УДК 621.317
Н. В. Громков
УСЛОВИЯ МИНИМИЗАЦИИ ПОРОГА ЧУВСТВИТЕЛЬНОСТИ УСИЛИТЕЛЕЙ ПОСТОЯННОГО ТОКА С ПЕРИОДИЧЕСКОЙ КОРРЕКЦИЕЙ
Рассматриваются вопросы минимизации порога чувствительности усилителей постоянного тока, применяемых наиболее часто в различных преобразователях информативных сигналов малого уровня, путем введения периодической коррекции погрешности нуля на основе предложенной автором математической модели и методики анализа влияния собственных шумов элементов схемы корректирующего канала.
При разработке преобразователей информативных сигналов малого уровня с датчиков различных физических величин [1], выполненных на базе операционных усилителей (ОУ) или усилителей постоянного тока (УПТ), в частотно-временные сигналы появляется естественное желание минимизации порога чувствительности данных преобразователей и уменьшения влияния различных шумовых составляющих сигнала, связанных с действием внешних дестабилизирующих факторов (температуры, вибраций, нестабильности напряжения питания и др.) [2], а также уменьшения влияния собственных шумов элементов схемы. Одним из способов устранения данной проблемы является введение корректирующего канала.
В работе [3] автором были предложены математическая модель и методика анализа влияния собственных шумов элементов схемы корректирующего канала с периодической коррекцией погрешности нуля УПТ на выходной сигнал измерительных преобразователей, с помощью которых можно минимизировать порог чувствительности УПТ данного типа и снизить его примерно в 100 раз.
Воспользовавшись данной методикой, несложно определить соответствующие выражения для дисперсий составляющих шума. В самом общем случае задача минимизации порога чувствительности может быть решена как задача оптимизации (минимизации) функции, представляющей собой сумму всех приведенных в указанной выше работе дисперсий. При этом оптимизацию требуется осуществлять по следующим параметрам: GJ - спектральной плотности белого шума источника входного тока ОУ; GE - спектральной
плотности белого шума источника смещения нуля ОУ; ту - постоянной времени ОУ (или постоянной времени корректирующего канала); Я1 и Я2 - размерам сопротивлений в цепи обратной связи ОУ, определяющим коэффициент передачи усилителя; С - размеру запоминающей емкости; Я - сопротивлению в цепи заряда запоминающей емкости С; Т1 и Т2 - параметрам управляющего генератора импульсов ГИ; юс = 1/т - частоте среза фликкер-шума.
В настоящей работе исследованы условия минимизации порога чувствительности с учетом того, что значения большинства из перечисленных выше параметров в реальных схемах изменяются в узких пределах, и, кроме того, соотношения между параметрами в формулах, приведенных в табл. 1, остаются постоянными.
Как показали исследования, в наименьшей степени от значений параметров схемы зависит составляющая случайной погрешности, обусловленная нескомпенсированной частью фликкер-шума ОУ, которая характеризуется дисперсией ^2ф.ш{Едр}. Значения нормированной дисперсии ^2ф.ш{Едр} при т =10-4 с соответствуют характерному значению частоты среза фликкер-шума для ОУ порядка 1 кГц.
Вполне естественно потребовать выполнения условия, чтобы составляющие случайной погрешности, обусловленные влиянием фликкер-шума и белого шума в режиме запоминания, и составляющая, обусловленная влиянием белого шума в режиме хранения, не превышали рассмотренной выше случайной погрешности.
Нетрудно показать, что при реальных значениях параметров схемы указанное условие легко выполняется. Значения нормированной дисперсии:
^2б.ш {Едр } = ^*2б.ш {Едр } / ОЕдрКк2 . (1)
Для выполнения условия £>2бш {Едр }< £>2фш {Едр} необходимо постоянную времени усилителя выбирать больше 10-4 с. При выполнении этого же условия дисперсия ^1б.ш{Едр}, обусловленная влиянием белого шума в режиме запоминания, не будет превышать размера дисперсии ^2ф.ш{Едр}.
Значения нормированной дисперсии
Аф.ш {Едр } Аф.ш {Едр }/ %
\ К2 ^ 1 + —
. Я1.
(2)
(где полагается, что 1Н----= Кк), были вычислены при реальных значени-
I Я1 )
ях частот среза фликкер-шумов, равных 0,5; 1; 5 кГц, т.е. соответственно при т = 3,2 ■ 10-4 с; 1,6 ■ 10-4 с; 3,2 ■ 10-5 с.
Как следует из результатов анализа указанных выше формул, даже в
самом неблагоприятном случае дисперсия £1бш {Едр} не превышает размера
дисперсий £>2фш {Едр} . Для минимизации случайной погрешности, обусловленной шумовым напряжением операционного усилителя, достаточно ограничить его полосу пропускания на уровне 1 кГц, т.е. выполнить условие т > 10-4 с. Кроме того, указанную погрешность можно уменьшать выбором параметров Т и Т2 генератора импульсов.
Для минимизации влияния токовых шумов на порог чувствительности необходимо, чтобы формулы для соответствующих дисперсий были сопоставимы с формулами дисперсий для шумовых напряжений. Для решения этой задачи воспользуемся следующим соотношением, связывающим спектральную плотность напряжения со спектральной плотностью шумового тока
Оедр = О^, (3)
где Яэ - некоторое эквивалентное сопротивление, падение напряжения на котором от шумового тока характеризуется спектральной плотностью Ое .
Для реальных ОУ данное сопротивление можно вычислить по значениям соответствующих спектральных плотностей белого шума. В табл. 2 приведены примеры значений соответствующих спектральных плотностей и эквивалентных сопротивлений Лэ.
Таблица 2
Тип ОУ Ое ,В2/Гц GJ ,А2/Гц Лэ , кОм
816УД1 7-10-15 10-24 80
816УД2 10-12 10-24 1000
140УД1 (5 - 50) -10-17 2-10-24 5 - 15
153УД1 (5 - 50) -10-17 5 -10-26 30 - 100
153УД1 3,6-10-17 1,6 -10-25 15
153УД2 3,2 -10-16 1,6 -10-26 140
140УД7 4-10-16 6,25-10-26 80
140УД6 1,6-10-15 3,6 -10-27 670
цА741(140УД7) 4-10-16 2-10-25 45
ЬЫ301(553УД2) 2-10-16 2-10-26 100
Как показывает анализ, для выполнения условий
В2ф.ш {Едр } ^ Вб.ш {^+ }, В2ф.ш {{др} ^ Вф.ш {^+}, В2ф.ш {{др } ^ ^1б.ш {-}, В2ф.ш {{др} ^ ^1ф.ш {-},
(4)
,-4
помимо выполнения приведенной выше рекомендации (т > 10 с), дополнительно требуется, чтобы выполнялось неравенство
— > Кк = 1 + — Лэ к Л
(5)
которое практически накладывает ограничение на максимально допустимый размер сопротивления в цепи отрицательной обратной связи ОУ.
Как показывают результаты анализа, доминирующей является составляющая погрешности, обусловленная протеканием токового фликкер-шума через запоминающую емкость в режиме коррекции:
В
2ф.ш
{/_} = ■
ЗиЛ 2 К2в,
Ед
Л
Э
V Т1 У
где и - некоторый коэффициент, равный 10 4 Гц. 100
Для сравнения дисперсий В2ф.шУ_} и В2ф.ш{£др} представим последнюю в виде
В2ф.ш {Едр }< 13,6-104 GEдр Кк2, (7)
что позволяет записать условие минимизации порога чувствительности ОУ
Т2 < 2,1 . (8)
Т1 Л
Полученное соотношение показывает, что для построения корректирующего канала лучше всего выбирать ОУ с большим размером Лэ.
На практике существует некоторое оптимальное значение скважности импульсов управляющего генератора, поскольку, как следует из выражения (6), с одной стороны, с увеличением скважности увеличивается порог чувствительности, а с другой стороны, при малых значениях скважности большое
влияние будет оказывать напряжение смещения нуля ОУ. Дисперсия данной
составляющей погрешности может быть оценена по формуле
Е 2 К 2
ВЕ =ЕсмК^ . (9)
^см
б
Тогда оптимальное значение скважности Q ~ Т2/Т определится как аргумент минимума функции В2ф.ш{^, Q}+ВBсм{Q}. После соответствующих преобразований получим
бопт 3
^др
Как показывают расчеты, проведенные в соответствии с выражением (10), оптимальный размер скважности лежит в диапазоне от 100 до 1000.
Следует отметить одно важное обстоятельство: порог чувствительности УПТ с периодической коррекцией мало зависит от частоты управляющих импульсов ГИ. На практике частоту ГИ следует выбирать не более 100 Гц, что позволяет обеспечить высокое входное сопротивление УПТ (поскольку Т1 > 3РС) и уменьшить влияние коммутационных выбросов ключей. Вместе с тем даже при выполнении всех приведенных выше рекомендаций, удается снизить порог чувствительности УПТ лишь в 100 раз. Существенно лучшими свойствами в этом плане обладают двухканальные УПТ.
Функциональная схема УПТ с коррекцией собственных шумов элементов схемы на базе двух операционных усилителей, разработанная при участии автора, приведена на рис. 1. Схема содержит ключи Кдц, Кд12, Кд21, Кл22; конденсаторы С и С'; два резистора Р и Р'; два операционных усилителя 0У1 и 0У2; сумматор Е и генератор импульсов ГИ, управляющий работой схемы.
Коррекция осуществляется следующим образом. С выхода ГИ поступают в противофазе два сигнала, открывающие и закрывающие соответствующие ключи. Например, в первый полупериод работы замыкаются ключи Кдц и Кд22 и размыкаются Кді2 и Кд2і. При этом операционный усилитель 0У1 усиливает сумму напряжения ДЦ, приложенного между инвертирующим («Вход_») и неинвертирующим («Вход+») входами усилителя, некоторого напряжения Цн на конденсаторе С, а также собственного смещения (дрейфа) Едр1.
Выходное напряжение будет равно
ивых1 = ( + ин + Едр1 )*оУ1*2 , (11)
где КОУ1 - коэффициент передачи операционного усилителя ОУ1; КЕ - коэффициент передачи сумматора напряжений Е.
ПИ
Рис. 1
В это же время (в результате замыкания ключа Кл22) операционный усилитель ОУ2 охватывается стопроцентной отрицательной обратной связью по постоянному току, что приводит к появлению между его инвертирующим и неинвертирующим входами напряжения, равного погрешности напряжения смещения Едр ОУ2, и конденсатор С через резистор Я' заряжается до этого напряжения.
Во второй полупериод работы ГИ замыкаются ключи Клі2 и Кл2і и размыкаются Кл2Ь Кл22. При этом в результате замыкания ключа Кл2і на входе операционного усилителя ОУ2 произойдет компенсация напряжения смещения ЕдрОУ2 напряжением на конденсаторе С', который в течение предыдущего цикла был заряжен до напряжения, равного Едр ОУ2. Таким образом, выходное напряжение будет равно
ивых2 = ДЖоу2 К2, (12)
где КОУ2 - коэффициент передачи операционного усилителя ОУ2.
Одновременно с этим происходит подготовка операционного усилителя ОУ1 к следующему циклу работы, т.е. осуществляется заряд конденсатора С до напряжения смещения Едр ОУ1.
В следующий полупериод работы операционный усилитель ОУ 1 будет усиливать лишь дифференциальный входной сигнал Ли, т.к. произойдет коррекция погрешности смещения (дрейфа нуля).
Нетрудно показать, что данный УПТ представляет собой по сути дела два параллельно включенных УПТ с периодической коррекцией, работающих в противофазе. Поэтому воспользуемся полученными ранее результатами оценки случайных погрешностей, обусловленных собственными шумами элементов схемы, для анализа условий минимизации порога чувствительности двухканального УПТ. Очевидно, что в данном случае мы должны учитывать те составляющие погрешности, которые имеют место в УПТ с периодической коррекцией в режиме хранения, или коррекции. Перечислим эти составляющие погрешности с учетом того, что ОУ1 и ОУ2 имеют идентичные шумовые характеристики.
1. Случайная погрешность, обусловленная шумовыми токами ОУ по неинвертирующим входам, оценивается как
2. Случайная погрешность, обусловленная шумовыми токами ОУ по инвертирующим входам, оценивается с учетом равенства Т = Т? = 1/ 2^Ги выражениями
(13)
(14)
(15)
(16)
( 1
(17)
V
J
,1Л_ А 2tG— В2ф.ш {J-}-—66— Х
1 >
(
2х10г-1^ги
U(18)
Х^102г' 9 - 2т101+1^га 1 - e
1 - e
V
J
V
J
где ^ГИ - частота генератора импульсов ГИ.
3. Составляющая погрешности, обусловленная влиянием некомпенсированного шумового напряжения, оценивается как
( 1 У
1
Вб.ш {{др} Кк ОВ№
ГИ
1 - е 2туКГИ
(19)
Д*
15кк2а£д
10 - 2тКги
11 ГИ99
/=0
е 2т1(№ги - е 2х10г-1Кги
. (20)
Как показал анализ, проведенный выше, доминирующими составляющими, ограничивающими порог чувствительности, являются ^2фш {•/_}
и В2ф ш {Едр } . Причем для их уменьшения требуется по возможности увеличивать частоту генератора импульсов. Однако практически существует некоторый оптимум частоты КГИ, наличие которого объясняется тем, что с увеличением частоты все большее влияние начинают оказывать выбросы напряжения, поступающие на вход усилителя по цепям управления ключами. Действительно, с одной стороны, для дисперсии случайной погрешности имеем
1
В1 = иА О
4КГИ
+13,6-104от к2,
др к
(21)
т.е. приведенная ко входу УПТ дисперсия будет характеризоваться выражением
в =
иО
4Кг2иС 2
+ 13,6-104 От
др
(22)
В случае же воздействия на входе коммутационных выбросов по цепям управления ключами имеет место составляющая
1/К
2г
В = 2К
ГИ
ГИ ----------------
| Ф Тк <
0
(23)
где ик - амплитуда управляющих импульсов; тк - постоянная времени цепи управляющих импульсов, которая практически зависит от размеров проходных и переходных емкостей электронных ключей и в первом приближении от сопротивления замкнутого ключа.
Постоянную тк можно определить экспериментально. С учетом того, 1
что тк <<
2К
имеем
ГИ
В {ГИ } = 2КГИиктк
т.е. данная составляющая линейно зависит от частоты К
ГИ
Таким образом, оптимальное значение частоты генератора импульсов КГи определяется как минимум функции В{^Ги }= В {Ки} + В2 {Ки}
-■-опт
и описывается выражением
^ГИопт - 3
V
”0' (25)
4C 2U2 тк
Практически диапазон оптимальных значений КГИ лежит между частотами от 0,1 до 10 Гц, что следует из подстановки численных значений параметров реальных схем в выражение (25).
На основании изложенного можно сделать вывод, что наиболее перспективным с точки зрения достижения минимума порога чувствительности является корректирующий канал в виде поочередно корректируемых УПТ, для которых определены условия минимизации влияния собственных шумов элементов схемы, а на основании полученных данных (табл. 1 и выражения (13)-(20)) дана оценка случайных погрешностей для расчета порога чувствительности корректирующего канала в виде УПТ с коррекцией погрешности нуля.
Список литературы
1. Громков, Н. В. Преобразователи параметров резистивных датчиков в частотные сигналы / Н. В. Громков // Проблемы автоматизации и управления в технических системах. - Пенза : ПензГУ, 2007. - С. 128-129.
2. Васильев, В. А. Уменьшение влияния дестабилизирующих факторов на информативный сигнал датчиков / В. А. Васильев // Датчики и системы. - 2002. -№ 4. - С. 12-15.
3. Громков, Н. В. Математическая модель и анализ влияния собственных шумов элементов схемы корректирующего канала на выходной сигнал измерительных преобразователей / Н. В. Громков // Известия высших учебных заведений. Поволжский регион. Технические науки. - 2007. - № 4. - С. 152-165.