Научная статья на тему 'Вихревые структуры турбулентных потоков и ихмоделирование'

Вихревые структуры турбулентных потоков и ихмоделирование Текст научной статьи по специальности «Механика и машиностроение»

CC BY
523
98
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МОДЕЛЬ / ТУРБУЛЕНТНОСТЬ / ПАРАМЕТРЫ / ВИХРЕВОЙ ПОТОК / MODEL / TURBULENCE PARAMETERS / VORTEX FLOW

Аннотация научной статьи по механике и машиностроению, автор научной работы — Краева Екатерина Михайловна, Масич Игорьсергеевич

Представлен анализ основных параметров вихревых турбулентных потоков в поле центробежных сил. Получены зависимости математического моделирования, позволяющие проводить расчеты вихревых турбулентных структур

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

VORTEX STRUCTURE OFTURBULENT FLOWSAND THEIR SIMULATION

The work presents analysis of the basic parameters of vortex turbulence in the field of centrifugal forces. The dependencies of mathematical modeling which allow to calculate turbulent vortex structures, are obtained.

Текст научной работы на тему «Вихревые структуры турбулентных потоков и ихмоделирование»

E. V. Kochura

MACRO PROGRAMS ENGINEERING OF INTEGRATED CONTROL BY SPACE VEHICLES

The direction of development and perfection of macro programs engineering process of integrated control for the purpose of reduction of expenditures of labor and influence decrease «the human factor» is defined. The basic functional requirements to tool design tools of macro programs of an off-line control are formulated by space vehicles.

Keywords: macro programs of integrated control, tool design tools, functional requirements.

© Kouypa E. B., 2011

УДК 621.45-181.4:629.78

Е. М. Краева, И. С. Масич

ВИХРЕВЫЕ СТРУКТУРЫ ТУРБУЛЕНТНЫХ ПОТОКОВ И ИХ МОДЕЛИРОВАНИЕ*

Представлен анализ основных параметров вихревых турбулентных потоков в поле центробежных сил. Получены зависимости математического моделирования, позволяющие проводить расчеты вихревых турбулентных структур

Ключевые слова: модель, турбулентность, параметры, вихревой поток.

Модель течения при турбулентном обтекании свободной плоской струей впадины впервые была исследована Р. Л. Хагеном и А. И. Данаком в 1966 г. Физическая модель обтекания прямоугольной впадины в виде отрывного течения с образованием вихревой зоны представлена на рис. 1.

Фотографии из работы [1] по визуализации течения при обтекании прямоугольной впадины различной ширины «Ь» и глубины «И» представлены на рис. 2. Линии тока визуализируются при помощи алюминиевого порошка в глицерине. По мере уменьшения ширины канала под первичным вихрем начинает формироваться вторичный и т. д. При увеличении ширины канала наоборот формируются последовательно после первого второй вихрь, параметры которых определяются соотношением высоты впадины к ширине.

В центробежных рабочих колесах полуоткрытого и открытого типов существует неравномерность потока и вихревое взаимодействие по радиусу основных потоков жидкости и в боковой пазухе насоса. Лопатки передают энергию потоку жидкости, часть которого в боковой пазухе движется с отставанием от основного. В результате образуется течение как в канале за плохообтекаемым телом, характеризующимся возникновением возвратных токов и вихрей [2]. Этот процесс определяется отношением ширины к длине канала, толщиной пограничного слоя на стенках и относительной высотой лопатки. Взаимодействие потоков в пазухе и каналах приводит к появлению циркуляционного течения в зоне за лопаткой.

Картина течения между вращающимся РК с торцовыми лопатками и гладким корпусом довольно сложна.

Рис. 1. Физическая модель течения: а - свободная плоская струя; б - впадина; 1 - зона набегающего потока; 2 - границы зон смешения; 3 - зона циркуляционности вихревого течения

* Работа выполнена при финансовой поддержке гранта ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг. ГК № П231 от 23.04.2010.

Жидкость, находящаяся в области пазов, подвергается непосредственному силовому воздействию лопаток. Жидкость в осевом зазоре закручивается за счет сил трения и проскальзывает относительно лопаток РК. Таким образом на одном и том же радиусе частицы жидкости в каналах и осевом зазоре движутся с различной скоростью, что приводит к относительному перемещению их в радиальном и осевом направлениях. В области лопаток имеется радиальное расходное течение в направлении к периферии.

Поскольку коэффициент закрутки потока ф < 1, то всегда имеет место относительное движение жидкости и лопаток РК, что непременно приводит к образованию в каналах РК циркуляционной зоны, как следствие обтекания потоком впадин.

Одной из характеристик вихревой зоны в канале вращающегося РК является отношение окружной скорости к скорости набегающего потока ^ на внешней границе зоны вихря

и — Ц- -11 -

в w {к

(1)

При исследовании цилиндрической гидромуфты на воде в работе [3] отмечались ярко выраженные вихревые структуры во впадинах вращающегося цилиндра. Анализ этих экспериментов по определению значения Цв дает основание принять его для наших исследований равным

0,3. Такое же значение Ц = 0,3 для неподвижного канала приведено в работе [2]. Характерная картина изменения

окружной скорости по зазору и впадины (для к — 1)пред-

Ь

ставлена на рис. 3, откуда видно наличие трех зон течения. Зона потока 1, обтекающего канал, зона смешения 2 и зона вихревого течения 3 в области канала, скорость в котором постоянна [4].

С целью уточнения основных особенностей гидродинамики в каналах полуоткрытого РК проведен ряд экспериментов, в том числе и по визуализации течения в таких колесах.

Фотографирование наклеенных флюгерков на стенке между корпусом и открытыми лопатками РК при испытании в широком диапазоне изменения режимных параметров насоса (V — 0...1,5Кном) и изменении осевого за-

Ь1к~1 Ь / ¡1 = 0,5

Рис. 2. Характер течения при обтекании прямоугольной впадины различной ширины [1]

зора от 0,5 до 3 мм показало, что для различных радиусов соблюдается постоянство отношения радиальной составляющей скорости от окружной: Уя/и = фя .Это дает основание выразить скорость радиального течения в осевом зазоре от периферии РК к центру, с учетом коэффициента скольжения потока фл в окружном направлении относительно РК, в виде

^ = и Фя = иКя Фл, (2)

где Кя - экспериментальная константа, Кя = 0,45 .

осевом зазоре а1 закручивается за счет сил трения и проскальзывает относительно торцев лопаток РК. Следовательно, на одном и том же радиусе частицы жидкости в канале и осевом зазоре а1 движутся с различной окружной скоростью, что приводит к их относительному перемещению в радиальном и осевом направлениях.

Таким образом, как на входном участке РК с полуоткрытыми лопатками, так и по его радиусу не вся проточная часть каналов колеса заполнена потоком, движущимся от входа в рабочее колесо до выхода. Частично она заполнена потоком обратного течения. Закрученные в сторону вращения РК обратные токи перетекают в соседний канал на меньший радиус и увлекаются обратно в проточную часть, при этом образуется вихревая зона, жидкость в которой не участвует в расходном течении через насос. С увеличением подачи через насос при оз = const параметры вихревой зоны снижаются, что выражается уменьшением радиальной закрутки потока.

Границы зон

Рис. 3. Экспериментальные и теоретические профили окружной скорости в области канала по радиусу вихревой зоны: 1 - зона потока в осевом зазоре; 2 - зона смешения;

3 - зона вихревого течения; - опытные точки

В дополнение к опытам по визуализации течения в межлопаточных каналах для уточнения структуры потока в РК полуоткрытого типа был проведен анализ опытов [4], в которых поля давления измерялись по радиусу РК. Так как осевая составляющая скорости в осевом зазоре очень мала, по сравнению с другими ее компонентами, то тип насадка выбирался с учетом измерения не полной скорости, а только суммы ее окружной и радиальной составляющих.

Измерение параметров потока в осевом зазоре с лопаточной стороны РК проводилось дифманометром типа ДТ-50. При испытании одна полость дифманометра соединялась с трубкой отбора статического давления, вторая - с трубкой полного давления, расположенной на том же радиусе. Трубку полного давления можно было устанавливать в разных направлениях и перемещать в осевом зазоре. При измерении она устанавливалась в направлении максимального значения перепада давления и по известному углу наклона определялась величина радиальной составляющей скорости потока. Обработка полученных данных показала, что для различных радиусов РК соблюдается постоянство отношения радиальной составляющей скорости к окружной.

На основании исследований по визуализации потока данных работы [4] и измерения его параметров в зазоре между вращающимся РК с открытыми торцами лопаток и гладким корпусом можно представить модель струйновихревого обтекания каналов РК (рис. 4). Потокжидкости в межлопаточном канале такого РК подвергается непосредственному силовому воздействию лопаток. Жидкость в

Рис. 4. Схема турбулентного течения потока в канале при обтекании лопатки РК: 1 - зона набегающего потока осевого зазора; 2 - границы зон смешения; 3 - зона циркуляционного течения в канале колеса

В окружном направлении движение потока жидкости в зазоре а относительно лопаток приводит к образованию в каналах РК циркуляционной зоны вследствие обтекания потоком впадин. Известно, что при течении жидкости в канале за плохо обтекаемым телом (в нашем случае -лопатки) возникают отрывные течения, которые характеризуются образованием обратных токов и вихрей. Этот процесс в большей мере определяется отношением ширины лопатки Ь к расстоянию между ними d = Ї - 8л, толщиной пограничного слоя на стенке перед каналом и относительной высотой канала. Взаимодействие между струей и жидкостью в каналах РК приводит к появлению циркуляционного течения в канале за лопаткой.

В сечении при у = 0 поток за счет его поджатия в осевом зазоре а равномерен, и вследствие автомодельности турбулентных струй параметры циркуляционной

и

а

У

зоны не зависят от числа Яе [2]. Тогда для зоны смешения 2 положение ее границы относительно оси Х запишем в виде

Ф = ±сКе-Кк. ах ши + шн

(3)

где С -опытный коэффициент, С = 0,22...0,27;

= (и - и ж) = и (1 -Юж). (4)

Используя основные закономерности для свободных плоских струй, с учетом известных опытов о деформации любого неравномерного профиля и его перехода в струйный на очень малом расстоянии от кромки лопатки [2], получим границы для различных зон течения при обтекании межлопаточного канала конечной длины.

Для симметричной относительно оси Хграницы зоны смешения 2, разделяющей течение в канале от потока в зазоре а1, положение ее можно определить по выражению [5]

7 = ±0,088 29х. (5)

Циркуляционную зону в канале РК можно условно разделить на две области: интенсивного вращательного движения по окружности с радиусом г , и циркуляционного движения жидкости по траекториям эллиптического характера. На основании изложенного выше с учетом уравнения (5) величина радиуса вихревой зоны интенсивного вращательного движения определится по уравнению:

гв= 0,519 (к-0,088296). (6)

Одной из характеристик вихревой зоны является соотношение окружной скорости и скорости набегающего потока W на внешней границе зоны вихря

^в = WL = / (-

К \а _

Аналитический расчет величины Кв по данным [2] для каналов РК дает Кв = 0,22. Однако экспериментальные данные, представленные в той же работе, говорят о существенном отличии расчетного значения Кв от опытного в сторону увеличения последнего, что связано с влиянием пограничных слоев. Определение экспериментального значения Кв в работах [3] дает основание принять его для нашего исследования равным 0,3. Характерна картина изменения скорости потока по осевому зазору а и межлопаточному каналу РК. На рис. 4 уточняется в форме трех зон течения: зоны потока 1, обтекающего канал, зоны смешения 2 и зоны кругового вихревого течения 3 в области канала РК.

Тогда выражение для угловой скорости вращения вихря в каналах РК на радиусе Я с учетом принятого значения Кв = 0,3 и зависимости от выражения (4) запишется в виде

Кв(1 -Юж) юЯ

Кв(1 -Юж) юЯ

(7)

гв 0,519(6-0,088 29й)

Экспериментальные данные в целом подтверждают принятую модель расчета каналов полуоткрытого РК в виде струйно-вихревого трехзонного течения, что позволяет рассчитать его основные параметры.

На характер и структуру течения в каналах РК определяющее влияние в основном оказывают параметры зоны

смешения и вихревого течения. На основании данных работ [1; 3; 5] следует отметить, что при обтекании квадратного канала для соотношения Ъ/й = 1 имеется один устойчивый вихрь, вращающийся почти как твердое тело. При дальнейшем увеличении глубины канала до Ъ/й = 2 наблюдаются две вихревые ячейки, расположенные одна над другой и имеющие противоположное направление вращения. Минимизация гидравлических потерь в каналах центробежного РК не допускает многовихревого течения, как по глубине, так и по ширине канала. Исходя из этого условия и принимая, что средние значения скорости в конце участка й1 прямого и обратного токов циркуляционной зоны равны (см. рис. 4), согласно решению Г. Н. Абрамовича [2] для участка, в котором энергия обратного одновихревого тока достигает максимума, получим = (4,75 ^ 5,2)6 . (8)

По условию приближенного равенства осредненных значений энергии в прямом и обратном токах в сечении х = й1 получим размеры второго участка длиной :

= (0,980...0,852)Ъ . (9)

Таким образом, полная зона глубокого канала одновихревого течения имеет вид

а = а + а2 = (6,18...6,05)Ъ. (10)

Течение в мелком канале характеризуется вытянутой границей зоны смешения и ее присоединением к поверхности канала в точке х = а1, тогда й1 = 11,366 и, с учетом образования вихря на напорной стороне лопатки РК при перетекании струи на тыльную, получим наибольшее значение величины канала:

ати = (11,36 +1,14)Ъ = 12,56 . (11)

Минимально возможная величина канала РК на основании (6) рассчитывается по формуле

атт = 1,14236 . (12)

Минимальную ширину лопатки на выходе из РК находим по условию сохранения ядра потока в межлопа-точном канале, что одновременно будет и условием применимости теории к расчету каналов центробежного РК.

Критическое значение величины имеет вид

в =--------. При этом зона ядра потока совпадает с кон-

Ъ + а1

цом первого участка х = й1, а ширина лопатки, при которой ядро вихревого потока сохраняется и не выходит за пределы первого участка циркуляционной зоны при условии вкр = 0,635 [2], составит Ъ > 1,74а1.

Полученные расчетные значения вихревых структур турбулентного потока позволили оптимизировать расчетную модель при проектировании высокооборотных насосных агрегатов.

Библиографические ссылки

1. Альбом течений жидкости и газа: пер. с англ. / сост. М. Ван-Дайк. М.: Мир, 1986.

2. Абрамович Г. Н. Теория турбулентных струй. М. : Физматгиз, 1960.

3. Левин А. А., Перельман Р. Г. Исследование цилиндрической гидромуфты // Исследование агрегатов, рабо-

тающих на щелочных металлах, труды МАИ, Вып. 193. М. :

Машиностроение, 1969. С. 57-102.

4. Краев М. В., Овсянников Б. В., Шапиро А. С. Гидродинамические уплотнения высокооборотных валов. М. :

Машиностроение. 1976.

E. M. Kraeva, I. S. Masich VORTEX STRUCTURE OF TURBULENT FLOWS AND THEIR SIMULATION

5. Хаген Р. Л., Данак А. М. Перенос импульса при турбулентном отрывном обтекании прямоугольной впадины // Тр. Амер. о-ва инженеров-механиков. Сер. Д, Прикладная механика. 1966.№3.С. 189-195.

The work presents analysis of the basic parameters of vortex turbulence in the field of centrifugal forces. The dependencies of mathematical modeling which allow to calculate turbulent vortex structures, are obtained.

Keywords: model, turbulence parameters, vortex flow.

© KpaeBa E. M., Macm H. C., 2011

УДК 629.735.017

А. В. Любимцев

АНАЛИЗ БЕЗОПАСНОСТИ ГИДРАВЛИЧЕСКОЙ СИСТЕМЫ САМОЛЕТА ТУ-154М ПО РЕЗУЛЬТАТАМ ВЫДЕЛЕНИЯ ПРЕДВЕСТНИКОВ АВАРИИ

Проанализированы статистические эксплуатационные данные по отказам и инцидентам гидравлической системы самолётного парка Ту-154, по ним определены рейтинги нарушения, толерантная граница перехода нарушения в аварию и выбросы как предвестники аварии.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ключевые слова: предвестники аварии, безопасность, летная эксплуатация, рейтинги нарушений, отказы.

В настоящее время общепризнанно, что безопасность сложных технических систем является одним из важнейших факторов неценовой конкурентоспособности. На стадии эксплуатации технических систем вопросы вероятностного анализа безопасности не получают достаточно полного отражения в теории и практике обеспечения безопасности. Одно из следствий такого положения - разрыв между процессами управления проектированием и эксплуатацией, выраженный, в частности, в использовании различных несовместимых показателей безопасности. Тем самым нарушается системный подход сквозного управления качеством продукции, охватывающий все стадии жизненного цикла потенциально опасного объекта. Роль вероятностного статистического анализа на стадии эксплуатации иная, чем на стадии проектирования. Это объясняется тем, что поскольку объект уже изготовлен, то анализ направлен на выяснение того, отвечает он требованиям безопасности или нет. Если объект не отвечает установленным требованиям к безопасности, то очень важно выявить этот факт достаточно быстро, пока не произошла авария. В этом случае необходима экстренная разработка корректирующих мер, направленных на повышение безопасности. В условиях ограниченности ресурсов, корректирующие меры должны быть чётко обоснованны, чтобы не допустить распыления ресурсов. Поэтому разработка научных подходов оперативного управления безопасностью и методологии управления риском аварий с использованием вероятностного анали-

за в процессе эксплуатации представляются актуальными проблемами.

В работе рассматриваются методы обеспечения безотказности сложных технических систем. Основное внимание уделяется системным методам качественного анализа безотказности, таким как «дерево отказов», методу анализа характера и последствий потенциальных отказов, обнаружению предотказного состояния и предотвращению отказов в эксплуатации. Рассмотрены современные методы вероятностного расчета риска.

Однако применение соответствующих методов в практике анализа систем недостаточно обосновано. Поэтому возникла необходимость выполнения исследований, направленных на разработку методики применения указанных методов на практике и выполнения риск-анализа систем самолётов.

Как правило, для анализа безопасности на стадии эксплуатации оперируют обычными, традиционно используемыми показателями надежности, такими как вероятность безотказной работы, интенсивность отказов, средняя наработка на отказ, параметр потока отказов. Для полной и корректной характеристики безопасности в эксплуатации их явно недостаточно, так как они не определяют тяжесть нарушений в эксплуатации. Между тем степень возможной близости нарушения к аварии является важной характеристикой нарушения. Это обусловливает целесообразность применения набора показателей, характеризующих тяжесть нарушений, и соответствующих

i Надоели баннеры? Вы всегда можете отключить рекламу.