UDC 547.313.2
SYNTHESiS AND INVESTIGATION OF ZIRCONIUM COMPLEXES WITH "GRAFTED" IONIC-LIQUID TYPE CONTAINING AMINO- AND IMINOHYDROCHLORIDE LIGANDS
M.J.Khamiyev, A.H.Azizov , A.A.Khanmetov, R.V.Alieva, A.M.Mammadov
Yu.Mamedaliev Institute of Petrochemical Processes of Azerbaijan NAS
*
Institute of Polymer Materials of Azerbaijan NAS mxamiyev@yahoo. com Received 26.08.2015
The structure and composition of the synthesized precursors containing amino and imino hydrochlorides substituted were studied by IR, NMR spectroscopy, elemental analysis and LUMOS microscope. On the basis of NMR analysis result was established that, THF molecule which used as a solvent in the synthesis of 2-substituted zirconium complexes remaining in the complex in shape of coordinated to the central atom. With LUMOS microscope was determined that synthesized complexes have a uniform composition
Keywords: zirconium complexes, amino- and iminophenols, ethylene, oligomerization.
Introduction
The oligomerization of ethylene to alpha olefins in the presence of metal complex catalysts is one of the major industrial processes. a-Olefins with the number of carbon atoms 4-20 one of the main products in chemical industry widely used as comonomer in a-olefin and ethylene polymerization, the base material in obtaining long chain alcohols, feedstock in obtaining synthetic lubricant oils and etc. Currently, there are large number of catalysts for oligomerization and polymerization of ethylene based on the transition metal complexes. The most important of these catalysts are based on the metal organic compounds containing heteroatomic chelate li-gands. As an example for these type complexes can be shown the complexes of salen, aminoketone, imine-phenolate, pyridine-phenolate etc. based on the of transition metals (Ti, Zr) containing N and O atoms [1-5].
In spite of widely using homogeneous catalysts in the ethylene oligomerization they have some essential disadvantages. These type of catalysts cannot be reused by separating them from the obtained oligomerization product. For these reason, recently, the investigations in the field oligomerization of ethylene in the presence of ionic liquids or the catalyst (in general a transition metal complex) is immobilized on the ionic liquid phase have been conducted [6-11].
In the presented article, synthesis of "grafted" ionic-liquid type zirconium complexes containing amino- and imino hydrochloride substituted ligands showing catalytic activity in the oligomerization of ethylene to oligomer ole-fins and the results of their structures investigations by IR and NMR spectroscopy, element analysis and LUMOS microscopy have been given.
Experimental
All used solvents were purified and dried by standard procedures and distilled under inert atmosphere. All aluminium organic compounds and ZrCl4 were purchased from Aldrich Chemical company and were used as reagents without additional purification. The synthesis of 2-piperidinylmethyl-4-methylphenol, used as the ligand for zirconium complexes synthesis, 2-morpholylmethyl-4-methylphenol, 2-diethylami-nomethyl-4-methylphenol on the base of Mannich reaction and 2-[(2,6-di(isopropyl)phenyl)-imino]phenol on the base of Schiff bases acquisition reaction. The composition and structure of synthesized ligands has been proved by NMR, IR spectroscopy and element analysis.
Zirconium precursors were synthesized in the three-necked flask by interaction of ZrCl4 and ligands in molar ratio - (2-3): 1, at 50-600C temperature, during 2 hours under inert atmo-
sphere in medium of tetrahydrofuran (THF). The obtained zirconium complexes were separated from the solvent by simple decantation, dried under vacuum for 2 hours and formed into powder. These complexes are not soluble in hydrocarbon solvents (aromatic, aliphatic, haloid aro-matics) but dissolve in DMSO and ionic liquids.
IR spectra were recorded on the Fourier spectrometer of "Bruker" company in the range of 50-4000 cm-1 with "drop" method widespread among KBr prisms.
NMR spectra were recorded on Fourier spectrometer ("Bruker" company of Germany) operating at the frequency of 300 MHz. Deute-rated dimethyl sulfoxide were used as a solvent.
Element analysis of the catalyst precursor components was performed on TruSpec Micro analyzer XGT7000 of Horiba company.
An image of the visible surface of Zr-
precursors and IR spectra of the selected points were recorded on the IR-LUMOS microscope ("Bruker" Company of Germany) in the range of 600-4000 cm-1.
Results and Discussion
¿«•-[(N-2-Methylpiperidinylhydrochlorid methyl-4-methyl)phenolat]zirconium dichloride (MC1) have been synthesized by interaction of ZrCl4 with 2-piperidinylmethyl-4-methylphenol at molar ratio of 1:2. ZrCl4 and the ligands were dissolved in THF individually. Then, the solution of ligand in THF was added through dropping funnel by mixing into the three-necked flask. The obtained zirconium precursor was in the form of white powder after drying. Synthesized MC1 zirconium precursor is highly soluble in water, but poorly soluble in DMSO and ionic liquids and unstable in the air.
The synthesis scheme of MC1 is shown below. As seen from the scheme, HCl released by interaction of ZrCl4 with 2-piperidinylme-thyl-4-methylphenol was bound to the amine functionality of phenolic compound and formed quaternary ammonium salt (obtaining of the quaternary ammonium salts proved by IR and NMR spectroscopies).
Tri-[(N-2-methylpiperidinylhydrochloride-4-methyl)fenolato]zirconiumchloride (MC2) were synthesized by interact of ZrCl4 with 2-me-thylpiperidinyl-4-methylphenol at molar ratio of 1:3. The synthesis of MC2 was carried out in accordance with the synthesis process of MC1.
6/'s-[(N-2-Methylmorfolylhydrochloride-4-methyl)phenolato]zirconiumdi chloride (MC3) and ¿z's-N-{2-[2,6-di(isopropyl)phenyl)salicylaldi-minehydrochloride]phenolato}zirconium dichloride (MC4) were synthesized by interact of ZrCl4 with 2-morpholylmethyl-4-methylphenol and 2-diethylaminomethyl-4-methylphenol at molar ra-
tio of 1:2 respectively. The synthesis of these complexes also were carried out in accordance with the synthesis process of MC1. MC3 and MC4 zirconium complexes was obtained as white and yellow powders, respectively.
The chemical shift observed in the H1 NMR and 13C NMR spectra of synthesized complexes are given below. 1H NMR spectrum of the MC1 is given in the Fig. 1.
The absorption bands of compatible signals suitable to the protons of the molecule THF being used a solvent in the synthesis of complex in the form of coordinated zirconium metal in the composition of synthesized complexes were observed. Thus, the number of protons in 1H NMR spectra of the complexes calculated on the basis of integral curves intensity corresponding to a chemical shift of protons absorption lines (1.74 va 3.46 ppm) is more than the number atoms H in the composition of zirconium precursors calculated theoretically.
Figure 1. H:NMR spectrum of è/5-[(N-2-methylpiperidinylhydrochloridemethyl-4-methyl)fenolato]zirconium dichloride.
This difference at number of protons in 1H NMR spectra of synthesized zirconium complexes show that the THF molecules contain in their composition the coordinated form to the zirconium metal. The chemical shifts observed in 1H NMR and 13C NMR spectrum of MCI, MC2 MC3 and MC4 zirconium complexes are listed below:
è/s-[(N-2-methylpiperidinylhydrochloride-4-metil)phenolato]zirconium dichloride (MC1). 1H NMR (300 MHz, DMSO-d6. 2.19 (6H, s, Ph-CH3), 6.90-7.29 (6H, m, Ph-H), 4.10 (4 H, s, CNH), 3.46 (8H, t, NCH2 of piperidinyl), 2.84-3.72 (8H, m, -CH2- of piperidinyl), 1.361.62, (4H, m, CH2 of piperidinyl), 1.74 (m, CH2 of THF) 3.46 (4 H, t, OCH2 of THF), 10.0 (2H, s, N+H). 13C NMR (300 MHz, DMSO-d6): 154.9, 134.0, 131.7, 128.1, 116.1, 115.8, 67.5, 54.1, 52.0, 25.6, 22.6, 21.7, 20.5.
ir/-[(N-2-Methylpiperidinylhydrochloride-4-methyl)phenolato]zirconium chloride (MC2). 1H NMR (300 MHz, DMSO-d6), ô (ppm): 2.23 (9H, s, Ph-CHs), 6.65-7.28 (9H, m, Ph-H), 4.04
(6 H, s, CNH), 3.44 (12H, s, N(№2)2 of piperidinyl), 2.99 (12 H, m, -CH2- of piperidinyl), 1.71 (6H, m, > CH2 of piperidinyl), 10.0 (3H, s, N+H).
¿¿s-[(N-2-Methylmorpholylhydrochloride-4-methyl)phenol ato] zirconiumdichloride (MC 3 ). H1NMR (300 MHz, DMSO-d6), ô(ppm): 2.23 (6H, s, Ph-CH3), 6.69-7.33 (6H, m, Ph-H), 3.52 (4H, s, CNH), 3.12 (8H, s, N(CH2)2 of morpho-lyl), 3.84 (8H, s, (CH2^O of morpholyl), 1.74 (4H, m, CH2 of THF) 3.59 (4H, t, OCH2 of THF), 10.0 (2H, s, N+H).
fe-N-{2-[2,6-di(isopropyl)phenil)salisylaldi-minehydrochloride]phenolato}zirconiumdichlo-ride (MC4). 1H NMR (300 MHz, DMSO-d6, ô (ppm): 6.93-7.66 (14H, m, Ph-H), 8.57 (2H, s, CNH), 1.10-1.23 (24H, d, CH3), 2.87 (4H, m, CH(CH3)2), 10.25 (2H, s, N+H), 3.25 (4H, t, of OCH2 of THF), 1.74 (4H, m, CH2 of THF). 13C NMR (300 MHz, DMSO-d6): 23.7, 24.0, 27.8, 28.2, 117.1, 119.7, 123.6, 124.1, 125.8, 132.3, 134.1, 138.4, 160.6, 168.2.
MK Empirical formula theoretically calculated C, N, H, % practically found C, H, N, %
C N H C N H
MC1 [C26H38N2O2ZrCl4]-THF 50.31 3.91 6.43 49.78 4.01 6.70
MC2 C39H57N3O3Zra4 55.18 4.95 6.72 54.51 4.14 6.90
MC3 [C24H34N2O4ZrCl4] ■ THF 44.51 4.32 5.25 44.49 4.20 5.18
MC4 [C38H46N2O2ZrCl4]-THF 57.35 3.52 5.78 57.29 3.49 7.69
The element composition of the synthesized zirconium complexes, %
The synthesized complexes contain absorption bands in the area of 530-600 cm-1 and 278 cm-1 characteristic for valence oscillations of Zr-O and Zr-Cl bonds recorded in IR spectrum in the range of waves numbers of this complexes - 50-3500 cm-1. Moreover, the absorption bands in the IR spectrum of the synthesized zirconium complexes at 2547, 2573 and 2633 cm-1 corresponding to NR3H ammonium group, at
1614 cm- corresponding to the stretching deformation vibrations of the N-H bonds in ammonium salts.
The image of the visible surface of MC1 Zr-complex was recorded in the IR LUMOS microscope and given in the Fig. 2. The IR spectrum of these selected points (six points on the image of the visible surface of MC1 Zr-complex) is given in Fig. 3.
Figure 2. The image of the visible surface of MC1 Zr-complex.
3500
3000
2500
2000 1500
Wavenumber cm-1
Fig. 3. IR spetcrums of selected points on the MC1 surface.
As can be seen, in the IR spectrum of all selected surface points at 1310 cm-1 valence oscillation of C-N bond, 903 and 854 sm-1 valence oscillation of C-H bond corresponding to 1, 2, 4 substituted benzene, 963 and 2878 sm-valence oscillation of C-H bond of CH2 group in the piperidinyl ring, 1462 sm-1 deformation vibrations of C-H bond of CH2 group (CH2-N), 1514 sm-1 deformation vibrations of C=C bond in the benzene ring and 2969 sm-1 valence oscillation of C-H bond of CH3 group (Ar-CH3) are observed. Moreover, in the IR spectrum of the synthesized zirconium complexes absorption bands at 2263, 2562 and 2792 cm-1 corresponding to NR3H ammonium group, 1627 cm-1 corresponding to the stretching deformation vibrations of the N-H bonds in ammonium salts are observed.
Also, the images of the visible surface of
Zr-complexes MC2, MC3 and MC4 were recorded in the IR LUMOS microscope and IR spectrum of 6 selected points have been studied and compared with each others. The absorption bands in the IR spectrum of these complexes are identical to the MC1.
Thus, the analysis results allow to suggest that synthesized zirconium complexes are the "grafted" ionic liguid type ligands which have the following molecular structures.
As can be seen from the molecular structure of the synthesized complexes which determined according analysis data one THF molecule is coordinated to the zirconium metal in 2-substituted complexes (MC1, MC3 and MC4). But, in 3-substituted zirconium complex (MC2) THF molecule is not coordinated to the central zirconium atom.
Cl Cl Œ,
of xo CH2—CH2
! C /CH2-CH2
\ / / Zr-"--O„
o "CH2-CH2
v
Zr /\
Cl o
Cl\ /Cl / o o \
,CH2-CH2
CH2—CH2
CH3 CH
I
CH3
References
1. Shigekazu Matsui, Terunori Fujita. FI Catalysts: super active new ethylene polymerization catalysts // Catalysis Today. 2014. V. 66. P. 63-73.
2. Matsui S., Mitani M., Saito J., Tohi Y., Makio H., Matsukawa N., Takagi Y. A Family of Zirconium Complexes Having Two Phenoxy-Imine Chelate Ligands for Olefin Polymerization // J. Am. Chem. Soc. 2001. V 123. P. 6847-6856.
3. David J., Kingsley C., Wilhelm K. Zirconium complexes as catalysts for the oligomerization of ethylene: the role of chelate ligands and the Lewis acid cocatalyst in the generation of the active species // J. Mol. Catal. A: Chem. 1999. V. 138. P. 37-52.
4. Hongjun Z., Mei W., Chengbing M., Bo L., Changneng Ch., Licheng Sun. Preparation and
structure of 6- and 7-coordinate salen-type zirconium complexes and their catalytic properties for oligomerization of ethylene // J. Organomet. Chem. 2005. V. 690. P. 3929-3936.
5. Mei W., Hongjun Z., Kun Jin., Dong Dai., Licheng Sun. Ethylene oligomerization by salen-type zirconium complexes to low-carbon linear a-olefins // J. Catal. 2003. V. 220. P. 392-398.
6. Ke-Ming Song, Hai-Yang Qiao, Feng-Shou Liu, Jin Pan, Li-Hua Guo, Shao-Bo Zai, Qing Wu. Ionic liquids - supported è/'s-(Salicylaldimine) Ni-ckelcomplexes: Robust and Recyclable catalysts for ethylene oligomerization in biphasic solvent system // Catal. Lett. 2009. № 3-4. Р. 566-573.
7. Pei L., Liu X., Haiyang G., Wu Q. Biphasic oli-gomerization of ethylene with nickel complexes immobilized in organochloroaluminate ionic liquids // Appl. Organomet. Chem. 2009. V. 23. P. 455-459.
8. Lecocq V., Olivier-Bourbigon H. Biphasic Ni-Catalyzed ethylene oligomerization in ionic ionic liquids // Oil Gas Sci. and Technology. 2007. V. 62. P. 761-773.
9. Ханметов А.А., Азизов А.Г., Хамиев М.Д., Алиева Р.В., Ахмедбекова С.Ф. Олигомериза-ция этилена в присутствии комплексных каталитических систем на основе соединений цир-
кония с лигандами, содержащими "ионно-жид-костные" заместители //Нефтепереработка и нефтехимия. 2014. № 3. С. 17-23.
10. Xamiyev M.C., Xanmetov Э.Э., Ozizov A.H., Oliyev R.V. Calanmi§ ion maye liqandli Zr- pre-kursorlari asasli kompleks katalitik sistemlarin i§tirakinda alinan oliqoetilen yaglarinin DSK va-sitasila tadqiqi // Ganc alimlarin asarlari. 2014. № 9. S. 72-77.
11. Ханметов А.А., Азизов А.Г., Хамиев М.Д., Алиева Р.В., Расулов Ч.К. Олигомеризация этилена в присутствии ионно-жидкостных цирконийсодержащих комплексных каталитических систем // Всеросийкая конференция с международным участием "Современные достижения химии непредельных соединений: алкинов, алкенов, аренов и гетероатомов" Санкт- Петербург 26-28 марта 2014. C. 192.
12. Расулов Ч.К., Набиев Ф.А., Бабаева Р.К. Синтез циклоалкилфенольных оснований Манни-ха // Процессы нефтехимии и нефтепереработки 2001. № 2. С. 37-39.
13. Расулов Ч.К., Азизов А.Г., Зейналова Л.Б. Синтез 2-гидрокси(циклоалкил)бензил- фенил-аминов // Процессы нефтехимии и нефтепереработки. 2007. № 2. С. 11-15.
CALANMIS ÍON MAYE TÍPLÍ AMÍNO- VO ÍMÍNOHÍDROXLORÍD LÍQANDLI SÍRKONÍUM
komplekslorínín síntezí vo todqíqí
M.C.Xamiyev, A.H.Ozizov, O.O.Xanmatov, RV.Oliyeva, A.M.Mammadov
Sintez olunmuç tarkibinda amino- va iminohidroxlorid avazedici liqandlar saxlayan sirkonium prekursorlarin quruluçlan va tarkiblari ÍQ, NMR spektroskopiyalari, element analizi va LUMOS mikroskopu ila tadqiq edilmiçdir. NMR analizin naticalarina asasan müayyan edilmiçdir ki, 2-avazolunmuç sirkonium komplekslarinin sintezinda halledici kimi istifada olunan THF molekullari kompleksin markazi atomuna koordinasiya olunmuç çakilda onun tarkibinda qalir. LUMOS mikroskopu vasitasila sintez olunmuç komplekslarin eyni tarkibda oldugu müayyan edilmiçdir.
Açar sözlar: sirkonium komplekshri, amino- v3 iminofenollar, etilen, oliqomerh§m3.
СИНТЕЗ И ИССЛЕДОВАНИЕ "ПРИВИТЫХ" АМИНО- И ИМИНОГИДРОХЛОРИДЛИГАНДНЫХ КОМПЛЕКСОВ ЦИРКОНИЯ ИОННО-ЖИДКОСТНОГО ТИПА
М.Д.Хамиев, А.Г.Азизов, А.А.Ханметов, Р.В.Алиева, А.М.Маммадов
Исследованы структура и состав синтезированных амино- и иминогидрохлоридлигандных замещенных, содержащих циркониевые прекурсоры, методами ЯMР, ИK-спектроскопии, элементного анализа и с помощью микроскопа LUMOS. На основе анализа результатов ЯMР yстaнoвлено, что при синтезе 2-замещенных циркониевых комплексов молекулы используемого в качестве растворителя ТГФ - остовые в составе комплекса находятся в координированной форме к центральному атому. С помощью микроскопа LUMOS определенно, что синтезированные комплексы схожи по составу.
Ключевые слова: комплексы циркония, амино- и иминофенолы, этилен, олигомеризация.