Запорная трубопроводная арматура с компенсационной камерой
И.Р. Шегельман, А. С. Васильев, П.О. Щукин Петрозаводский государственный университет
Аннотация: В статье описана конструкция запорной трубопроводной арматуры двустороннего действия, которая благодаря наличию компенсационной камеры, связанной каналом с внутренней полостью устройства, обладает высокой надежностью в работе за счет исключения вероятности разрыва корпуса и крышки, выдавливания рабочей среды из внутренней полости устройства в окружающую среду через уплотнения под действием избыточного давления во внутренней полости.
Ключевые слова: задвижка, магистральный трубопровод, трубопроводная арматура, трубопроводный транспорт.
В ходе реализуемого Петрозаводским государственным университетом (ПетрГУ) совместно с Инжиниринговой компанией АО «АЭМ-технологии» комплексного проекта [1,2] под названием: «Создание высокотехнологичного производства шиберных и клиновых штампосварных задвижек для предприятий атомной, тепловой энергетики и нефтегазовой отрасли с применением наноструктурированного защитного покрытия» был проведен глубокий анализ существующих конструкций запорной трубопроводной арматуры и показателей их работы [3-5]. В ходе изучения собранной при этом информации было установлено, что одна из проблем, связанных с эксплуатацией данных устройств, заключается в опасности разрыва внутренней полости задвижки из-за аварийного повышения давления в ней вследствие повышения температуры рабочей среды при перекрытом рабочем сечении. Например, как показано в работе [6], нагрев воды, находящейся в замкнутом пространстве внутренней полости задвижки, более чем на 50 0С уже приводит к существенному повышению давления, которое может стать причиной нарушения целостности конструкции.
Существуют различные способы решения данной проблемы, описанные в работе [7], среди которых:
- применение предохранительных клапанов, встраиваемых в крышки задвижек. Недостатком такого решения является то, что через предохранительные клапана будут происходить утечки рабочей среды за пределы трубопровода, что может привести к загрязнению окружающей среды;
- применение перепускных трубок между подающим патрубком и полостью задвижки. Такое техническое решение приемлемо только для задвижек с односторонним направлением потока рабочей среды;
- взрывных мембран. Недостатком такого решения является то, что после разрыва мембраны приходится проводить ремонтные работы по ее восстановлению;
- применение отверстий в тарелках задвижки. Такое решение сопряжено с существенным увеличением трудоемкости изготовления задвижки;
- применение ручного стравливания давления. При таком решении требуется постоянный надзор за перепадом температур, оперативная доставка рабочего к задвижке, требуется применение ручного труда, что не всегда возможно, например, на задвижках трубопроводов АЭС, когда доступ рабочего в опасную зону строго запрещен. Кроме того при ручном стравливании давления рабочая среда будет выходить за пределы трубопровода, что может стать причиной загрязнения окружающей среды.
В результате работ с применением методологии функционально-технологического анализа [8], эффективность которого подтверждается работами [9,10] было найдено техническое решение в отношении конструкции задвижки, позволяющее повысить надежности в работе путем снижения к минимуму вероятности разрыва корпусных деталей за счет исключения возможности появления недопустимо большого давления во внутренней полости задвижки. В отношении данной конструкции получено положительное решение Федерального института промышленной
собственности Российской Федерации о выдаче патента на полезную модель от 11.06.2015 согласно заявке Яи 2014149516.
Отличительно особенность предложенной запорной трубопроводной арматуры от известных конструкций является наличие компенсационной камеры, связанной каналом с внутренней полостью задвижки и выполненной в виде пустотелой гильзы в которую вмонтирован подпружиненный относительно ее днища поршень (рис. 1).
Рис. 1 - Запорная трубопроводная арматура с компенсационной камерой
Запорная трубопроводная арматура с компенсационной камерой (рис. 1) включает в себя корпус 1, снабженный крышкой 2, уплотнительный элемент 3, установленный в отверстии крышки 2, через которое проходит шпиндель 8, и обеспечивающий герметичность подвижного соединения «крышка-шпиндель». Шпиндель 8 одним концом связан с приводом 9, а другим концом - с затвором 7. На наружной поверхности устройства, например, крышке корпуса, установлена компенсационная камера 4, которая
посредством канала 5 связана с внутренней полостью 6 устройства, образуемой корпусом 1 и крышкой 2. Компенсационная камера 4 выполнена в виде пустотелой гильзы. Внутри компенсационной камеры 4 установлен поршень 11, подпружиненный относительно ее днища посредством пружины сжатия 10. Такая конструкция позволяет компенсировать избыточное давление во внутренней полости 6 за счет увеличения ее объема путем перемещения поршня 11 и возврата его к исходному положению по мере нормализации давления под действием пружины 10.
Работа такого устройства будет осуществляться следующим образом. При закрытом затворе 7 в результате увеличения температуры, рабочая среда, находящаяся во внутренней полости 6 устройства, расширяется, в результате чего возникает избыточное давление. При повышении давления во внутренней полости 6 выше критического упругости, пружины 10 будет недостаточно для удержания поршня 11 в крайнем положении вблизи канала 5, в результате чего поршень 11, сжимая пружину 10, будет перемещаться в сторону днища компенсационной камеры 4 и тем самым, за счет увеличения объема внутренней полости 6, связанной каналом 5 с компенсационной камерой 4, препятствовать появлению чрезмерно большого давления во внутренней полости 6 запорного устройства. Таким образом происходит компенсация давления и корпусные детали запорного устройства не испытывают чрезмерно больших нагрузок. По мере уменьшения давления во внутренней полости 6 (при открывании затвора 7 или остывании рабочей среды) поршень 11 под действием упруго-сжатой пружины 11 в компенсационной камере 4 возвращается в свое исходное положение -вблизи канала 5.
Благодаря наличию компенсационной камеры, внутри которой расположен подпружиненный относительно ее днища поршень, сообщающейся с внутренней полостью запорного устройства,
обеспечивается повышение надежности в работе за счет исключения вредных последствий в виде разрыва корпуса и крышки запорного устройства, выдавливания рабочей среды из полости запорного устройства в окружающую среду через уплотнения под действием избыточного давления во внутренней полости. Кроме того, наличие компенсационной камеры с расположенным внутри нее подпружиненным поршнем, существенно упрощает конструкцию запорной трубопроводной арматуры, защищенной от превышения внутреннего давления выше критического значения и имеющей возможность работать с двухсторонним потоком рабочей среды, и тем самым повышает технологичность ее изготовления.
Работа выполнена при поддержке Министерства образования и науки Российской Федерации по договору № 02.G25.31.0031 по реализации комплексного проекта «Создание высокотехнологичного производства шиберных и клиновых штампосварных задвижек для предприятий атомной, тепловой энергетики и нефтегазовой отрасли с применением наноструктурированного защитного покрытия».
Литература
1. Воронин А.В., Шегельман И.Р., Щукин П.О. О стратегии повышения инновационного взаимодействия университетов с промышленностью // Перспективы науки. 2013. № 6(45). С. 5-8.
2. Васильев А.С., Щукин П.О. Высокотехнологичное производство арматуры для атомной, тепловой энергетики и нефтегазовой отрасли // Перспективы науки. 2014. № 8(59). С. 75-78.
3. Васильев А.С., Суханов Ю. В., Щукин П.О., Галактионов О.Н. Совершенствование эксплуатационных показателей запорной трубопроводной арматуры // Инженерный вестник Дона, 2014, №. 3. URL: ivdon.ru/magazine/archive/n3y2014/2464.
4. Васильев А.С., Шегельман И.Р., Щукин П.О., Суханов Ю.В. Некоторые направления патентования корпусов штампосварных клиновых задвижек для магистральных трубопроводов предприятий атомной, тепловой энергетики, нефтегазовой промышленности // Инженерный вестник Дона, 2014, №1. URL: ivdon.ru/magazine/archive/n1y2014/2245.
5. Васильев А.С., Шегельман И.Р., Щукин П.О. Некоторые особенности технических решений на конструкции клиновых задвижек для магистральных трубопроводов предприятий атомной, тепловой энергетики, нефтегазовой промышленности // Инженерный вестник Дона, 2013, №. 3. URL: ivdon.ru/magazine/archive/n3y2013/1827.
6. Гуревич Д.Ф., Ширяев В.В., Пайкин И. Х. Арматура атомных электростанций: справочное пособие. М.: Энергоиздат, 1982. 312 с.
7. Лапкис А. Защита задвижек АЭС от аварийного повышения давления // Наука и конструирование. 2012. № 6(81). С. 36-39.
8. Шегельман И.Р. Функционально-технологический анализ: метод формирования инновационных технических решений для лесной промышленности. Петрозаводск: ПетрГУ, 2010. 96 с.
9. Shegelman I.R., Romanov A.V., Vasiliev A.S., Shchukin P.O. Scientific and technical aspects of creating spent nuclear fuel shipping and storage equipment // Nuclear Physics and Atomic Energy. 2013. Volume 14, Issue 1. Pp. 33-37.
10. Shegelman I. R. Functional-technological analysis of logging equipment // New information technologies in pulp and paper and energy industry: IV international scientific-technical conference: Conference papers. Petrozavodsk: PetrGU, 2000. Рр. 51-52.
References
1. Voronin A.V., Shegel'man I.R., Shchukin P.O. Perspektivy nauki. 2013. № 6(45). Pp. 5-8.
2. Vasil'ev A.S., Shchukin P.O. Perspektivy nauki. 2014. № 8(59). pp. 75-78.
3. Vasil'ev A.S., Sukhanov Yu. V., Shchukin P.O., Galaktionov O.N. Inzenernyj vestnik Dona (Rus), 2014, №. 3. URL: ivdon.ru/magazine/archive/n3y2014/2464.
4. Vasil'ev A.S., Shegel'man I.R., Shchukin P.O., Sukhanov Yu.V. Inzenernyj vestnik Dona (Rus), 2014, №1. URL: ivdon.ru/magazine/archive/n1y2014/2245.
5. Vasil'ev A.S., Shegel'man I.R., Shchukin P.O. Inzenernyj vestnik Dona (Rus), 2013, №. 3. URL: ivdon.ru/magazine/archive/n3y2013/1827.
6. Gurevich D.F., Shiryaev V.V., Paykin I. Kh. Armatura atomnykh elektrostantsiy: spravochnoe posobie [Valves of nuclear power plants: a handbook]. M.: Energoizdat, 1982. 312 p.
7. Lapkis A. Nauka i konstruirovanie. 2012. № 6(81). pp. 36-39.
8. Shegel'man I.R. Funktsional'no-tekhnologicheskiy analiz: metod formirovaniya innovatsionnykh tekhnicheskikh resheniy dlya lesnoy promyshlennosti [Functional-technological analysis: A method of forming innovative technical solutions for the timber industry]. Petrozavodsk: PetrGU, 2010. 96 p.
9. Shegelman I.R., Romanov A.V., Vasiliev A.S., Shchukin P.O. Nuclear Physics and Atomic Energy, 2013. Volume 14, Issue 1. pp. 33-37.
10. Shegelman I. R. New information technologies in pulp and paper and energy industry: IV international scientific-technical conference: Conference papers. Petrozavodsk: PetrGU, 2000. pр. 51-52.