Научная статья на тему 'Влияние резонанса на потери мощности в нелинейных электрических цепях'

Влияние резонанса на потери мощности в нелинейных электрических цепях Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
113
30
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Свешникова Елена Юрьевна, Политико Дмитрий Михайлович

Статья посвящена исследованию особенностей диссипации энергии в различных режимах работы системы двух связанных идентичных осцилляторов. На примере двух связанных через резистор и емкость генераторов Чжу а проведен анализ устойчивости нелинейных электрических цепей и рассчитаны потери мощности, возникающие в линейных элементах в различных режимах работы системы. Осуществлены теоретические и экспериментальные переходы из режима хаоса к режимам периодических колебаний и выяснен ряд особенностей схемы, приводящей к снижению потерь мощности в режиме хаотических колебаний.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Свешникова Елена Юрьевна, Политико Дмитрий Михайлович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Влияние резонанса на потери мощности в нелинейных электрических цепях»

аппаратуре, в медицине, метеорологии, в химической и других отраслях промышленности.

Библиографический список

1. Анищенко B.C. Знакомство с нелинейной динамикой: Лекции соросовского профессора. Учеб.пособие. — Москва-Ижевск: Институт компьютерных исследований, 2002. — 144с.

2. Берже К. Порядок в хаосе. — М.:Наука, 1991

3. Джонс М.Х. Электроника — практический курс. — М.: Постмаркет, 1999

4. Дьяконов В. MathCAD 2001: учебный курс. — СПб.:Питер, 2001. -624 с.

5. Разевиг В.Д. Система схемотехнического моделирования №Исго-Сар6. - М.: Горячая линия - Телеком, 2001. - 344 с.

6. Федоров В. К. Введение в теорию хаотических режимов нелиней ных электрических цепей и систем: Учеб. пособие /ОмПИ. Омск, 1992. - 44 с.

СВЕШНИКОВА Елена Юрьевна, преподаватель-стажер кафедры «Электроснабжение промышленных предприятий».

НИКИШКИН Алексей Сергеевич, студент энергетического института, гр. Э-510.

УДК 621.317 Е. Ю. СВЕШНИКОВА

Д. М. ПОЛИТИКО

Омский государственный технический университет

ВЛИЯНИЕ РЕЗОНАНСА НА ПОТЕРИ МОЩНОСТИ В НЕЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Статья посвящена исследованию особенностей диссипации энергии в различных режимах работы системы двух связанных идентичных осцилляторов. На примере двух связанных через резистор и емкость генераторов Чжу а проведен анализ устойчивости нелинейных электрических цепей и рассчитаны потери мощности, возникающие в линейных элементах в различных режимах работы системы. Осуществлены теоретические и экспериментальные переходы из режима хаоса к режимам периодических колебаний и выяснен ряд особенностей схемы, приводящей к снижению потерь мощности в режиме хаотических колебаний.

Введение

Начиная с времен Галилея и Ньютона современная физика проделала огромный путь по накоплению, систематизации, описанию и осмыслению фактов об окружающем мире. Описание обычно делалось на языке математики, и сама структура этого языка зачастую позволяла совершать новые открытия в реальном мире (что само по себе достаточно удивительно). За несколько столетий предсказательная роль физики стала настолько большой, что в настоящее время нерешаемых «счетных» задач практически не осталось — по крайней мере, с точки зрения принципиального понимания происходящих явлений — ни в механике, ни в классической электродинамике, ни в квантовой теории. Физика продолжает развиваться, и за последние десятилетия возрос интерес к таким ее новым областям, как синергетика, динамический хаос и самоорганизация. В этих ветвях физики зачастую используется оригинальный математический аппарат, а в сочетании с возрастающей мощностью компьютеров и возможностей «численного эксперимента» предсказательная сила их оказывается вполне «на уровне», наряду с традиционными физическими теориями.

Анализ процессов в динамических системах природного и искусственного происхождения позволил

обнаружить режимы их непредсказуемого (спонтанного) поведения, получивших название детерминированного хаоса. Структурная сложность, существенная нелинейность компонентов и связей и высокая энергоемкость современных технических систем обуславливают не только фундаментальный, но и прикладной интерес к подобного рода явлениям. Хаотические режимы могут быть как нежелательными, так и требуемыми технологическими процессами. Примерами желаемого хаотического поведения являются процессы в генераторах хаотических автоколебаний, технологии псевдосжижения, широко применяемые при сжигании топлива на электростанциях, сушке различных материалов, интенсификация химических реакций, защита и передача информации и др. Нежелательное хаотическое поведение объектов часто возникает в критических режимах, например, в летательных аппаратах, электронных устройствах, энергосистемах и т.д. В этой связи несомненную актуальность приобретает проблема управления хаосом в нелинейных динамических системах с целью упорядочения или, наоборот, хаоти-зации протекающих процессов.

Как показывает повседневный опыт, для многих физических систем малые изменения начальных условий приводят к малым изменениям результата. Так, например, путь автомобиля мало изменится, если руль лишь слегка поворачивать.

Но есть ситуации, для которых справедливо противоположное. Сторона, на которую упадет монета, поставленная на ребро, зависит от слабого прикосновения. Последовательность «орлов» и «решек» при подбрасывании монеты проявляет нерегулярное, или хаотическое, поведение во времени, так как крайне малые изменения начальных условий могут привести к совершенно различным результатам,

В последние годы стало ясно (и отчасти это определилось благодаря исследованиям нелинейных систем с применением быстродействующих компьютеров), что высокая чувствительность к начальным условиям, приводящая к хаотическому поведению во времени, никоим образом не исключение, — это типичное свойство многих систем. Такое поведение, например, обнаружено в периодически стимулируемых клетках сердца, в электронных цепях, при возникновении турбулентности в жидкостях и газах, в химических реакциях, в лазерах и т. д.

«Детерминированный хаос» сегодня — весьма активная область исследований, в которой получено множество выдающихся результатов. Разработаны методы классификации различных типов хаоса и обнаружено, что при изменении внешнего управляющего параметра многие системы демонстрируют переходы от порядка к хаосу.

Виды потерь мощности в системе электроснабжения

Электрическая энергия является единственным видом продукции, для перемещения которого от мест производства до мест потребления не используются другие ресурсы. Для этого расходуется часть самой передаваемой электроэнергии, поэтому ее потери неизбежны, задача состоит в определении их экономически обоснованного уровня. Снижение потерь электроэнергии в электрических сетях до этого уровня - одно из важных направлений энергосбережения.

В связи с развитием рыночных отношений в стране значимость проблемы потерь электроэнергии существенно возросла. Стоимость потерь является одной из составляющих тарифа на электроэнергию. В силу монопольного характера электроснабжения естественное установление тарифов на уровне баланса цен спроса и предложения с помощью рыночных механизмов невозможно, так как альтернативные возможности электроснабжения отсутствуют.

Потери электроэнергии (фактические потери) определяют как разность электроэнергии, поступившей в се ч ь, и электроэнергии, отпущенной из сети потребителям, определяемая по данным системы учета поступления и полезного отпуска электроэнергии,

Потери электроэнергии подразделяются на четыре составляющие:

1. технические потери электроэнергии, обусловленные физическими процессами, происходящими при передаче электроэнергии по электрическим сетям;

2. расход электроэнергии на собственные нужды подстанции, необходимый для обеспечения работы технологического оборудования подстанций;

3. потери электроэнергии, обусловленные инструментальными погрешностями ее измерения;

4. коммерческие потери, обусловленные хищениями электроэнергии, несоответствием показаний счетчиков электроэнергии и другим причинам в этой же сфере.

. В данной работе уделяется внимание изучению ' потерь электроэнергии, обусловленные физически-

Рис. 1. Схема, иллюстрирующая емкостную симметричную связь генераторов Чжуа.

ми процессами, происходящими при передаче электроэнергии по нелинейным электрическим цепям.

Анализ на устойчивость модели двух связанных через емкость генераторов

Динамика рассматриваемой схемы в нормированных переменных описывается следующей системой уравнений;

(1а) х[=а(у[-х]-Ь(х]),

(1Ь) у1 = х1-у1 + 2,+у((х2-х1)-(у2-у1) + (22-г,))1

(1с) ¿,=-Ру,.

(М) х2 = а(у2-х2-Щх2)), (1)

(1е) у1 = хг-уг+гг+у((х1-х1)-(у1-у7) + (2{-гг)), Ш) ¿2=-ру2

Нелинейность активных элементов может быть аппроксимирована различными соотношениями. В данной работе использовалась кусочно-линейная аппроксимация, выражающаяся условием (2).

Щх)--

Ьх-а + Ь, если х < -1,

ах,если\х\<,1,

Ьх + а-Ь,еслих> 1,

(2)

гдеа,Ь — постоянные.

В системе (1.1) в режиме развитого хаоса можно осуществить стабилизацию фазовой траектории в симметричном подпространстве XI =Х2. Для этого перепишем систему (1.1) в новых переменных в виде:

и = (х,-х2)/21у^(у,-у.,)/2, =

(2а) (2b) (2с) (2 d) (le) (2 f)

v = U-V + W-2Y[U-V + W], w = -ßv,

и = а[у'-и'-сСи'Д v'=iï-v'+w', w'= -ßv'.

(3)

гдес(и) = (Щх,)-к(х2))/2, с(и) = (Щх,) + Щхг))/2

Рассмотрим случай стабилизации симметричных режимов XI =Х2. Таким симметричным движениям отвечает неподвижная точка с координатами и = 0, V = О, V/ = 0. Для того чтобы исследовать ее на устойчивость, достаточно рассмотреть первые три уравнения системы (2а-2с).

Анализ на устойчивость дал результат, что 0<у< <0.5 схема демонстрирует хаотическое поведение

Анализ на устойчивость модели двух связанных через резисторы генераторов

Уравнения, описывающие процессы в схеме рис.2.1, в нормированных переменных имеют вид:

(1а), ; X, = a(y,-x)-h(xjl

(1Ь) y[ = x,-y[+zl+y(y2~yj

(1с) ¿1 =-ßyi .

(ld) х2 = а(у2-хг-11(х2)),

(le) y2 = x2-y2 + z2+y(yt-y2)

(И) ¿2 = -РУ*

(4)

Нелинейность активных элементов может быть аппроксимирована различными соотношениями. Здесь использовалась кусочно-линейная аппроксимация, выражающаяся условием (5).

h(x) =

Ьх-а + Ь,еслих<-1, ох, если |х| £ 1, bx+a-b, если х > 1,

(5)

гдеа,Ь — постоянные.

Перепишем систему (4) в новых переменных в виде:

u = (x,-xJ/2, v = fy,-yJ/2, w = (z,-zJ/2,

u'= (xt + x.J/2, v'= (y, + y2)/2, w'=(zt + z.J/2;

(2a) (2b) (2c) (2d) (2e) (2f)

ù-a[v-u-c(u) v = u-v+w-2y w=-ßv, ü=a[v'-LL-c(u, v'=u-v'+w,

(6)

R2| |_ ЭОО

Il 5 2 « Ц

j m Ou

^ IÛJ | iQljp IOM^ tQH

Рис. 2. Схема, иллюстрирующая резисгивную симметричную связь генераторов Чжуа.

нейный резистор Необходимо найти значение мощности, рассеиваемой в нем, чтобы дать оценку эффективности того или иного режима работы системы Чжуа. Сложность данного этапа заключается в том, что для нахождения потерь мощности необходимо знать действующее значение тока в резисторе. Так как в исследуемой цепи могут существовать хаотические режимы, то это обстоятельство не позволяет разложить функцию в ряд Фурье, так как он может быть получен только для периодических функций. Данная проблема была решена с помощью операций численного интегрирования полученной функции. Известно, что определенный интеграл функ-

ь

и,т!(х) типа jf(x)dx численно представляет собой

а

площадь криволинейной траиеции ограниченной кривыми у=а, у=Ь и у=[(х) (рис. 7). Одним из методов вычисления этой площади или определенного интеграла является метод трапеций.

Сущность метода заключается в том, что всю площадь криволинейной трапеции разбивают на участки с некоторым шагом Л и, путем суммирования элементарных площадей, находят всю площадь под кривой, Мгновенное значение тока в резисторе Я1 найдем по формуле:

' = G(uc2 -ис1),

(7)

где с(и) = (h(х,Ь h(х2))/2, с(и) = (h(xt ) + h(х7))/2

Анализ на устойчивость дал результат 0<у<0,28-интервал при котором схема демонстрирует хаотическое поведение.

Надо отметить то, что интервал при котором схема демонстрирует хаотическое поведение при резис-тивной связи уже, чем при емкостной.

Расчеты в среде Math Cad 11

р = i '2R ■

Потери мощности в резисторе R1

Jeû 2

(8)

где иС1 - напряжение на конденсаторе С1: иС2 - напряжение на конденсаторе С2; в — проводимость резистора Ш.

Мгновенная мощность, рассеиваемая в резисторе

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

В исследуемой системе одним из элементов, в котором происходит диссипация энергии, является ли-

где h - шаг.

121

СМСТВМЛ8УХ СВЯЗАННЫ*ГЕНЕРАТОРОВЧ1КУД с ритотмвной адязью СИ

1.20 а во

ООО -0 60

О.ООп! «(05)

Рис. 3. Временная зависимость токов на элементах 1Л, и напряжений на элементах С1, С2 соответственно при 7=0,1 в схеме с емкостной связью.

СИСТЕМ* ДВУХ СЗЯЗАННЬЗ< ГЕНЕРАТОРОВ ЧЖУА С РЕЗИСТКВНОЙ СВЯЗЬЮ-СК

7 50т 1.00т 1.50т а.оот -1.50т -б.Ост

О.ООгп

дан

12.Е0 Й.С-О 4.С0 0.00 -1.00 ■в.оо

О.ООт

9.50 600 э.ао, 0.00 -Э.50 • 0.00

О.ООт

(с г)

Рис. 4. Временная зависимость токов на элементах Ы, Ш и напряжений на элементах С1, С2 соответственно при у=0,7 в схеме с емкостной связью.

Рис. 5. Странный аттрактор, образуемый напряжением на конденсаторе С1 при значенни коэффициента связи систем у=0,1 в схеме с емкостной связью.

37 50m; .....

Рис. 6. Зависимости мощности рассеиваемой в резисторе Ш и напряжения на конденсаторе С1 от времени при граничном значении коэффициента связи в схеме с емкостной связью.

ШШШт

____________L_________

О а' Ь1

Рис.7. Криволинейная трапеция.

t -t .

500-0 30000

0,016667 .

(10)

При подсчете площадей под кривыми были получены следующие результаты:

1) в режиме квазипериодических колебаний Р = = 831;

2) в режиме хаотических колебаний Р = 760. При исследовании схемы в программе Micro-Cap 6

данные результаты были подтверждены.

Физическое толкование снижения потерь

В условиях неопределенности и случайных взаимодействий фактором, определяющим тенденции изменений переменных состояния, является энтропия. Энтропией называется функция состояния системы, равная отношению количества теплоты, сообщенного системе к абсолютной температуре последней

Т

(11)

Она представляет собой тепловую энергию, рассеянную при определенной температуре, или сумму энергетических потерь, приходящихся на градус в

данном температурном интервале. Таким образом, энтропия представляет собой фактор емкости тепловой энергии, атемпература - фактор интенсивности. Также энтропия является мерой неупорядоченности системы. Чем больше неупорядоченность системы, тем больше ее энтропия. Таким образом, в хаотическом режиме энтропия системы выше и, следовательно, выше и диссипация энергии. Как видно из рисунков 1 и 2, реактивные сопротивления соединены параллельно. Резонанс токов возникает, когда участки электрической цепи, содержащие индуктивности, и емкости соединены параллельно. Следовательно, в исследуемых схемах возможно возникновение резонанса токов. Условием возникновения резонанса токов является равенство нулю входной реактивной проводимости цепи. Запишем для связанных через емкость генераторов Чжуа комплексную проводимость цепи:

Из рис. 8 видно, что в системе связанных генераторов Чжуа возможно возникновение резонанса токов. Это обстоятельство и обуславливает увеличение амплитуды колебаний в цепи (рис. 6) и, следовательно, увеличение диссипации энергии в резисторе в режиме периодических колебаний.

Заключение

Целью данного исследования было исследование особенностей диссипации энергии в нелинейных электрических цепях, в частности, связанных генераторов Чжуа. В рамках данного исследования были проведены следующие исследования:

• рассчитаны граничные условия перехода к хаосу;

• представлены теоретические и экспериментальные исследования переходов в системе двух связанных идентичных генераторов Чжуа из режима хаоса в режим квазипериодических колебаний;

• рассчитаны и проанализированы зависимости потерь мощности от режима функционирования представленных схем.

МО 0.02

3000

3000

<4000

8000

9000

12 10

Рис. В. Частотная зависимость реактивной проводимости в хаотическом режиме.

Также было установлено, что снижение потерь в режиме хаотических колебаний в связанных цепях Чжуа является исключением из-за конфигурации схемы, то есть из-за наличия резонансного контура, так как теоретически в режиме хаоса потери должны возрастать. Таким образом, анализируя схемы реальных устройств, возможно прогнозировать их поведение на предмет возникновения хаотических режимов и, следовательно, на снижение или возрастание потерь мощности.

Потери энергии в нелинейных цепях в режиме хаотических колебаний при наличии резонанса меньше, чем в режиме квазипериодических колебаний . С точки зрения экономии электрической энергии, этот режим может быть предпочтителен, так как в соответствии с полученными результатами рассеивание мощности в резисторе возрастает в среднем в два раза при выходе системы из режима хаотических колебаний с одновременным возникновением резонанса, но нужно учитывать, что этот режим неустойчив.

Неустойчивость режима ведет к потере детерминированной предсказуемости, становится сложно прогнозировать надежностные характеристики элементов энергосистемы. Хаотические колебания токов и напряжений в элементах энергосистемы ведет к более быстрому износу электрооборудования и,

следовательно, к росту амортизационных издержек в процессе эксплуатации, что, соответственно, будет отражаться на росте себестоимости электроэнергии,

Библиографический список

1. Анищенко B.C. Знакомство с нелинейной динамикой: Лекции соросовского профессора. Учеб.пособие. — Москва-Ижевск: Институт компьютерных исследований, 2002. - С. 144.

2. БержеК. Порядок в хаосе. — М.:Наука, 1991.

3.Джонс М.Х. Электроника — практический курс. — М.: Постмаркет, 1999.

4. Дьяконов В. MathCAD 2001: учебный курс. — СПб.: Питер, 2001. - С. 624,

5. Раэевиг В.Д. Система схемотехнического моделирования Micro-Сарб. — М.: Горячая линия —Телеком, 2001. — С. 344.

6. Федоров В.К. Введение в теорию хаотических режимов нелинейных электрических цепей и систем: Учеб. пособие / ОмПИ. Омск, 1992. - С. 44.

СВЕШНИКОВА Елена Юрьевна, преподаватель-стажер кафедры «Электроснабжение промышленных предприятий».

ПОЛИТИКО Дмитрий Михайлович, студент энергетического института, гр. Э-510.

Всероссийский конкурс научных разработок «Лучшее изобретение года»

Обращение организаторов конкурса Уважаемые господа изобретатели!

Всероссийский конкурс научных разработок «Лучшее изобретение года» проводится именно для того, что бы помочь вам в коммерциализации и дальнейшем промышленном внедрении разработок.

Вы можете участвовать в проекте и бороться за главный приз конкурса — победу в одной из специальных номинаций.

Но главное, вы получаете возможностьггублично заявить о своей разработке и привлечь к ней внимание потенциальных инвесторов и покупателей.

Конкурсные заявки будут рассматривать около ста крупнейших предприятий России, ваших потенциальных покупателей.

В оценке конкурсных проектов участвуют представители крупных венчурных и иностранных структур, потенциальных инвесторов.

Кроме того, мы создаем мощное информационное поле вокруг участников конкурса: публикации в газетах, журналах, выступления участников на телевидении, участие в выставках, презентациях и «круглых столах».

Для нас очень важной является возможность сотрудничать с каждым из вас, и со своей стороны мы постараемся максимально задействовать возможности компании высоких технологий «НТ» для того, что бы помочь вам в промышленном внедрении созданных Вами технологий.

Внимание! Участие в конкурсе бесплатное.

Организаторы: компания высоких технологий - "НТ". Соорганизаторами и/или спонсорами могут стать любые организации и частные лица, поддерживающие цели, задачи Конкурса и принимающие долевое участие в его финансировании, организации и проведении.

Срок подачи заявок: С 1 января по 1 ноября 2005 г.

Контактные реквизиты оргкомитета: Эл. почта: [email protected]. Тел./факс: (812) 336-43-43.

, Почтовый адрес: 191167, Санкт-Петербург, А/Я 23.

I По материалам веб-сайта компании высоких технологий - "НТ"

i Надоели баннеры? Вы всегда можете отключить рекламу.