Проблемы социальной гигиены, здравоохранения и истории медицины. 2019; 27(5) DOI: http://dx.doi.org/10.32687/0869-866X-2019-27-5-836-840
Здоровье и общество
© Коллектив авторов,2019 УДК 614.2
Ящук А. Г.Лакман И. А.2, Турутина А. Д.2, Аскаров Р. А.3, Давлетнуров Н. Х.4, Аскарова 3. Ф.1
ВЛИЯНИЕ МЕДИКО-ЭКОНОМИЧЕСКИХ ФАКТОРОВ НА ОБЩУЮ ЗАБОЛЕВАЕМОСТЬ НАСЕЛЕНИЯ РЕСПУБЛИКИ
БАШРКОРТОСТАН
'ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России, 450000, г. Уфа; 2ФГБОУ ВО «Уфимский государственный авиационный технический университет», 450008, г. Уфа; 3ФГБОУ ВО «Российский государственный геологоразведочный университет им. С. Орджоникидзе», ' '7997, г. Москва; 4Управление Роспотребнадзора по Республике Башкортостан, 450054, г. Уфа
Проведена оценка степени воздействия медико-социальных факторов на заболеваемость всего населения по обращаемости в Республике Башкортостан с учетом их пространственно-временного распределения. В качестве исходного материала для исследования использованы материалы базы данных Федерального информационного фонда социально-гигиенического мониторинга Управления Роспотребнадзора и данные официальных статистических форм Территориального органа Федеральной службы государственной статистики по Республике Башкортостан. Рассматривались данные, представляющие собой объединение наблюдений по 54 муниципальным образованиям и 8 городским округам, прослеженные в динамике за 2000—2015 гг. В качестве инструмента исследования был использован панельный регрессионный анализ данных. Полученные результаты моделирования могут быть учтены при разработке адресных программ снижения заболеваемости в конкретном муниципалитете региона.
Ключевые слова: заболеваемость всего населения; кластерный анализ; анализ панельных данных; пространственно-временное распределение.
Для цитирования: Ящук А. Г., Лакман И. А., Турутина А. Д., Аскаров Р. А., Давлетнуров Н. Х., Аскарова З. Ф. Влияние медико-экономических факторов на общую заболеваемость населения Республики Башкортостан. Проблемы социальной гигиены, здравоохранения и истории медицины. 2019;27(5):836—840. DOI: http://dx.doi.org/10.32687/0869-866X-2019-27-5-836-840
Для корреспонденции: Аскарова Загира Фатхулловна, д-р мед. наук, проф. кафедры госпитальной терапии № 2 Башкирского государственного медицинского университета, е-mail: [email protected]
Iashchuk A. G.1, Lakman I. A.2, Turutina A. D.2, Askarov R. A.3, Davletnurov N. Kh.4, Askarova Z. F.1 THE EFFECT OF MEDICAL ECONOMIC FACTORS ON COMMON MORBIDITY OF POPULATION OF THE
REPUBLIC OF BASHKORTOSTAN
1The Federal State Budget Educational Institution of Higher Education "The Bashkir State Medical University" of
Minzdrav of Russia, 450000, Ufa, Russia;
2The Federal State Budget Educational Institution of Higher Education "The Ufa State Aviation Technical University",
45008, Ufa, Russia;
3The Federal State Budget Educational Institution of Higher Education "The S. Ordzhonikidze Russian State Geological Prospecting University", 117997, Moscow, Russia;
4The Board of Rospotrebnadzor in the Republic of Bashkortostan, 450054, Ufa, Russia
The assessment was applied to degree of impact of medical social factors on morbidity of total population according appealability in the Republic of Bashkortostan, considering their spatial temporal distribution. The database of the Federal Information Fund for Social and Hygienic Monitoring (Automated Information System "Social and Hygienic Monitoring") of the Department of Rospotrebnadzor and data of official statistical forms of the Territorial Board of the Federal State Statistics Service in the Republic of Bashkortostan were used as source material for the study. The data was applied in case of presence of combination of observations on 54 municipalities and 8 urban okrugs in the dynamics for 2000—2015. The panel regression analysis of was applied as research tool. The results of modeling can be considered in developing target programs of reducing morbidity in particular municipality of the region. Keywords: morbidity, cluster analysis, panel data analysis, space-time distribution
For citation: Iashchuk A. G., Lakman I. A., Turutina A. D., Askarov R. A., Davletnurov N. H., Askarova Z. F. The effect of medical economic factors on common morbidity of population of the Republic of Bashkortostan. Problemi socialnoi gigieni, zdravookhranenia i istorii meditsini. 2019;27(5):836—840 (In Russ.). DOI: http://dx.doi.org/10.32687/0869-866X-2019-27-5-836-840
For correspondence: Askarova Z. F. doctor of medical sciences, professor of the Chair of Hospital Therapy № 2 of the Federal State Budget Educational Institution of Higher Education "The Bashkir State Medical University". e-mail: [email protected]
Conflict of interests. The authors declare absence of conflict of interests. Acknowledgment. The study had no sponsor support
Received 19.03.2018 Accepted 20.09.2018
Введение
Республика Башкортостан (РБ) — крупный центр нефтехимической и нефтеперерабатывающей промышленности, одна из наиболее экономически развитых республик в составе Российской Федерации (РФ). Территория РБ неоднородна по темпам соци-
ально-экономического развития и уровню жизни населения, которые определяются региональным и экономико-географическим развитием, уровнем развития инфраструктуры и многими другими факторами. Что касается динамики распространенности заболеваний, то в РБ наблюдается ее рост во всех возрастных группах. При этом среднемно-
The problems of social hygiene, public health and history of medicine. 2019; 27(5) DOI: http://dx.doi.org/10.32687/0869-866X-2019-27-5-836-840
голетние показатели как всего населения (177 082,5±3513,2 на 100 тыс. населения) (1=13,1; р<0,000), так и взрослого населения (163 460,2±3986,6%ооо; 1=9,5; р<0,000) превышают аналогичные среднероссийские (151 017,4± ±2710,2%ооо и 137 574,5±2143,2%ооо соответственно). Существует множество исследований, посвященных качественному и количественному выявлению влияния факторов социально-экономического развития территорий на изменения общей и первичной заболеваемости населения [1—8], однако пока недостаточно отражены региональные особенности формирования здоровья населения в период социально-экономических преобр аз ов аний.
Цель данного исследования заключалась в определении на основе статистических данных комплексного влияния некоторых социально-экономических факторов на общую заболеваемость всего населения РБ с учетом их пространственно-временного распределения (за 2000—2015 гг.).
Материалы и методы
Работа выполнена в РБ с численностью населения 4 071 064 человек (на начало 2016 г.). Проведен анализ данных официальной статистики с использованием базы Федерального информационного фонда социально-гигиенического мониторинга Управления Роспотребнадзора по РБ и Территориального органа Федеральной службы государственной статистики по РБ [9] за 2000—2015 гг. по 54 муниципальным образованиям и 8 городским округам. Для многомерного анализа и построения матрицы исследования были включены следующие социально-экономические показатели по каждому муниципальному образованию и городским округам РБ за каждый год исследования в период с 2000 по 2015 г.: ресурсы здравоохранения (численность врачей, среднего медицинского персонала, больничных коек на 10 тыс. населения), среднегодовая численность работников предприятий и организаций, уровень социальной напряженности (уровень безработицы в %, количество правонарушений на 10 тыс. населения), численность пенсионеров, средний размер назначенных пенсий (руб./чел.), номинальная среднемесячная заработная плата (руб.), инвестиции в основной капитал за счет всех источников финансирования (тыс. руб.), уровень демографической нагрузки (доля населения трудоспособного возраста). Все полученные данные были приведены к одинаковой информативности всех рассматриваемых признаков. Для ограничения количества факторов и перехода к безразмерным величинам, позволяющим корректно выявлять причинно-следственные связи, показатели были преобразованы в следующие индексы:
1. Индекс ресурсов здравоохранения ЫШи, рассчитанный как среднее геометрическое численности врачей N0^, численности среднего медицинского персонала NN и больничных коек ИБу на 10 тыс. населения, где индекс г — номер муниципального
Health and Society
образования, t — индекс рассматриваемого периода:
MF,t = 3jND,t ■ NN,t ■ MB,t. (1)
2. Индекс средних доходов AIit, рассчитанный как средневзвешенное средней зарплаты AWit и средней пенсии APit, где в качестве весов рассматривались отношения числа работников NEit и числа пенсионеров NPit к общей численности населения PPit соответственно, i — номер муниципального образования , t — индекс рассматриваемого периода:
Ailt = AWfNEEt + APlt.NP
(2)
Для учета пространственно-временной структуры общей заболеваемости населения и учета влияния на нее различных уровней социально-экономических показателей по муниципальным образованиям был применен панельный регрессионный анализ данных. Соответствующий инструмент статистического моделирования позволяет осуществить комплексный подход к изучению заболеваемости, а также учесть ненаблюдаемые индивидуальные характеристики муниципальных образований за счет специфических эффектов. Для панельного анализа необходима однородная совокупность исследуемых объектов, вследствие чего потребовалось сгруппировать муниципальные образования в однородные группы, т. е. провести кластеризацию районов РБ. Полученные интегральные показатели по районам РБ были кластеризованы в два этапа: на первом этапе проведена иерархическая кластеризация, на втором этапе применен метод К-средних. После тщательного анализа источников, описывающих исследования, воздействие различных социально-экономических и демографических факторов на заболеваемость, а также предварительного построения моделей различной спецификации и тестирования факторов на статистическую значимость были отобраны следующие предикторы, измеряющие комплексное влияние.
Для оценки влияния обеспеченности медицинскими ресурсами на изменение показателя заболеваемости в г-м муниципальном образовании в 1-й период использовался индекс Ы¥и, рассчитанный по формуле (1).
Индекс средних доходов Л1и, рассчитанный по формуле (2).
В качестве фактора, отвечающего за оценку влияния демографической нагрузки на изменение показателей заболеваемости в конкретном г-м муниципалитете в ^-й период, рассматривалась доля населения трудоспособного возраста ЛШ й (%).
В качестве индикатора социально-экономического развития г-го района республики в ^-й период рассматривался показатель инвестиций в основной капитал за счет всех источников финансирования данного муниципалитета Ыуи.
В качестве детерминанты социальной среды г-го района в период t, бесспорно оказывающей влияние на общую заболеваемость населения, рассматривал-
Проблемы социальной гигиены, здравоохранения и истории медицины. 2019; 27(5)
DOI: Ь11р://ах.аоьо^/10.32687/0869-866Х-2019-27-5-836-840 838
Здоровье и общество
ся уровень криминализации, выраженный показателем количества правонарушений на 10 тыс. населения Сти.
Для оценки комплексного влияния всех перечисленных факторов на изменение общей заболеваемости в муниципальных образованиях в качестве функциональной зависимости, измеряющей связь, была выбрана степенная зависимость, позволяющая учесть особенности закона убывающей эффективности. В результате общий вид модели имеет вид:
Л 01 ^ ^ в4 а1 ъ и„
ОБ,, = еЛ-МР„1 -Л1,,2• ЛtWtt 3 • 1пу„ • Ст„ • г г -г ,
где индекс — номер муниципального образования, t — индекс рассматриваемого периода, в г и у( — индивидуальные и временные эффекты соответственно; и и — остатки модели, для которых предполагается, что они независимые нормально распределенные случайные величины с нулевым математическим ожиданием и различными для разных муниципальных образований дисперсиями. В качестве результативной переменной ОБи была выбрана общая заболеваемость муниципального образования, в качестве предикторов — перечисленные ранее факторы М¥и, Л1и, Л1Ш1пуи, Сти, а г и у( — индивидуальные константы, характерные для каждого г-го муниципалитета и каждого периода времени t соответственно, коэффициенты рь ..., в5 — коэффициенты модели , подлежащие оценке панельным выполнимым методом наименьших квадратов.
Результаты исследования
Результаты предварительного ранжирования показали, что общая заболеваемость всего населения за 2000—2015 гг. выросла в 29 муниципальных образованиях республики, в том числе в 1,6—2,7 раза в Бураевском, Кигинском, Янаульском, Бурзянском, Илишевском, Стерлибашевском, Хайбуллинском, Федоровском, Гафурийском, Салаватском, Уфимском, Калтасинском. По среднемноголетним данным общая заболеваемость выше республиканской отмечена в 19 муниципальных районах республики, в том числе в 1,2—1,4 раза в Кигинском, Куюрга-зинском, Хайбуллинском, Дюртюлинском районах, г. Кумертау, г. Дюртюли. В результате проведенного кластерного анализа методом К-средних по всем рассматриваемым показателям были сформированы 3 кластера из муниципальных образований РБ, образующих в многомерном пространстве близкие по значению признаки общей заболеваемости. Однако в дальнейшем при построении панельных регрессионных моделей по каждому кластеру содержание объектов в каждом классе подверглось незначительной коррекции. В результате в первом кластере оказалось 16 муниципальных образований и городских округов, во втором и третьем кластерах — 14 и 31 соответственно. Следует отметить, что г. Сибай не попал ни в один из определенных кластеров. Это означает, что по данному городскому округу следует рассматривать отдельную модель
Оценки коэффициентов эластичности, рассчитанные для каждого кластера по каждому показателю
Показатель моделирования Коэффициент эластичности
первый кластер второй кластер третий кластер
Индекс ресурсов здравоохранения -0,07 -0,14 -0,04
Индекс средних доходов 0,15 0,13 0,14
Инвестиции в основной капитал -0,04 -0,08 -0,07
Уровень криминализации 0,05 0,08 0,15
Доля населения трудоспособного возраста -0,08
заболеваемости, характерную только для данной территории. Примененные тесты Хаусмана и Бро-ша—Погана при уровне значимости р<0,05 позволили определиться со спецификацией панельных моделей: для всех трех кластеров статистически значимыми моделями (р<0,01) оказались модели с фиксированными эффектами по муниципальным образованиям. Показатели качества оценки модели для всех трех кластеров соответственно: скорректированный коэффициент детерминации, отвечающий за долю объяснения факторами дисперсии показателя общей заболеваемости — 0,963; 0,946 и 0,83; средняя ошибка аппроксимации Ар — 2,8; 3,03 и 5,1%.
Отметим, что фактор, описывающий демографическую нагрузку на взрослое население и выраженный как доля населения трудоспособного возраста, оказался статистически значимым только для муниципалитетов, образующих третий кластер. Так, показатель, измеряющий ресурсы системы здравоохранения, оказался статистически значимым для уменьшения заболеваемости во всех муниципалитетах республики. Анализ полученных результатов моделирования удобно проводить на основе средних коэффициентов эластичности, показывающих предельное влияние в процентах каждого фактора на общую заболеваемость в муниципалитете. Оценки коэффициентов эластичности, рассчитанные для каждого кластера по каждому показателю, представлены в таблице.
Существеннее всего ресурсы системы здравоохранения сказываются на районах, относящихся ко второму кластеру. Так, если нарастить показатель медицинских ресурсов на 100%, это приведет к снижению общей заболеваемости на территориях данного кластера на 14%. Для муниципалитетов первого и третьего кластеров этот показатель снижает заболеваемость лишь на 7 и 4% соответственно. Увеличение инвестиций в основной капитал в муниципалитетах приведет к снижению заболеваемости в текущий период на 4, 8 и 7 % для первого, второго и третьего кластеров соответственно. Социальная среда населенного пункта является фактором, также сказывающимся на показателе общей заболеваемости. Так, уровень криминализации общества, оцениваемый по показателю количества правонарушений на 10 тыс. населения, оказывает положительное влияние на заболеваемость по территории:
The problems of social hygiene, public health and history of medicine. 2019; 27(5) 839 DOI: http://dx.doi.org/10.32687/0869-866X-2019-27-5-836-840
Health and Society
для первого кластера на 5%, для второго кластера на 7% и для муниципалитетов третьего кластера на 15%.
Самым противоречивым результатом проведенного моделирования является то, что рост доходов населения является фактором, положительно сказывающимся на показателе общей заболеваемости. Так, при увеличении средних ежегодных доходов населения на 100% следует ожидать увеличения заболеваемости в первом кластере на 15%, во втором кластере на 13% и в третьем кластере на 14% соответственно. Несмотря на противоречивость данного результата, он достаточно легко объясним: увеличение доходов населения не приводит к снижению общей заболеваемости, а обусловливает изменение ее структуры. При увеличении доходов снижается доля инфекционных и сердечно-сосудистых заболеваний, но в связи с увеличением продолжительности жизни, напротив, повышается доля психоневрологических и онкологических заболеваний [10]. Демографический фактор, выраженный как доля населения трудоспособного возраста, снижает общую заболеваемость на 8%, но только для муниципалитетов, образующих третий кластер. В третий кластер попали города и муниципалитеты с наиболее развитой социальной инфраструктурой, относящиеся в том числе к промышленным центрам республики. Общее количество жителей, проживающих в муниципальных образования и городах третьего кластера, составляет 2048,7 тыс.
Заключение
В результате проведенного анализа с использованием средств панельного моделирования на данных распространенности заболеваний по РБ было доказано, что существует прямое влияние на уровень общей заболеваемости всего населения ресурсов системы здравоохранения и инвестиций в основной капитал. Напротив, показатель, определяющий детерминанту социальной среды и выраженный как количество правонарушений на 10 тыс. населения муниципалитета, повышает общую заболеваемость. Противоречивые результаты были получены по изучению влияния дохода на общую заболеваемость: индекс среднедушевого дохода населения положительно сказывается на увеличении показателя общей заболеваемости. Демографический фактор, выраженный в виде доли трудоспособного населения, снижает общую заболеваемость только для муниципалитетов промышленно развитого третьего кластера Республики Башкортостан.
Таким образом, применение методов панельного регрессионного анализа позволяет объективно обосновывать приоритетные факторы среды обитания, влияющие на заболеваемость населения в регионе . В связи с этим целесообразно использовать панельный регрессионный анализ при разработке адресных территориальных программ, направленных на обеспечение санитарно-эпидемиологического благополучия населения, а также для прогнозирования ва-
риантов его улучшения и принятия соответствующих управленческих решений.
Исследование не имело спонсорской поддержки. Авторы заявляют об отсутствии конфликта интересов.
ЛИТЕРАТУРА
1. Коровин С. А., Кулеш Д. В., Хаптанова В. А., Ильин В. П., Лебедева Л. Н., Черкашина А. Г. Динамика показателей заболеваемости населения г. Иркутска в период социально-экономических реформ. Бюллетень ВСНЦ СО РАМН. 2012;(5):372—4.
2. Ведышева Т. В. Комплексная оценка факторов среды обитания и здоровья населения (на примере городов Иркутской обл.) . Иркутск; 2008.
3. Корчевский А. А. Разработка научных основ системного анализа и прогнозирования воздействия факторов окружающей среды на интегральные демографические показатели: на примере Республики Казахстан. М.; 2007.
4. Максименко З. В., Розанова Л. Ф. Моделирование макроэкономического равновесия и динамики. Учебное пособие. Уфа: Уфимский гос. авиационный технический ун-т; 2008.
5. Козлов И. Д., Гракович А. А., Щербина О. Ф. Пространственно-временная вариабельность показателя общей смертности в республике Беларусь: роль организационно-медицинских и медико-биологических факторов. Вопросы организации и информатизации здравоохранения. 2014;1(78):68—76 .
6. Стародубов В. И., Сон И. М., Леонов С. А., Погонин А. В. Оценка влияния модернизации здравоохранения на динамику заболеваемости взрослого населения страны. Менеджер здравоохранения. 2013;(5):6—17.
7. Буркин М. М., Молчанова Е. В. Моделирование влияния индикаторов социального стресса на демографические процессы в регионах Российской Федерации. Журнал неврологии и психиатрии им. C. C. Корсакова. 2017;(1):43—9.
8. Prados-Torres A., Poblador-Plou B., Calderón-Larrañaga A., Gimeno-Feliu L. A., González-Rubio F., Poncel-Falcó A. Multimorbidity Patterns in Primary Care: Interactions among Chronic Diseases Using Factor Analysis. PLoS ONE. 2012;(2):e32190. doi: 10.1371/journal.pone.0032190
9. Социально-экономическое положение муниципальных районов и городских округов Республики Башкортостан. Стат. cбор-ник. Уфа: Башкортостанстат; 2000—2016.
10. Беленков Ю. Н., Оганов Р. Г. Кардиология: Национальное руководство. М.: ГЭОТАР-Медиа; 2012.
Поступила 19.03.2018 Принята в печать 20.09.2018
REFERENCES
1. Korovin S. A., Kulesh D. V., Khaptanova V. A., Il'in V. P., Lebedeva L. N., Cherkashina A. G. Dynamics of morbidity rates in the city of Irkutsk in the period of socio-economic reforms. Bulletin VSSC of the RAMS. 2012;(5):372—4 (in Russian).
2. Vedysheva T. V. Comprehensive assessment of environmental factors and population health (on the example of the cities of the Irkutsk region) [Kompleksnaya otsenka faktorov sredy obitaniya i zdorovya naseleniya (na primere gorodov Irkutskoy obl.)]. Irkutsk; 2008 (in Russian).
3. Korchevskiy A. A. Development of scientific bases of the system analysis and forecasting of influence of environmental factors on integral demographic indicators (on the example of the Republic of Kazakhstan) [Razrabotka nauchnykh osnov sistemnogo analiza i prognozirovaniya vozdeystviya faktorov okruzhayushchey sredy na in-tegralnye demograficheskie pokazateli: na primere Respubliki Kazakhstan]. Moscow; 2007 (in Russian).
4. Maksimenko Z. V., Rozanova L. F. Modeling of macroeconomic equilibrium and dynamics. Tutorial [Modelirovanie makroekonom-icheskogo ravnovesiya i dinamiki. Uchebnoe posobie]. Ufa: Ufa State Aviation Technical University; 2008 (in Russian).
5. Kozlov I. D., Grakovich A. A., Shcherbina O. F. Spatial-temporal variability of the overall mortality rate in the Republic of Belarus: the role of organizational, medical and biomedical factors. The organization and informatization of public health. Voprosy organizatsii i in-formatizatsii zdravookhraneniya. 2014;1(78):68—76 (in Russian).
6. Starodubov V. I., Son I. M., Leonov S. A., Pogonin A. V. Evaluation of the impact of health modernization on the dynamics of the incidence of the adult population of the country. Menedzher zdravookhraneniya. 2013;(5):6—17 (in Russian).
Проблемы социальной гигиены, здравоохранения и истории медицины. 2019; 27(5)
DOI: Ь11р://ах.аоьо^/10.32687/0869-866Х-2019-27-5-836-840 840
Здоровье и общество
7. Burkin M. M., Molchanova E. V. Modeling the impact of social stress indicators on demographic processes in the regions of the Russian Federation. Journal nevrologii i psihiatrii im. S. S.Korsakova. 2017;(1):43—9 (in Russian).
8. Prados-Torres A., Poblador-Plou B., Calderón-Larrañaga A., Gi-meno-Feliu L. A., González-Rubio F., Poncel-Falcó A. Multimorbid-ity Patterns in Primary Care: Interactions among Chronic Diseases Using Factor Analysis. PLoS ONE. 2012;7(2):e32190. doi: 10.1371/ journal.pone.0032190
9. Social and economic situation of municipal districts and urban districts of the Republic of Bashkortostan: Statistical Digest [Sotsialno-ekonomicheskoe polozhenie munitsipalnykh rayonov i gorodskikh okrugov Respubliki Bashkortostan: Statisticheskiy Sbornik]. Ufa: Bash-kortostanstat; 2000—2016 (in Russian).
10. Belenkov Yu. N., Oganov R. G. Cardiology. National Guidelance [Cardiologiya. Natsionalnoe rukovodstvo]. Moscow: GEOTAR-Media; 2012 (in Russian).