дрой «Электроснабжение промышленных предприятий».
SPIN-код: 2765-2945
Author ID (SCOPUS): 7003455231
КРОПОТИН Олег Витальевич, доктор технических наук, доцент (Россия), декан факультета довузовской подготовки, помощник проректора по учебной работе по профориентации. SPIN-код: 4218-4900 AuthorlD (РИНЦ): 118225 ORCID: 0000-0002-6620-9945 AuthorID (SCOPUS): 6505835545 ResearcherID: H-4616-2013
ЛАВРИКОВ Юрий Петрович, магистрант гр. ЭЭм-181 факультета элитного образования и магистратуры.
СМИРНОВ Павел Сергеевич, магистрант гр. ЭЭм-172 факультета элитного образования и магистратуры.
Для цитирования
Дед А. В., Горюнов В. Н., Кропотин О. В., Лавриков Ю. П., Смирнов П. С. Определение допустимых диапазонов регулирования медленных изменений напряжений путем имитационного моделирования // Омский научный вестник. 2018. № 5 (161). С. 90-96. БОТ: 10.25206/1813-8225-2018-161-90-96.
Статья поступила в редакцию 25.09.2018 г. © А. В. Дед, В. Н. Горюнов, О. В. Кропотин, Ю. П. Лавриков, П. С. Смирнов
УДК 621.311 Д. В. коваленко
DOI: 10.25206/1813-8225-2018-161-96-101 "
п. с. Смирнов
Омский государственный технический университет, г. Омск
учет влияния высших гармоник при расчетах потерь мощности и ЭНЕРГИИ, возникающих в кабельной линии
ЭЛЕКТРОПЕРЕДАЧИ,
при подключении к сети группы персональных компьютеров
В настоящей работе были произведены физические замеры показателей качества электрической энергии (ПКЭ) для электрической сети, питающей компьютерный класс одного из учебных заведений города Омска. На основе данных, полученных в ходе эксперимента, был определен амплитудно-частотный спектр гармоник. Установлено, что при работе персональных компьютеров нарушаются ПКЭ, которые в отдельных случаях выходят за рамки ГОСТ 32144—2013. Произведен расчет потерь мощности и активной энергии, возникающих в кабельной линии электропередачи при наличии высших гармоник в сети. Потери определялись как для каждой из гармоник в отдельности, так и суммарные. Показано, что потери, возникающие на частотах высших гармоник, необходимо учитывать в расчетах. Предложена установка фильтров высших гармоник для улучшения ПКЭ (чтобы они соответствовали требованиям ГОСТ 32144-2013).
Ключевые слова: показатели качества электрической энергии, высшие гармоники, потери мощности и энергии, несинусоидальный нестационарный режим.
Введение. Высшие гармоники в системах электроснабжения. За последние 20 лет в связи с бурным развитием компьютеризации произошло проникновение компьютерной техники и различных электронных устройств во все сферы жизни общества. На производстве это частотно-регулируемый электропривод, станки с программным управлением, дуговые сталеплавильные печи, различные пре-
образовательные установки. Кроме того, произошло повсеместное распространение персональных компьютеров (ПК) и различной оргтехники в связи с автоматизацией рабочих процессов, открытием большого количества представительств и офисов различных компаний, торговых центров. Отдельного внимания заслуживает проблема обеспечения требуемого качества электрической энергии при
внедрении ПК в различные организации бюджетной сферы, жилищно-коммунального хозяйства, а также их использование в образовательном процессе в школах, техникумах, колледжах и высших учебных заведениях.
Для питания такого оборудования используются импульсные источники питания, входное комплексное сопротивление которых с течением времени характеризуется ярко выраженной нелинейностью.
Потребляемый этими нагрузками ток имеет импульсный характер. Как только синусоида питающего напряжения достигает амплитудного (максимального за период промышленной частоты сети) значения, диоды, входящие в состав импульсного блока питания, практически мгновенно изменяют значение собственного сопротивления от бесконечно большого (равносильно состоянию запертого диода) до нуля (равносильно состоянию открытого диода). Такие открывания и запирания диодов с течением времени создают короткие импульсы в сигнале потребляемого тока. Полученный несинусоидальный сигнал может быть представлен в виде суммы основной синусоиды с промышленной частотой (50 Гц) и бесконечного числа синусоид, кратных основной частоте сети.
При наличии в системах электроснабжения (СЭС) высших гармоник тока и напряжения возникает повышенный износ установок компенсации реактивной мощности, реактивное сопротивление которых имеет емкостный характер. При определенных условиях сочетание емкостной составляющей сопротивления батарей статических конденсаторов (БСК) с индуктивным сопротивлением питающей сети могут иметь место резонансные режимы на частотах, близким к частотам высших гармоник. Если в спектральном составе нелинейных нагрузок присутствуют такие гармоники, то будет происходить усиленный износ БСК, который приведет к вспучиванию банок и преждевременному выходу из строя конденсаторных батарей (в отдельных случаях возможны взрывы и пожары на БСК) [1-3].
В работе [1] произведен анализ исследований, выполненных при проведении энергоаудита жилых и общественных зданий Москвы, подтверждающих актуальность проблемы подавления возникающих резонансных режимов при наличии нелинейных нагрузок в питающих сетях. Также в этой работе было отмечено о необходимости проведения детального анализа потребителей и выявление потенциально возможных резонансных режимов, которые могут возникнуть в исследуемой СЭС.
Отметим, что проблема наличия высших гармоник в СЭС не ограничивается возникновением резонансных режимов. В частности, при питании большого количества ПК в частотном спектре потребляемого тока будет присутствовать значительная доля третьей гармоники. Известно, что токи третьей гармоники (как и любой другой, кратной трем) не имеют сдвига по фазе и ведут себя подобно системе нулевой последовательности. Токи третьей гармоники, протекающие по фазным проводникам в несимметричной системе, суммируются, и этот суммарный ток будет протекать по нулевому рабочему проводнику. По этой причине ток, проходящий по нулевому проводу, будет соизмерим с током, протекающим по фазному проводу. При протекании несинусоидальных токов по нулевым рабочим проводникам возможен их перегрев и разрушение из-за перегрузки токами
гармоник, кратных трем. Это обстоятельство приводит к смещению нейтрали, перераспределению напряжений между фазами с последующим выходом из строя потребителей электроэнергии [2, 4, 5].
В работе [6] была упомянута аналогичная ситуация, которая произошла на одном из предприятий Москвы. По вине предприятия возникшие перенапряжения привели к выходу из строя блоков питания компьютерной техники. Кроме того, в этой же работе выполнено моделирование, показавшее, что при неучете высших гармонических составляющих в суммарном токе приводит к превышению предельно допустимой температуры кабельной линии электропередачи. К аналогичным выводам приходят и авторы исследования [5].
В ряде работ [5, 7, 8] разработана модель импульсного источника питания ПК. На основе данных, полученных с использованием разработанной модели, были определены амплитудно-частотные спектры гармоник тока и напряжения. Все данные имитационного моделирования получили экспериментальную проверку [8, 9].
Влиянию группового подключения большого количества нелинейных электроприёмников на сети питания посвящено достаточно большое количество работ, например [4, 9, 10].
В [10] приведены результаты многочисленных исследований, которые показали, что групповое подключение большого количества ПК и другой оргтехники приводит к выходу коэффициентов л-й гармонической составляющей за пределы значений, регламентированных ГОСТ 32144-2013 [11].
Авторы исследования [4] пришли к выводу, что подключение большого количества нелинейных бытовых электроприёмников приводят также и к увеличению коэффициента искажения синусоидальности кривой напряжения.
Кроме уже упомянутых аспектов качества электрической энергии при групповом подключении нелинейных нагрузок проявляется «эффект взаимной компенсации отдельных гармонических составляющих тока» [9].
Результаты эксперимента. Расчет потерь мощности и энергии в кабельной линии электропередачи при подключении к сети групповой нелинейной нагрузки. В работе [12] произведена попытка разработать алгоритм расчета потерь мощности в различных элементах СЭС при наличии нелинейной нагрузки. Стоит отметить, что главная задача, стоявшая перед авторами этого исследования, — определение потерь мощности с учетом фактического нагрева токоведущих частей. Расчет потерь авторами этой работы предполагал итерационность процесса решения.
Целью исследования [13] было сравнение результатов расчета потерь мощности и энергии в кабельной линии, полученных различными методами. При расчете потерь классическим методом авторы выполнили расчет потерь, возникающих на каждой из гармоник тока в отдельности, а после — произвели операцию суммирования для нахождения результирующих потерь. В качестве альтернативного метода расчета потерь мощности и энергии, возникающих в СЭС, авторами был использован метод расчета, основанный на пакетном вейвлет-преобра-зовании.
В отличие от работ [12, 13] в настоящей работе выполнен физический эксперимент с использованием анализатора качества электрической энергии и расчет потерь мощности и активной электроэнер-
| ПК I | ПК [ I ПК I I ПК I
ПК - Персональный компьютер
Рис. 1. Схема СЭС компьютерного класса
Рис. 2. осциллограммы напряжения, тока, потребляемого компьютерным классом (а), и спектры гармоник напряжений, токов (б)
гии был произведен с использованием данных, полученных при работе ПК, расположенных в компьютерном классе учебного заведения.
Для компьютерного класса одного из высших учебных заведений города Омска были произведены замеры ПКЭ и определен амплитудно-частотный
спектр гармоник. Для подключения анализатора качества электрической энергии была использована секция шин 0,4 кВ (рис. 1).
Анализируя амплитудно-частотные спектры (рис. 2), можно сказать, что наиболее существенный вклад в искажение синусоидального сигнала
а
б
Таблица 1
Значения коэффициента К (класс напряжения 0,4 кВ)
Номер гармоники Значения коэффициента Ки
допустимые согласно ГОСТ 32144-2013, % полученные в результате эксперимента, %
3 5 6,37
5 6 2,48
7 5 2,02
9 1,5 1,53
11 3,5 0,47
13 3 0,19
15 0,3 0,2
17 2 0,23
19 1,5 0,19
образом, во время проведения исследования в работе одновременно могли находиться как все ПК, так и их часть. Поэтому в настоящем исследовании расчет потерь ведется при допущении, что все ПК учебной аудитории находились в работе (или максимуму потребляемой мощности нелинейной нагрузкой). Это соответствует моменту времени 11:52.35 (рис. 3).
Общеизвестно, что активное и индуктивное сопротивление кабельной линии электропередачи на промышленной частоте сети может быть определено по удельным параметрам:
ККЛ~Г01,
ХКЛ X0Ь,
(1) (2)
и удельное индуктивное сопротивление кабельной линии, Ом/км; Ь — длина кабельной линии, км.
При наличии высших гармоник в питающей сети индуктивное сопротивление элемента СЭС (каким является кабельная линия) является функцией частоты:
где г0, х0 — соответственно удельное активное
ХКЛ(п) ПХКЛ<
(3)
напряжения вносят 3, 5, 7, 9 и 11 гармоники. Значения коэффициента Ки (допустимые по ГОСТ 321442013 и фактически полученные при проведении эксперимента) приведены в табл. 1.
Анализ коэффициентов п-й гармонической составляющей, полученных в ходе эксперимента (табл. 1, рис. 2), приводит к выводу, что значения коэффициентов соответствуют допустимым значениям, регламентированных ГОСТ 32144-2013 для 5, 7, 11, 15, 17 и 19 гармоник и не соответствуют для 3 и 9 гармоник. Кроме того, ГОСТ 32144-2013 накладывает значительные ограничения в отношении коэффициентов п-й гармонической составляющей для гармоник, кратных трем, по причине их суммирования при протекании по нулевому рабочему проводнику в несимметричном режиме работы СЭС.
Выполним расчет потерь мощности и активной энергии для СЭС, приведенной на рис. 1, на основании полученных в ходе эксперимента данных.
Пусть СЭС, питающая компьютерный класс учебной аудитории, работает в нестационарном несинусоидальном режиме. Это видно из графиков нагрузок, приведенных на рис. 3.
Нестационарность режима работы СЭС в ходе эксперимента была смоделирована путем подключения (отключения) различных ПК к сети. Таким
где ХК
КЛ(п)
индуктивное сопротивление кабельной линии на частоте п-й гармоники сети; ХКЛ — индуктивное сопротивление кабельной линии на промышленной частоте сети (при 50 Гц); п — порядок гармоники.
Потери активной мощности на частоте п-й гармоники сети определяются по выражению (4)
(4)
Потери активной мощности в кабельной линии электропередачи, обусловленные прохождением тока основной частоты сети и высших гармоник, могут быть рассчитбны следыэщим образом:
бР^ = В е2nRк
(5)
где п — порядок гармоники; N — гармоники, участвующие в расчете потерь абнквнбй мощности; 1п — ток п-й гармоники; ЯКЛ — активное сопротивление кабельной линии элекгроверкдаыи на частоте.
Здесь и далее п]эи ранчетех потерь мощности и энергии не учитывалось влияние поверхностного эффекта и эффект а близо сти.
бНе н еКЯкы
ен1
Рис. 3. График электрических нагрузок исследуемой СЭС
Таблица 2
Результаты расчета потерь мощности и активной энергии при наличии высших гармоник в СЭС за время проведения эксперимента Ц = 23 минуты)
л АРл, Вт АОл, вар А^, В-А А№л, Втч л ДРл, Вт ЛОл, вар Д5л, ВА А№л, Вт-ч
1 21,7 0,27 21,7 8,33 21 7,59 1,96 7,84 2,91
3 11,49 0,42 11,5 4,41 23 7,5 2,12 7,79 2,88
5 9,59 0,59 9,6 3,68 25 7,58 2,33 7,93 2,91
7 7,67 0,66 7,7 2,95 27 7,58 2,51 7,99 2,91
9 8,01 0,89 8,06 3,08 29 7,64 2,72 8,11 2,93
11 7,79 1,05 7,86 2,99 31 7,52 2,86 8,05 2,89
13 7,76 1,24 7,86 2,98 35 7,5 3,23 8,17 2,88
15 7,75 1,43 7,88 2,97 37 7,51 3,41 8,25 2,88
17 7,83 1,63 7,99 3 39 7,51 3,6 8,33 2,89
19 7,78 1,82 7,99 2,99
Потери реактивной мощности на частоте л-й гармоники сети равны:
нОо - !пХКЛ(П]
(6)
Суммарные потери реактивной мощности рассчитываются аналогичмо по вышеприведенному выражению с той лишь разницей, что в него следует подставить значение индуктивного сопротивления, вычисленного 1тео -м>овнонию (3), т.е.
ЛОм - МВМХнкл ■
(7)
Потери полноН м-щмости в кабельной линии равны на частоте л-й гармоники:
Н>п - -НРЩ и нгоо.
(8)
Потери активной элеатроэнергии в кабельной линии электропередаон п]ти наличии высших гармоник в сети могуо бытн по формуле (9):
НР-о - В1[2пН^:
(9)
Таблица 3
Результаты расчета годовых потерь активной энергии при наличии высших гармоник в СЭС
л АШп, кВтч л АШп, кВт-ч
1 11,39 21 3,98
3 6,03 23 3,94
5 5,03 25 3,98
7 4,03 27 3,98
9 4,21 29 4,01
11 -0- 31 3,95
13 4,08 35 3,94
15 4,0 7 37 3,94
17 Г11 39 3,95
19 4,08
где I — время, за которое произвооится расчет потерь энергии (в первом случае — это время прове) дения эксперименту, кооорое составило 23 минуты, во втором — время раНоты кнопьютерного класса в течение года, кото рое было учтено при ближенно и составило 525 часов).
Результаты расчетов потерь активной, реактивной, полной мощносеи и активной энергии при наличии высших гармоник за время проведения эксперимента представлены в табл. 2, а годовые потери активной энергии — в табл. 3.
Суммарные потери активной энергии за год при работе компьютерного класса составили 86,79 кВт -ч.
Вычислим относительные погрешности определения потерь активной мощности и энергии пр учете высших гармоник в СЭС.
Относительные по ар ешносто рнсчета потерь активно о мощмотон и энем>оик[ могут быть рассчитаны по выражениям (10) и (11).
^-ЛуИтЛу.^и,
ТУ]
Л[Л[Г т- тткк, нон,,.
( о 0 И,
(10) (11)
гдн /ну. — сунуорные нотери оноивной мощности на основной частоте и выноих г^монинои; ну — потери активной мощности но основной частоте сети; Ж^ — годовые потери активной энергии с учетом высших гарменик в сети; но^ — годовые потери активной энергии на промышленной частоте.
1-]
о-]
Сопоставляя результаты расчетов, приходим к выводу, что потери активной мощности от токов высших гармоник составляют 86,7 % от величины суммарных потерь мощности, реактивной — 99,2 %, полной — 87,3 % и их необходимо учитывать в расчетах. Аналогичная ситуация и с потерями активной энергии — они составили 86,9 % от общих (суммарных) потерь энергии при работе компьютерного класса в течение года.
Заключение. Мы выяснили, что в исследуемой СЭС наблюдается превышение Ки для 3 и 9 гармоник напряжения над значениями, регламентированными ГОСТ 32144-2013. По этой причине для рассматриваемого узла нагрузки необходимо предусмотреть установку фильтров высших гармоник для компенсации 3, 9 гармоник и «возвращения» соответствующих значений Ки в пределы ГОСТ. Тип фильтра (пассивный, активный или гибридный) и место его установки следует выбирать с учетом технико-экономического расчета всех возможных вариантов и принципа минимума приведенных затрат. Кроме того, применение фильтров высших гармоник приведет к уменьшению потерь мощности и активной электроэнергии в системе электроснабжения.
Библиографический список
1. Силкин Д. А. О резонансах высших гармоник в электрических сетях // Электротехнические комплексы и системы. 2013. № 21. С. 184-187.
2. Булатова В. М., Амирова С. С., Чекунов Н. И. Современные проблемы электроснабжения компьютерных и информационных систем // Вестник Казанского технологического университета. 2011. № 18. С. 245-248.
3. Степанов В. М., Базыль И. М. Влияние высших гармоник в системах электроснабжения предприятия на потери электрической энергии // Известия Тульского государственного университета. Технические науки. 2013. № 12. Ч. 2. С. 27-31.
4. Кобелев А. В., Зыбин А. А. Современные проблемы высших гармоник в городских системах электроснабжения // Вестник Тамбовского государственного технического университета. 2011. Т. 17, № 1. С. 187-191.
5. Вагин Г. Я., Севостьянов А. А., Солнцев Е. Б. [и др.]. Анализ влияния нелинейной однофазной нагрузки на значение тока в нулевом проводе // Промышленная энергетика. 2013. № 12. С. 17-19.
6. Тульский В. Н., Карташев И. И., Симуткин М. Г. [и др.]. Оценка теплового режима кабеля, питающего нелинейную нагрузку // Промышленная энергетика. 2012. № 7. С. 42-45.
7. Цырук С. А., Янченко С. А. Гармонический анализ нелинейных электроприемников офисных центров // Промышленная энергетика. 2012. № 3. С. 54-61.
8. Цырук С. А., Янченко С. А., Рыжкова Е. Н. Моделирование основных источников несинусоидальности в бытовых электросетях // Вестник Московского энергетического института. 2013. № 3. С. 67-71.
9. Анчарова Т. В., Бодрухина С. С., Цырук С. А. [и др.] Оценка влияния эмиссии высших гармонических составляющих напряжения и тока от бытовых электроприемников на питающую сеть // Промышленная энергетика. 2012. № 9. С. 36-42.
10. Дед А. В., Сикорский С. П., Смирнов П. С. Результаты измерений показателей качества электроэнергии в системах электроснабжения предприятий и организаций // Омский научный вестник. 2018. № 2 (158). С. 60-64.
11. ГОСТ 32144-2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. Введ. 2014-07-01. М.: Стандартинформ, 2014. 19 с.
12. Гапиров Р. А., Осипов Д. С. Расчет потерь мощности в элементах системы электроснабжения с учетом высших гармоник и зависимости сопротивлений токоведущих частей от температуры // Промышленная энергетика. 2015. № 1. С. 16-21.
13. Осипов Д. С., Коваленко Д. В., Киселев Б. Ю. Расчет потерь энергии в кабельной линии электропередачи при наличии нелинейной нагрузки методом пакетного вейвлет-пре-образования // Омский научный вестник. 2016. № 4 (148). С. 84-89.
КОВАЛЕНКО Дмитрий Валерьевич, ассистент кафедры «Электроснабжение промышленных предприятий». SPIN-код: 7587-8782 AuthorID (РИНЦ): 901108 ORCID: 0000-0003-4822-4145 AuthorID (SCOPUS): 57193410109 ResearcherID: R-7414-2017
СМИРНОВ Павел Сергеевич, магистрант гр. ЭЭм-172 факультета элитного образования и магистратуры.
Адрес для переписки: Dmitrii_Kovalenko92@mail.ru
Для цитирования
Коваленко Д. В., Смирнов П. С. Учет влияния высших гармоник при расчетах потерь мощности и энергии, возникающих в кабельной линии электропередачи, при подключении к сети группы персональных компьютеров // Омский научный вестник. 2018. № 5 (161). С. 96-101. DOI: 10.25206/1813-82252018-161-96-101.
Статья поступила в редакцию 22.08.2018 г. © Д. В. Коваленко, П. С. Смирнов
р
о