMə

Аннотация научной статьи по химическим наукам, автор научной работы — Khamiyev M.J.

The process oligomerization of ethylene studied using heterogenized zirconium complexes containing aminoand iminohydrochloride substituents ionic liquid type and alkyl aluminum chlorides as cocatalysts. İt was established that the composition of product oligomerization of the ethylene changes depending on the type of zirconium complexes and aluminium organic compound. The polyetilenic oil fractions obtained in the presence of zirconium complexes and ethyl aluminum dichloride (C2H5)AlCl2 catalyst have highly branched molecules structure, low viscosity indexes contains naphthenic rings. The oligomeric product obtained using of dialkylaluminiumchloride (C2H5)2AlCl cocatalyst depending on molar ratio of Zr/Al, reaktion temperature and pressure of ethyelene is mainly consists of C4-C10 ofolefin fractions linear structure with the yield of 78.8-91.6%. It was shown that sintesized zirconium complexes may be repeatedly reused in successive ethylene oligomerization for obtaining both α-olefins and polyethylene oil fraction

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ОЛИГОМЕРИЗАЦИЯ ЭТИЛЕНА В ОЛЕФИНЫ И МАСЛЯНЫЕ ФРАКЦИИ В ПРИСУТСТВИИ ГЕТЕРОГЕНИЗИРОВАННЫХ КАТАЛИТИЧЕСКИХ СИСТЕМ НА ОСНОВЕ Zr

Изучен процесс олигомеризации этилена с использованием гетерогенизированных фенолятных циркониевых комплексов содержащих аминоииминогидрохлоридные заместителями ионно-жидкостного типа, с алюминийхлоридами в качестве сокатализатора. Установлено, что состав продукта олигомеризации этилена меняется в зависимости от ионно-жидкостного заместителе в циркониевых лигандах и алюминий органических соединений. Полиэтиленовая масляная фракция, полученная в присутствии циркониевых комплексов и (C2H5)AlCl2 сокатализатора, имеет высокоразветвленную структуру, низкий индекс вязкости и содержит нафтеновые кольца. Продукт олигомеризации, полученный с использованием (C2H5)2AlCl в качестве сокатализатора, состоит, в основном, из С4-С10 α-олефиновой линейной структуры с выходом 78.8-91.6 %. В зависимости от молярного соотношения Zr/Al, от температуры реакции и давления этилена меняется состав продукта реакции. Показано, что синтезированные циркониевые комплексы могут быть повторно использованы в процессе олигомеризации этилена как, для получения масляной фракции полиэтилена, так и для получения олефинов линейного строения

Текст научной работы на тему «Zr-based heterogeni̇zed catalyti̇c systems for oli̇gomeri̇zati̇on of ethylene to olefi̇ns and oi̇l fracti̇ons»

ISSN 2522-1841 (Online) AZERBAIJAN CHEMICAL JOURNAL № 4 2019 ISSN 0005-2531 (Print)

UDC 547.313.2

Zr-BASED HETEROGENiZED CATALYTiC SYSTEMS FOR OLiGOMERiZATiON OF ETHYLENE TO OLEFiNS AND OiL FRACTiONS

M.J.Khamiyev

Y.H.Mamedaliyev Institute of Petrochemical Processes, NAS of Azerbaijan

mxamiyev@yahoo. com Received 21.02.2019

The process oligomerization of ethylene studied using heterogenized zirconium complexes containing amino-and iminohydrochloride substituents ionic liquid type and alkyl aluminum chlorides as cocatalysts. it was established that the composition of product oligomerization of the ethylene changes depending on the type of zirconium complexes and aluminium organic compound. The polyetilenic oil fractions obtained in the presence of zirconium complexes and ethyl aluminum dichloride (C2H5)AlCl2 catalyst have highly branched molecules structure, low viscosity indexes contains naphthenic rings. The oligomeric product obtained using of dialkylaluminiumchloride (C^H5)2AlCl cocatalyst depending on molar ratio of Zr/Al, reaktion temperature and pressure of ethyelene is mainly consists of C4-Ci0 ofolefin fractions linear structure with the yield of 78.8-91.6%. It was shown that sintesized zirconium complexes may be repeatedly reused in successive ethylene oligomerization for obtaining both a-olefins and polyethylene oil fraction.

Keywords: zirconium complexes, amino- and iminohydrochloride ligands, ethylene, oligomerization.

doi.org/10.32737/0005-2531-2019-4-105-114 Introduction

One of the strategic trends in petrochemistry is the development of processes for the production of higher olefins, including linear a-olefins (LAO) obtained by oligomerization of ethylene in the presence of metal complex catalysts. Obtained higher LAOsare used for the production of plasticizers, synthetic oils, corrosion inhibitor, detergents, comonomers for linear low density polyethylene, chemical reagents in oil and mining industry, etc. [1, 2].

In spite of high catalytic activity and selectivity of homogenous transition metal complex catalysts in oligomerization of ethylene, they have essential disadvantages such as difficulties associated with separation of the catalyst from oligomerization products and impossibility of their recycling. Therefore, in recent years homogeneous complex catalytic systems with transition metal have been using in oligome-rization of ethylene both as supported on the surface of ionic liguids and in biphasic medium as dissolved in ionic liquids [3-9].

On the basis of conducted researches, suggested by us transition metal precursor containing ionic liquid type ligands in their coordination sphere for ethylene oligomerization and polymerzation processes. These precursors, com-

bined with aluminum-organic activators, act as a recyclable heterogeneous oligomerization and polymerization catalysts both in the molecular organic and ionic liquid solvents [10-16].

In this article, extensive results of investigating ethylene oligomerization in hydrocarbon solvents in the presence of complex catalytic systems consisting different ionic liquid type amino- and iminohydrochloride ligands and aluminum alkyl chlorides have been given.

Experimental section

Oligomerization of ethylene. Ethylene oligomerization was carried out in the jacketed autoclave equipped with a magnetic stirrer, thermometer and heated with thermostated water or glycerin. Before charging with reaction mixture and catalyst components, the autoclave was washed with dry toluene and acetone, checked for leak tightness under nitrogen pressure, dried in vacuum under heating by connecting the reactor connected to the vacuum line and heating for 1-1.5 h at 900C. The catalyst and solvent were placed into reactor under an inert gas atmosphere. The reactor was heated to reaction temperature and then ethylene was pressurized into it with intensively mixing the reaction mixture by magnetic stirrer. The pressure of ethylene in the reactor was controlled by

a manometer. The oligomerization product solution was removed from the reactor by simple decantation. The Zr-component of catalyst, remaining in the reactor, was repeatedly used in the oligomerizationproses by addition of new portions of solvent and aluminum organic compound. The obtained oligomerization products were washed with aqueous solution of sodium hydroxide for removing aluminum organic compound residues, dried over aluminum oxide and fractionated.

Analytical procedure. Oligomerization products and obtained metal complexes were analyzed by gas and exclusion chromatography, DSC, IR spectroscopy, my methods 1H NMR-element analysis and scanning electron microscope (SEM).

Molecular-weight distribution (MWD) of the obtained products was studied by size exclusion chromatography method using high performance "Kovo" (Czech Republic) liquid chromatograph with a refractive index detector. Two 3.3 mmx150 mm columns packed with the "Sepa-ron-SGX" stationary phase with a particle size of 7 mm and a porosity of 100 A were used. Dime-thylformamide was used as an eluent (flow rate -0.3 ml/min, temperature - 20-250C).

The distributions of olefins in obtained oli-gomer product by oligomerization of ethylene were performed by gas chromatography (GC) analysis. The last was carried out using an Agilent 7820A GC with a column of 30 m in length and 0.53 mm in diameter. The analyses were performed as follows: temperature increasing from 35 to 1300C at a rate of 750C min-1 and from 130 to 2200C at a rate of 20C min-1. The rate of flow of

carrier gas (helium) was 30 ml/min-1. The temperature of the evaporator was 3 20-3 500C.

1H NMR spectra of obtained oligomers and synthesized complexes were recorded on a Bruker pulsing Fourier spectrometer (Germany) operating at the frequency of 300 MHz. DMSO and chloroform were used as a solvent.

IR spectra were recorded on the "BRUKER" Fourier spectrometer in the range of 50-4000 cm-1

The differential thermal analysis (DTA) of these complexes were recorded via "STA Platinum" (Germany) thermal derivatograph, the microphotos surface of these were scanned via "Hitachi - S3400 N" SEM microsope (Japan).

The syntehsis of "grafted" ionic liquid type zirconium complexes. Heterogenized "grafted" ionic liguid type zirconium complexes containing amino- and iminohydrochloride ligands were synthesized in THF via the reaction of ZrCl4 with different sterically hindered substituted phenolderivatives 2-piperidinylmethyl-4-me-thylphenol (L1), 2-morfolylmethyl-4-methylphe-nol (L2), 2-diethylaminomethyl-4-methylphenol (L3) and 2-[(2,6- di(isopropyl)phenyl)imino]-phenol (L4) at a molar ratio of the reactants of 1:2 or 1:3. The syntesis of these complexes carried out in a three-necked flask under inert atmosphere. Obtained complexes are not soluble in hydrogen solvents, but dissolve in DMSO and ionic liguids. They are unsable in air. General synthesis scheme of complexes is illustrated below:

ZrCl4 + n L

55-600C, THF

ZrL4.nCln-HCl

ch2-n

^ch2-ch3 ch2~ ch3

oh

:orw (ôp—p

ch(ch3)2

L4

ch(ch3)2

MC1 - n=2, L=L1 MC2 - n=3, L=L1 MC3 - n=2, L=L2

MC4 - n=2, L=L3 MC5 - n=2, L=L4

Results and discussion

The HCl released by the interaction of catalyst components connecting with nitrogen atom of the ligand form quaternary ammonium salts. Obtaining of quaternary ammonium salts via the combination of releasing HCl with nitrogen atom of ligand have been proved by IR-and metod 1H NMR spectroscopies. IR spectro-scopy and 1H NMR of MC1 from the series of synthesized complexes were given figure 1a and 1b respectively. Deformation vibrations 2536 cm-1, 2573 cm-1, 2636 cm-1,valence vibration 1614 cm-1and signal of chemical shift at 10.05 ppm (N-H bond of N+R3H group) releated to the ammonium group of MC1 zirconium complex are observedin the IR- and 1H NMR spectrums respectively.

Wavcmumbcrcm-I

a

b

Fig. 1. The IR (1a) and 1H NMR (1b) spectra of MC1.

It was determined that in the composition of the synthesized zirconium compounds containing two substituents imino- and aminophenol ligands contain 1 molecule THF as coordinated to the Zr metal according to the calculated number of protons on the basis of integral curves in-

tensity in NMR spectrum of complexes (1.74 and 3.46 ppm). In the IR spectrum of the complexes absorption bands are observed at 1053 cm-1, 1121 and 1153 cm-1 corresponding to the valence vibration of C-O-C bond of THF which used as solvent in the synthesis of these complexes. Bands in the absorption area of 530-600 cm-1, characteristic for stretching vibrations of Zr-O bond and 280 cm-1 absorption band characteristic for stretching vibrations of Zr-Cl bond were also observed.

The amorphous or crystalline structure of the synthesized zirconium complexes were studied by X-ray analysis. It has been established that the amorphous structure takes place of crystalline structure when increased the size of organic ligand in the structure of the complex. For example, MC1 zirconium complex obtained on the basis of 2-methylpiperidinyl-4-methylphenol has amorphous structure whereas 3-substituent MC2 synthesized based on the same ligand has crystalline structure [17].

The surface structures of the MC1 and the complex catalyst system obtained by its interaction with (C2H5)AlCl2 were investigated by the SEM. It was determined that MC1 zirconium complex (Figure 2a) and the prepared complex catalytic system (Figure 2b) have a lots of pores and channels where the reacting components can be placed, which favors its reuse as heterogeneous catalyst in the oligomerization process of ethylene. It is evident from the SEM Figure that on the surface of the complex does not change after oligomerization of ethylene.

Thermo-physical properties of heteroge-nized zirconium phenolic complexes were investigated by DTA. The thermograms of synthesized MC1 zirconium compound and complex catalytic system obtained by interaction of its with (C2H5)AlCl2 at molar ratio of 25:1 is given in Figure 3a and 3 b respectively.

As can be seen from the pictures, the thermal decomposition of the MC1 zirconium compound and the catalytic system prepared based on its pass several stages through, and their thermograms are sharply differ from each others. The initial temperature of the thermal decomposition of MC1 zirconium compound and the complex catalytic system prepared on the basis its is 251 and 1490C respectively.

a b

Fig. 2. Scanning electron microscope images of MC1 (a) and complex catalyst system (b) (x 500F).

Конец: 500 в'С

r\ Начало: 251.3 'С ___¡2

j \ Изменение мамы: -19.07 % г/

i Перегиб 335 в'С \ i I Изменение массы -2 09 W V Т Пи»: 456.2 X. -5.52 %/мин

i i 1 Изменение ма Д/ Изменени ссы -6 87 % массы: -22 38%

\ \ ¡IX 4 1

\ \ 1зиенение массы: -13.78 %

Пщ 338 2 X, -1257'ЧШ ^ 14

Остаточная масса: 25.74 % (696.4 X)

Изменен ие массы -17.40%

Конец: 457.6 X

i \ \ Изменение массы -1690%

i \ i \ I \ i \ ' Изменение массы: ■ÏÏT^^' — 1

\ L \ .------ ^^ Y—L.- —

г-- -. \ /• 4 уд / 1

\ Перегиб 340 6 X /\ \ 1 Изменение массы: -16.24%

Начало 199.2 X ^^ / \ \ / i

п| |

\ / Пи« 260 5 X, -4.57 %/миД / ---— ____Изменение массы: -3 43 %J

Пик 149.2 X. -5.93 %/мин Пик: 340.6 X.-6.09 %/мин Остаточная массе 29 74 % (696 в X)

100 200 300

SOO 000

100 200 300 400 500 600

r_ m<u> « » i»~_TeMneparypa fC

a b

Fig. 3. The thermogrammas of MC1 zirconium compound and the complex catalytic system obtained by interaction of its with (C2H5)AlCl2 at molar ratio of 25:1.

The end temperatures of thermo decomposition of these complexes are 500 and 4570C respectively. When carrying out process oligo-merization of ethylene at 1500C the activity of the catalytic system begins to decline after a certain period of time because of decreasing the initial tempetrature of thermal decomposition of catalytic system formed by interaction of MC1 zirconium complex with aluminium organic compounds.

Oligomerization of ethylene to LAO in the presence of heterogenized zirconium complexes with "grafted" ionic liquid ligand

The process oligomerization of ethylene was investigated at various temperatures in the presence of catalytic systems consisting of synthesized zirconium complexes and (C2H5)2AlCl

as cocatalyst and obtained results were given in Table 1. As it seen from the table 1, the activity of the catalytic systems and the MWD of obtained oligomer product depend on the composition of zirconium complexes and reaction temperature. The composition of the oligomer product obtained in the presence of catalytic systems based on MC1, MC2, MC3 and MC4 zirconium complexes containing aminohydrochlo-ride ligands comprise mainly C4-C12 olefins. The amount of C6-C10 olefin fraction in the presence of these catalytic systems is 61.3-69.4%.

The use of the 2-[(2,6-di(isopropyl)phe-nyl)-iminomethyl]phenol as ligandcontaining electronodonor isopropylsubtitutent in the synthesis of MC5 zirconium complex cause an increase in electron density in the Zr atom.

Table 1. Oligomerization of ethylene in the presence of various zirconium complexes and temperatures (reaction time -30 min, solvent - 50 ml toluene, Zr:Al=1:25, P= 2,5 MPa, temperature - 900C)_

Zr complexes Activity, g oligomer/g Zrh-1 T, 0C Composition of oligomeric product, weight %

C4 C6 C8 C10 C6-C10 C12 C18 C20

MC1 828 70 23.7 28.5 21.6 15.8 65.9 10.4 —

1438 90 15.2 27.1 25.1 17.2 69.4 15.4 —

2422 120 6.6 24.2 30.2 21 75.4 17.1 0.9

2145 150 2.4 15.8 32.4 26.2 74.6 21.2 2.0

MC2 850 90 26.3 28.6 18.2 14.5 61.3 12.4 -

MC3 1720 90 19.8 28.2 24.3 16.3 68.8 11.4 -

MC4 2521 90 17.8 28.2 20.6 19.1 67.9 14.3 -

MC5 2014 70 10.2 33.4 27.2 20.8 81.4 8.4 -

2177 90 7.8 29.2 26.1 25.2 80.5 11.7 -

3240 100 5.4 22.6 27.4 29.6 79.6 13.8 1.2

3843 120 3.5 20.7 31.8 23.9 76.4 15.6 4.5

Increasing electron density at Zr atom reduce the P-H elemination. This makes it easy to insert of ethylene molecule into Zr-C bond and occurs the growth of the oligomer chain. Therefore, the amount of high molecular by mass ole-fins increases in the obtained oligomer product, and the yield of C6-C10 olefin fraction is 83.2%.

The composition of obtained oligomer products were investigated by IR spectroscopy and 1H NMR method. The IR spectra of obtained oligomer product have characteristic bands at 908 and 992 cm-1 corresponding to deformation vibrations of C—H bonds of vinyl groups (-CH=CH2), at 1640 cm-1 corresponding to valence vibration of C=C bonds of vinyl groups in the LAOs and at 887 cm-1 corresponding to deformation vibrations of C—H bonds of vinylidene groups. It was determined that the formation of vinylidene type oligomers during the process of oligomerization depends on the presence of the oligomers in the reaction medium. Increasing the content of oligomers increase the likelihood of entering ethylene into co-oligomerization reaction with the oligomers in the reaction medium. In the result, in the content of oligomer product increases the amount of vinylidene type oligomers.

As it seen from Table 1, increasing the reaction temperature cause an decrease of low molecular by mass olefins and increase the amount of the C8-C18 fraction in obtained oligomer product. In the presence of MC1, at 700C, the oligomerization product mainly consists of C4-C8 LAO and the yield of this fraction is 73.8%. increasing the reaction temperature from 70 to 1500C in the presence of MC1 and MC5 zirconium complexes lead to decrease the

amount of butenes from 23.7% to 2.4% and from 10.2% to 3.5% respectively. In this case, the amount of C8-C18 fraction in the obtained oligomer product increases from 47.8% to 79.8% and from 56.4% to 71.3% respectively.

The molar ratio of Zr:Al influence both catalytic activity and MWD. In the case of MC1 with Zr/Al = 1:30, the catalyst activity is 1438 g oligomer (g Zr)-1 h-1 whilst this ratio is increased to Zr/Al = 1:80 the catalyst activity increases to 3800 g oligomer (g Zr)-1h-1 and the amount of butenes in obtained oligomer product decreases from 15.2% to 2.4% respectively. But, the amount of C6-C10 fraction is increased from 69.4% to 82.7%. On the contrary, increasing the molar ratio of Zr/Al in the presence of MC5 zirconium complex with the iminohydro-chloride ligand led to decrease the amount of C6-C10 fraction from 85.2% to 57.8%.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Heterogenized zirconium complexes with "grafted" ionic liquid ligands were repeatedly used several times in oligomerization process of ethylene for production of both a-olefins and polyethyenele oil fractions [18]. It was determined that the MWD of oligomer product and the catalytic activity of MC1 and MC5 zirconium complexes used in recycling oligome-rization of ethylene have been slightly changed (Table 2). Thus, the amount of C4 increased from 15.8% to 18.4% in 3 cycle oligomerization of ethylene in the presence of MC1 zirconium complex, but any change in the distribution of C6-C10 oligomers were not observed.

The optical density of the absorption bands belong to olefins obtained in the presence of MC1 zirconium complex which used in recycling eth-ylene oligomerization were given in Table 3.

Table 3. The optical density of the absorption bands releated to olefins obtained in the presence of MC1 zirconium complex in recycling ethylene oligomerization(reaction condition: 0,42 mmol zirconium complex, time-30 min, molar ratio of Zr:Al=1:35, ethylene pressure 2.5 MPa, solvent-50 ml toluene)___

_D886__D908__D967__D993__Pl387__Pl457__Pl641_

0.032__0.048__0.006__0.020__0.027__0.054__0.022

0.024__0.055__0.002__0.030__0.050__0.055__0.032

0.018 0.061 - 0.038 0.039

Table 2. The results of the recycling ethylene oligomerization process in the presence of complex catalytic systems consisting of MC1 and MC5 zirconium complexes and (C2H5)2AlCl (reaction condition: 0.42 mmol MC1 and MC5, reaction time - 30 min, Zr:Al=1:35, ethylene pressure - 2.5 Mpa, solvent - 50 ml toluene )_

Zirconium complexes Activity of catalyst g oligomer / g Zr h-1 Distribution of the oligomer product, %

C4 C6 C8 C10 C12-C18 C20+

MC1 1438 15.8 27.5 25.8 16.2 15.3 —

MC1 1386 17.1 26.8 24.8 17.1 14.2 —

MC1 1312 18.4 28.2 24.6 16.5 12.3 —

MC5 2177 6.8 29.2 26.1 25.2 12.7 —

MC5 2100 8.9 28.6 25.8 24.7 12 —

MC5 2065 11 28.2 25.2 23.9 11.7 —

As it seen from the Table 3, the composition of the obtaining oligomer product depends on ethylene recycling oligomerization process [19]. The optical density of absorption band related to vinylidenes obtained in the third cycling oligomerization reduced prior to 0.018 (D886= 0.018) while the optical density of absorption band of deformation vibration of C-H bond corresponding to vinylidenes groups in the oligomer product obtained in the first oligomarization cycle of ethylene is 0.032 (D886=0.032). The optical density of absorption bands related to internal olefins (967 cm-) obtained in the presence of MC1 zirconium complex is D967=0.006, but the signal corresponding to the appropriate absorption band in the third cycle oligomerization of ethylene are not observed. However, optical density of absorption bands belong to deformation vibration

of 908 and 993 cm- vinyl groups of a-olefins obtaining in the presence of MC1 zirconium complex in recycling oligomerization of ethylene increased from D908=0.048 to D908=0.061 and from D993=0.020 to D993=0.038 respectively. As shown in Table 2 there was an increase in optical density of absorption band related to 1641 cm-1 valence vibration of C-C bond of vinyl groups of a-olefins from D1641=0.022 to D1641=0.039.

Oligomerization of ethylene to polyethylene oil fraction

The process oligomerization of ethylene in the presence of complex catalytic systems consisting of synthesized zirconium complexes and C2H5AlCl2 as cocatalyst, in different hydrocarbon solvents and adding n-electronodonor modifiers was studied and obtained results were given in Table 4.

Table 4. The oligomerization of ethylene in the presence of heterogenized zirconium complexes, C2H5AlCl2, and various modifiers (temperature - 900C, solvent - 50 ml, time - 5 h, pressure of ethylene - 2.5MPa).__

MC Al:Zr:M molar ratio Activity, g oligomer/g Zr h-1 Composition of product, mass % Kinematic viscosity, mm/s-1 IV Freeze point 0C Flash point 0C

<3500C >3500C 400C 100°C

MC1 25 1 0 378 37.8 62.2 83.36 8.70 68 -20 205

MC1 25 1 0 450 49.2 50.8 — — — - —

MC1a 25 1 5 305 24.4 75.6 754.2 38.5 86 -10 —

MC1b 25 1 1 428 27.6 72.4 88.38 9.92 90 -20 210

MC1b 25 1 2 400 22.8 77.2 198.8 25.2 94 -25 215

MC2 30 1 0 354 47.4 52.6 78.62 8.25 62 -24 198

MC2 30 1 0 502 51.2 48.8 — — — - —

MC2a 25 1 5 309 29.6 70.4 682.4 30.6 82 -20 210

MC3 25 1 0 385 43.0 57.0 240.3 16.5 64 -18 195

MC3a 25 1 5 256 30.5 69.5 306.2 26.2 84 -25 203

MC4 25:1 1250 86.0 14.0 — — — - —

MC5 28:1 1100 94.0 6.0 — — — - —

a — durene, b - 4,4 -dipyridyl

As evident from the Table 4, the amount of oil fraction obtained in the presence of MC1, MC2 and MC3 zirconium complexes containing amino hydrochloride ligands is higher than 50% compared to complexes containing imino hydrochloride ligands and oxygen atom. The amount of oil fraction with boiling temperature above 3500C in the obtaining oligomer product in the presence of complexes containing iminohydrochloride ligands and oxygen atom changes within 6-14%.The influence of the modifier to the yield and the properties of oil fractions obtained in the presence of different zirconium complexes were studied (Table 3). As can be seen from the table the yield of the oil fraction boiling at higher than 3500C obtained in the presence of MC1 zirconium complex in the absence of modifier is 62.2, the kinematic viscosity 83.36 cSt at 400C, 8.70 cSt at 1000C and index vistocty is 68. Addition of 4,4 -dipyridyl as modifier to the catalytic system at molar ratio of Zr:Al:M=1:25:1under the same condition cause an increase the yield of the oil fraction up to 77.2%. Kinematic viscosity at 400C and 1000C and index viscosity is 754.2 sCt, 38.5 sCt and 86 respectively.

The fraction of oligomer product boiling at 43-1000C obtained in the presence of catalytic system consisting of MC1 zirconium complex and (C2H5)AlCl2 was investigated and the mass chromatogram of the separated fraction was given at Figure 4. It is seen that the obtained

oligomeric product in the presence of stronger Lewis acid as cocatalyst comprise a lot of isoolefins [20].

MWD of obtained oil fractions in the presence of complex catalytic systems consisting of MC1, MC2 and MC3 heterogenized zirconium complexes with "grafted" ionic liquid ligands were analyzed by Size Exclusion Chromatography. It was determined that oil fraction have the molecular masses within limits Mw =423-484, Mn = 307-390. The obtained oil fractions have a narrow MWD and the degree of polydispersity (Mw/M„) depend on the composition from the catalytic systems changes within 1.17-1.36.

1H NMR spectrum of the oil fractions obtained at using MC1, MC2 and MC3 zirconium complexes are given in the Figure 5(a-c). The peaks are observed in the field with chemical shift 1.5 - 1.8 ppm refer to naphthenic protons and a weak signal 4.8-5.8 ppm indicating a small amount of vinyl and vinilydene type double bonds in the 1H NMR-spectrum of the obtained oil fractions.The average structural parameters of obtained oil fractions were calculated according to the method [21, 22] on the basis of average molecular weights values, 1H NMR and element analysis date. It was determined that, depending on the composition of the catalytic system, the number of carbon atoms in paraffin and naphthenic fragments changes within 16.9 to 23.6 and 4.1 to 5.9, respectively.

1000000 i«««-> «40

5

JU'A—aJ.

d-

J

f 8

Fig. 4. Mass chromatogram of oligomer product boiling at 43-1000C obtained in the presence of catalytic system consisting of MC1 zirconium complex and (C2Hs)AlCl2.

0« 0)0 1 00 IN <<0 1*0 <tt >00 1 JO 140 J«0 1)0 >00 J» 340 >« >» 400

It can be noted according to the number of the carbon atoms in the naphthenic rings there are 4 and 6 members of naphthenic rings on the composition of the obtained oil molecules. The content of terminal methyl groups changes within 7-8.5 depending on the composition of the catalyst systems. According to the researches, it can be concluded that, in the presence of catalytic systems consisting of hetero-genized zirconium complexes with amino hydrochloride type "grafted" ion liquid substitu-ents and (C2H5)AlCl2 containing Zr in the metal - organic catalytic center hydrocarbon molecules having isostructure, containing naphthenic rings are obtained as a result of consecutive and parallel oligomerization, isomerization and cy-clization reactions. Obtained oil fractions have a relatively low index viscosity because of hydrocarbon molecules containing naphthenic rings and having isostructure. A weak resonance signal in the, H NMR spectrum indicates olygo-ethylene molecules in these fractions are contained small amounts of double bonds.

To find the necessary application area for obtained polyethylene oil factions were prepared oil compositions on the basis of these oil fractions by adding 5, 10 and 30% of dioctyl ether of alkenyl succinic acid and the viscosity properties of these compositions were studied. When adding 5 % of dioctyl ether of alkenyl succinic acid to the polyethylene oil fractions, the kinematic viscosity 11.64 sCt at 400C, 105.47 cSt at 1000C and index viscosity is 98. The addition of 10 and 30% of dioctyl ether of alkenyl succinic acid to this fraction, index viscosity of the prepared oil fraction increased 106 and 118 unit respectively. Also, addition of dioctyl ether of alkenyl succinic acid has had a positive effect on the freeze and flash point temperatures of oil compositions [23]. Addiding dioctyl ether of alkenyl succinic acid 5%, 10% and 30% over to the polyethylene oil fraction reduces freezing temperature of obtained oil fractions prior to -14, -25 and -350C respectively (Table 5).

s!o 73 7.6 63 6'0 55 5.0 4J ¿0 3J 3^0 25 10 1J LO Oj'5»* 10

a b c

Fig. 5. 1H NMR spectrum of the oil fractions obtained in the presence of MC1(a) MC2(b), MC3(c).

Table 5. Viscosity-temperature properties of oil composition on the basis of dioctyl ether of alkenyl succinic acid (SD)

and polyethylene oil (PO) fraction

PO:SD, % Kinematic viscosity, mm2/s IV Temperature, 0C

100 40 -20 freezing point fashing point

100 : 0 13.06 125.92 - 62 -12 190

0 : 100 3.28 9.22 1739.04 277 -56 218

95 : 5 11.64 105.47 19720.96 98 -14 192

90 : 10 11.03 91.32 12110.7 106 -28 196

70 : 30 7.85 52.08 4547.84 118 -35 202

References

1. Plaksunov T.K., Belov T.P., Potapov S.S. Vysshie lineinye a-olefiny i sopolimery etilena na ikh osnove. Proizvodstvo i primenenie. RIO IPKHF RAN. Chernogolovka, 2008. 292 s.

2. https ://cdn.ihs.co m/www/pdf/CEH -Linear-Alpha-0lefins-sample-report-2010.pdf

3. Lecocq V., Olivier-Bourbigou H. Biphasic Ni-Catalyzed ethylene oligomerization in Ionic liquids. Oil & Gas Science and Technology - Rev. IFP, 2007. V. 62. P. 761-773.

4. Thiele D., de Souza R.F. Biphasic ethylene oligomerization using bis(imino)pyridine cobalt complexes in methyl-butylimidazoliumorgano-chloroaluminate ionic liquids. Journal of Molecular Catalysis A Chemical, 2011. V. 340. P. 83-88.

5. Fehér Cs., Krivan E., Eller Z., Hancsok J. and Skoda-Földes R., The Use of Ionic Liquids in the Oligomerization of Alkenes in: Oligomerization of chemical and biological compounds, Ed. by Le-sieur, C., ISBN 978-953-51-1617-2, INTECH, 2014; DOI: 10.5772/57478.

6. Olivier-Bourbigou H., Magna L., Morvan D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catalysis A: General. 2010. V. 373. P. 1-56.

7. Stenzel O., Brüll R., Wahner U.M. Oligomerization of olefins in a chloroaluminate ionic liquid. J. molecular catalysis A: Chemical. 2003. V. 192. P. 217-222.

8. Einloft S., Dietrich F.K., De Souza R.F., Dupont J. Selective 2-phase catalytic ethylene dimerization by Ni-II complexes dissolved in organoaluminate ionic liquids. Polyhedron, 1996. V. 19. P. 3257-3259.

9. Pei L., Xiamei L., Haiyang G., Qing W. Biphasic oligomerization of ethylene with nickel complexes immobilized in organochloroaluminate ionic liquids. Appl. Organomet. Chem. 2009. V. 23. P. 455-459.

10. Khanmetov A.A., Azizov A.H., Khamiyev M.J., Aliyeva R.V., Aliyev B.M.The synthesis and catalytic properties of the zirconium complexes with «grafted» ionic liquid. Molten salts and ionic liquids XXV, Tallin, Estonia 2014. P. 79.

11. Khanmetov A.A., Azizov A.H., Khamiyev M.J., Aliyeva R.V., Guliev A.D. Synthesis and investigation of new Ti and Zr complexes for oligomerization and polymerization of the ethylene. Molecular complexity in modern chemistry. M.: N.D. Zelinsky Institute of organic chemistry, RAS. 2014. P. 311.

12. Khamiyev M.J., Azizov A.H., Khanmetov A.A., Alieva R.V., Mammadov A.M. Synthesis and investigation of zirconium complexes with "grafted" ionic-liquid type containing amino- and iminohydrochloride ligands. Azerb. Chem. J. 2016. No 1. P. 54-59.

13. Khanmetov A.A., Khamiyev M.J., Azizov A.H. Complex catalytic systems on based of zirconium phenolates containing amino hydrochloride sub-stituents for oligomerization of the ethylene. 1st int. Turkic World Conf. on Chem. Sci. and Technologies, Sarajevo Bosnia-Herzegovina 2015. P. 126.

14. Khamiyev M.J., Azizov A.H., Khanmetov A.A., Alieva R.V. Oligomerization of ethylene in the presence of heterogenized complex catalytic systems based on ionic liquid-type substituted zirconium phenolates. Appl. Organomet. chem. 2017. V. 31. No 9. P. 1-9. DOI: 10.1002/aoc.3692.

15. Azizov A.H., Khamiyev M. J., Khanmetov A.A., Alieva R.V., Aliyev B.M., Ahmedbekova S.F. Oligomerization of the ethylene in the presence of new heterogenizedZr-containing complex catalytic systems. Eur. Chem. Bulletin. 2015. No 4. P. 503-511.

16. Xanmetov A.A., Azizov A.G., Hamiev M.D., Alieva R.V., Akhmedbekova S.F. Oligomerizat-ciia etilena v prisutstvii kompleksnykh kataliti-cheskikh sistem na osnove soedinenif tcirkoniia s ligandami, soderzhashchimi "ionno-zhidkostnye" zamestiteli. Neftepererabotka i neftehimiia. 2014. No 3. C. 17-23.

17. Xamiyev M.C., Xanmatov O.O., Ozizov A.H., Quliyev A.D., Oliyeva R.V. Tarkibinda amino- va iminohidroxlorid qruplari saxlayan sirkonium fenolyatlarin rentgenfaza analizi va onlarin içtirakinda etilenin oliqomerlaçmasi. M.Nagiyev adina kataliz va Qeyri-Üzvi Kimya institutunun 80-illik yubileyina hasr olunmuç respublika elmi konfr. Baki. 2016. S. 186-187.

18. Xamiyev M.C., Xanmatov O.O., Ozizov A.H., va b. Calanmiç ion maye liqandli sirkonium fenolyat asasli heterogenlaçdirilmiç kompleks katalizatorlar içtirakinda etilenin takrar oliqomerlaçmasi prosesinin tadqiqi / Ganc alimlarin I beynalxalq elmi konf. Ganca. 2016. S. 365-369.

19. Xanmatov A.A., Ozizov A.H., Xamiyev M.C., Oliyeva R.V. Aminohidroxlorid avazedicili fenolyat liqandli sirkonium prekursorlari içtirakinda etilenin oliqomerlaçmasi yolu ila alinan yag fraksiyasinin iQ spektroskopiya üsulu ila tadqiqi. Prof. A.O.Verdizadanin 100 illik yubileyina hasr olunmuç "Üzvi reagentlar analitik kimyada" II Respublika konfr. mater. Baki, 2014. S. 220.

20. Hanmetov A.A., Hamiev M.D., Alieva R.V., Ku-liev A.D. Mass-spektroskopicheskoe issledovanie produkta oligomerizatcii etilena v prisutstvii kata-liticheskikh sistem na osnove fenoliatov tcirkoniia s aminogidrokhloridnymi zamestiteliami. Sbornik tezisov docladov V mezhdunarodnoi konferentcii-shkoly po himii i fizikohimii oligomerov. Oligo-mery-2015, Volgograd, C. 211.

21. Hanmetov A.A., Hamiev M.D., Alieva R.V., Azizov A.G., Mammedli R.Z. Poluchenie nafteno-parafinovykh sinteticheskikh uglerodnykh masel oligomerizatciei etilena. Akademik O.Quliyev

adina A§qarlar Kimyasi institutunun yaradil-masinin 50 illilyina hasr olunmu§ "Sürtkü materiallari, yanacaqlar, xüsusi mayelar, a§qarlar va reagentlar" mövzüsunda respublika elmi konf. mater. Baki, 2015. S. 88.Xamiyev M.C., Xanmatov A.A., Ozizov A.H., Oliyeva R.V., Oliyev B.M. Tarkibinda ion maye avazedicilari olan Zr fenolyatlari asasinda kompleks katalitik sistemlarin i§tirakinda etilenin oliqomerla§ma mahsulunun yag fraksiyasinin NMR spektroskopiya üsulu ila tadqiqi. "Fundamental va

tatbiqi elmlarin (yer, texnika va kimya elmlari) aktual problemlarinin hallinda multidissiplinar yana§manin rolu" Baki, 2014. S. 361-363.

22. Xamiyev M.C., Xanmatov O.O., Ozizov A.H., Oliyeva R.V. "Calanmi§ ion" maye liqandli Zr prekursorlari asasli kompleks katalitik sistemlarin i§tirakinda alinan oliqoetilen yaglarinin DSK vasitasila tadqiqi. Ganc alimlarin asarlari. 2014. No 9. S. 72-77.

SÍRKONÍUM OSASLI heterogenlosdírílmís katalítík sístemlor í§tírakinda ETÍLENÍN OLEFiNLORO VO YAG FRAKSÍYALARINA OLÍQOMERLO§MOSÍ

M.C.Xamiyev

Etilenin oliqomerla§masi prosesi tarkibinda amino- va iminohidroxlorid avazedicilar saxlayan ion maye tipli heterogenla§dirilmi§ sirkonium komplekslari va sokatalizator kimi alkilalüminium xloridlardan istifada etmakla öyranilmi§dir. Müayyan edilmi§dir ki, etilenin oliqomerla§ma mahsulu istifada olunan sirkonium kompleksindan va alüminum üzvi birla§masinin növündan asili olaraq dayi§ir. Sirkonium komplekslari va sokatalizator kimi (C2H5)AlCl2 i§tirakinda alinmi§ polietilen yag fraksiyasi yüksak §axali qurulu§da olub, naften halqalari saxlayir va a§agi özlülük indeksina malikdir. Etilenin oliqomerla§masi prosesinda sokatalizator kimi (C2H5)2AlCl-dan istifada edildikda alinmi§ oliqomer mahsul Zr/Al molyar nisbatindan, reaksiya temperaturundan etilenin tazyiqindan asili olaraq asasan 78.891.6% giximla C4-C10 xatti qurulu§lu a - olefin fraksiyasindan ibarat olur. Göstarilmi§dir ki, sintez olunmu§ sirkonium komplekslari ham polietilen yag fraksiyasinin, ham da xatti qurulu§lu a-olefinlarin alinmasi ügün etilenin oliqomerla§masi prosesinda takrar istifada oluna bilirlar.

Agar sözlar: zirconium komplekslari, amino- va iminohidroxlorid liqandlar, etilen, oliqomerh§m3.

ОЛИГОМЕРИЗАЦИЯ ЭТИЛЕНА В ОЛЕФИНЫ И МАСЛЯНЫЕ ФРАКЦИИ В ПРИСУТСТВИИ ГЕТЕРОГЕНИЗИРОВАННЫХ КАТАЛИТИЧЕСКИХ СИСТЕМ НА ОСНОВЕ Zr

М.Д.Хамиев

Изучен процесс олигомеризации этилена с использованием гетерогенизированных фенолятных циркониевых комплексов содержащих амино- ииминогидрохлоридные заместителями ионно-жидкостного типа, с алюми-нийхлоридами в качестве сокатализатора. Установлено, что состав продукта олигомеризации этилена меняется в зависимости от ионно-жидкостного заместителе в циркониевых лигандах и алюминий органических соединений. Полиэтиленовая масляная фракция, полученная в присутствии циркониевых комплексов и (C2H5)AlCl2 сокатализатора, имеет высокоразветвленную структуру, низкий индекс вязкости и содержит нафтеновые кольца. Продукт олигомеризации, полученный с использованием (C2H5)2AlCl в качестве сокатализатора, состоит, в основном, из С4-С10 a-олефиновой линейной структуры с выходом 78.8-91.6 %. В зависимости от молярного соотношения Zr/Al, от температуры реакции и давления этилена меняется состав продукта реакции. Показано, что синтезированные циркониевые комплексы могут быть повторно использованы в процессе олигомеризации этилена как, для получения масляной фракции полиэтилена, так и для получения олефинов линейного строения.

Ключевые слова: циркониевые комплексы, амино- и иминогидрохлоридные лиганды, этилен, олигомеризация.

i Надоели баннеры? Вы всегда можете отключить рекламу.