Central Asian Research Journal For Interdisciplinary Studies (CARJIS)
ISSN (online): 2181-2454 Volume 2 | Issue 5 | May, 2022 | SJIF: 5,965 | UIF: 7,6 | ISRA: JIF 1.947 | Google Scholar |
www.carjis.org DOI: 10.24412/2181-2454-2022-5-160-167
TRIKOMI TENGLAMASI XUSUSIY YECHIMLARI VA ULARNI BESSEL
FUNKSIYALARI ORQALI QURISH
Baxtiyor Choriyevich Xidirov
Termiz davlat universiteti II kurs magistranti
ANNOTATSIYA
Fizika - matematika tenglamalari fanida ko'p qo'laniladigan, gidrodinamik sistemalarning asosiy tenglamasi bo'lgan Trikomi tenglamasi aralash tipga tegishli bo'lib fizika va texnikada keng qo'llaniladi, tenglamaning xususiy yechimlarini topish nazariy fizika va matematika fanlarida muhim ahamiyatga ega deb hisoblash to'g'ri bo'ladi.
Kalit so'zlar: Trikomi tenglamasi, o'zgaruvhciga ajratish, Besselning maxsus funksiyalari, singular koeffitsient, Trikomi - Naxushev masalasi, X parameter va X <0, X = 0, X >0 hollar.
KIRISH
Bizga ikkita mustaqil o'zgaruvchiga ega u = u(x,y) funksiya D sohada berilgan va ikkinchi tartibli uzluksiz hosilalarga ega Trikomi tenglamasi quyidagicha berilsin.
C 2u C2u
-7 +-:
dx2 Cy2
(1) tenglamaning xarakteristik tenglamasini tuzamiz,
~ u u u u
yuxx + uyy =0 yoki y—2: + --T = o (1)
y(dx)2 + 0 • dxdy +1 • (dy)2 = 0
bundan
y • (dy)2 + (dx)2 = 0 (2)
A = B2 - AC = 02 - y •l = - y orqali tipini aniqlaymiz
1) y < 0 A > 0 bo'lsa giperbolik tipga,
2) y = 0 A = 0 bo'lsa parabolik tipga,
3)y > 0 A < 0 bo'lsa elliptik tipga tegishli tenglama deyiladi. demak Trikomi tenglamasi aralash tipga tegishli ekan.
(2) tenglama (1) tenglamaning xarakteristik tenglamasi bo'lib, uning yechimlari .
Central Asian Research Journal For Interdisciplinary Studies (CARJIS)
ISSN (online): 2181-2454 Volume 2 | Issue 5 | May, 2022 | SJIF: 5,965 | UIF: 7,6 | ISRA: JIF 1.947 | Google Scholar |
www.carjis.org DOI: 10.24412/2181-2454-2022-5-160-167
2 3
x ± - y2 = C xarakteristikalar deyiladi
y o'zgaruvchining ishorasiga qarab aniqlangani uchun aralash tipdagi tenglama hisoblanadi.
Endi xususiy hosilali tenglamalarni yechishda ko'p qo'llaniladigan usullardan biri o'zgaruvchilarni ajratish usulidan (Fur'e usuli) foydalanib Trikomi tenglamasining yechimini izlaymiz
u(x; y) = X(x) • Y(y) * 0 deb faraz qilamiz va undan xususiy hosilalarni olamiz:
Ux = X"(x) • Y (y) va uw = X (x) • Y "(y)
Natijalarni (1) tenglamaga qo'ysak
y • X ''(x) • Y(y) + X(x) • Y''(y) = 0 Bundan bir xil noma'lumlarni bir tarafga o'tkazsak
y • X "(x) • Y (y) = - X (x) • Y "(y)
X"(x) Y''(y)
X (x) y • 7 (y)
tenglikka ega bo'lamiz. Bu tenglamaning chap tomoni faqat x o'zgaruvchiga, o'ng tomoni esa faqat y o'zgaruvchiga bog'liq bo'lgani uchun nisbatlar o'zgarmas songa teng bo'ladi.
X "(x) 7 "(y)
= -Á (3)
X (x) y • 7 (y) ( )
(3) tenglamadan (1) tenglama ikkita chiziqli ikkinchi tartibli tenglamaga ajaladi.
X''(x) + AX (x) = 0 (4)
7''(y) — AyY (y) = 0 (5)
(4) tenglamaning yechimini oddiy differensial tenglama sifatida quyidagicha izlaymiz.
Dastlab (4) tenlamaning yechimini, X(x) = Cerx kabi belgilab kerakli hosilalar olamiz va (4) tenglamaga qo'yib r noma'lumni aniqlaymiz
Cr2 erx + ACerx = 0
Bundan r ni topamiz
r2 = — A r = ±y[—A
Central Asian Research Journal For Interdisciplinary Studies (CARJIS)
ISSN (online): 2181-2454 Volume 2 | Issue 5 | May, 2022 | SJIF: 5,965 | UIF: 7,6 | ISRA: JIF 1.947 | Google Scholar |
www.carjis.org DOI: 10.24412/2181-2454-2022-5-160-167
yechimni hosil qilish uchun, Я < 0, Я = 0, Я> 0 hollarni alohida qaraymiz.
1) Я = -к2 < 0 bo'lsa (4) tenglamaning umumiy yechimi
X ( x) = Clekx + C2e ~b
Agar yechimda Q = va C2 = a kabi almashtirsak giperbolik funksiyaga keladi.
X ( x) = a sh (kx) + b ch(kx)
2) Я = 0 bo'lsa (4) tenglamaning umumiy yechimi
X ( x) = C
3) Я = -к2 < 0 bo'lsa (4) tenglamaning umumiy yechimi
X(x) = C sin kx+C2 cos kx bo'lib, bu uchta funksiyalar xos funksiyalar deyiladi.
Endi ikkinchi y o'zgaruvchiga bog'liq funksiya Y(y) ni (5) tenglama uchun quyidagi darajali qator ko'rinishida izlaymiz.
Y (y) = > anyn = а0 + а1 y + а 2 y2 + ••• (6)
n=0
Bundan Y '(y), Y "(y ) hosilalarni quyidagicha hisoblaymiz:
дадада
Y (y) = > nanyn-1 => nanyn-1 => (n +yn
дада n-1 V* n-1
na„y => nany
n=0 n=1 n=0
дада
.n-1 w„ , 1Л,„..n-1
Y ' '( y) = > (n + 1)nan+1 yn-1 => (n + 1)nan+1 yn-1 => (n + 2)(n + 1)an+2yn (7)
n=0 n=1 n=0
Darajalarni bir xil qilib olganimizdan keyin hosila olingan (7) yig'indilarni yuqoridagi (5) tenglamaga qo'ysak quyidagi natijaga ega bo'lamiz:
да
да
Central Asian Research Journal For Interdisciplinary Studies (CARJIS)
ISSN (online): 2181-2454 Volume 2 | Issue 5 | May, 2022 | SJIF: 5,965 | UIF: 7,6 | ISRA: JIF 1.947 | Google Scholar |
www.carjis.org
DOI: 10.24412/2181-2454-2022-5-160-167
& &
2 (n + 2)(n + 1)a„+2yn - y£ anyn = 0
n=0 n=0
to
^ (n + 2)(n + 1)a„+2yn a„y"+1 = 0
n=0 n=0
to
2«2 (n + 2)( n + 1)a„+2 yn — 2 an—1 y'' = 0
n=1 n—1
to
to
2a2 +2 [(n + 2)( n + 1)a„+2 — an_x] yn
n—1
Endi aniqmas koeffitsentlar usulidan foydalanib y ning oldidagi barcha nolga teng koeffitsientlarni topamiz:
a2 = 0 deb hisoblab (n + 2)(n + 1)an+2 = an-1
n=3 hadidan boshlab yuqoridagi rekurent tenglama orqali quyidagilarga ega bo'lamiz
5 • 4 • a = a = 0 —
Bu koeffitsiyentlarning qiymati induksiya usuli orqali quyidagicha hisoblanadi;
a2 a5 a8 ai1 * * * a3n—1 0
Endi n=1,2... uchun a3n shaklidagi shartlarni ko'rib chiqamiz
a„
a = ■ n—1 an+2
(n + 2)( n +1) dan n=l,4,7...
(8)
a0 a^ a^ a§
a^ a^ a^ *
3 • 2 6 6 • 5 (6 • 5) • (3 • 2) 9 9 • 8 (9 • 8) • (6 • 5) • (3 • 2) Yana induksiya orqali,
a0
a3n =
[(3n) • (3n — 1)] • [(3n — 3) • (3n — 4)] -[9 • 8] • [6 • 5] • [3 • 2] Nihoyat n=1,2,... uchun, a3n+1 ko'rinishdagi koeffitsentlarni hisoblab topamiz
a a4 a a7 aj
a\ — a7 — — ain
4 4 • 3 7 7 • 6 (7 • 6) • (4 • 3) 10 10 • 9 (10 • 9) • (7 • 6) • (4 • 3) ••• Yana induksiyadan
0
Central Asian Research Journal For Interdisciplinary Studies (CARJIS)
ISSN (online): 2181-2454 Volume 2 | Issue 5 | May, 2022 | SJIF: 5,965 | UIF: 7,6 | ISRA: JIF 1.947 | Google Scholar |
www.carjis.org DOI: 10.24412/2181-2454-2022-5-160-167
a
a3n+l
[(3n +1)• (3n)]• [(3n-2)• (3n-3)] --[7• 6]• [4• 3]
Shu sababli n=1,2,3... uchun umumiy yechim quyidagicha bo'ladi
y (y)=a
i+1
y
,3n
1(3n) • (3n -1) • (3n - 3) • (3n - 4) ...9 • 8 • 6 • 5 • 3 • 2
+
+ a
y+1
y
3n+1
:1(3n +1) • (3n) • (3n - 2) • (3n - 3)...7 • 6 • 4 • 3
n=1,2,... uchun yuqoridagi yig'indilar Bessel funksiyalari orqali ifodalanadi. Endi (5) tenglamaning yechimini Bessel funksiyalari orqali quyidagi uchta
A< 0, A = 0, A> 0 hollarni alohida qaraymiz. X = -k2 < 0 bo'lganda y1 '(y) + k2 yY(y) = 0 bo'lganda yechim quyidagicha
Y (y) = Qjkjyj 1(- ky2) + ctffyJ 1(2 ky2)
2
v3
3
2) 1 = 0 bo'lganda Y ' '(y) = 0
Y (y) = C1 + C2 y
3) 1 = k2 > 0 bo'lganda y''(y) - k2yY(y) = 0 tenglama yechim quyidagicha
3 3
Y (y) = CjTklyl 1(- ky2) - C^kfyj 1(- ky2)
3 3 3 3
Bu yerda Iv (y) va Jv (y) maxsus funksiyalar birinchi tur Bessel fuksiyalari bo'lib quyidagicha bo'ladi:
(*/ 2)
v+2n
(- l)n (X 2)
,2n+v
Iv(x)=y^x2- va Jv(x)=V ; 2;-,
vW r(n + l)r(v + n +1) va vW r(n + l)r(v + n +1)
Endi yechimni quyidagicha quramiz:
1) A< 0 bo'lsa ,yechim
u (x, y) = (Clekx + Ce ^ )3íky[y
^ 3 ^ 3
C1J 1(- ky2) + C2 J 1(- ky2)
-3 3 3 3
yoki
n
3
3
3
3
<X)
Central Asian Research Journal For Interdisciplinary Studies (CARJIS)
ISSN (online): 2181-2454 Volume 2 | Issue 5 | May, 2022 | SJIF: 5,965 | UIF: 7,6 | ISRA: JIF 1.947 | Google Scholar |
www.carjis.org DOI: 10.24412/2181-2454-2022-5-160-167
u i x, y ) = (« sh(kx) + b ch(kx))3y/k^Jy
ЗЗ
Cl J li- ky2) + C2 J li- ky2)
-3 3 3 3
2) Л = 0 bo'lsa ,yechim
u( x, y) = (C + C2x)(C + C2y) = Axy+Bx + Cy+D
3) Л > 0 bo'lsa ,yechim
u i x, y) = (C sin kx+C2 cos kx)3k^J~y
r\ 3 /-k 3
C31 li- ky2) - C41 li- ky2)
-3 3 3 3
Bundan tashqari x va y ga nisbatan chiziqli bo'lmagan xususiy yechimlari yig'indisi quyidagicha (A,B,C,D-o'zgarmas sonlar)
u( x; y) = A3 y2 + x3)+ B(y3 + x3 y)+ c(6xy2 + x4)+d(2 xy3 + x4 y)
У"\uxx + uy +^ uy = 0
(9)
Endi bu usulni singular koeffitsientli elliptik - giperbolik tipdagi tenglama uchun Trikomi - Naxushev (TN) masalasini ko'rib chiqaylik
I
У
u( x; у) = X ( x) • Y (у) ф 0 deb faraz qilamiz va xususiy hosilalarni olib
Ux = X"( x) • Y ( у) uy = x ( x) • y ' '( у) uy = x ( x) • y ' ( у) (9) tenglamaga qo'ysak
у™ • X " (x) • Y(у) + X(x) • Y " (у) + £ X(x) • Y ' (у) = 0
у
Quyidagi shakl almashtirishlarni amalga oshirsak
у™ • X "(x)• Y(у) = -X(x)• Y "(у)-£X(x)• Y '(у)
у
V... л Y "(у) + -• Y '(у) X (x) _ у
X i x)
У" • Y i y)
Bu tenglamaning chap tomoni faqat x o'zgaruvchiga, o'ng tomoni esa faqat y o'zgaruvchiga bog'liq bolgani uchun nisbatlar o'zgarmas songa teng bo'ladi.
Central Asian Research Journal For Interdisciplinary Studies (CARJIS)
ISSN (online): 2181-2454 Volume 2 | Issue 5 | May, 2022 | SJIF: 5,965 | UIF: 7,6 | ISRA: JIF 1.947 | Google Scholar |
www.carjis.org DOI: 10.24412/2181-2454-2022-5-160-167
X "( x) X ( x)
Y"( У) + ß Y ' i y) У
У" • Y i y)
= -Л
(lO)
Bundan (9) tenglama ikkita chiziqli ikkinchi tartibli differensial tenglama kelib chiqadi
X ' '( x) + AX ( x) = 0
Y 4 y) + Y ( y) - Лу"У ( y )= 0 y
(ll)
x o'zgaruvchiga bog'liq tenglamaning yechimini (4) tenglama sifatida qaragan edik va faqat (11) tenglamaning yechimini Besselning funksiyalari orqali quramiz
ß-l
Y ( У) = Cl
( " + 2 S "+2 ( ß + " +1S
41
г
" -
v " + 2 y
У 2 I
Ц "+2
"+2 Л
24Лу 2 " + 2
ß-l
+ C
( " + 2)"+2 (-ß + " + 3S
41
г
-" -" + 2
ti
У 2 I
lß
"+2
( "+2 ^ 24iy T " + 2
Endí Л<О, Л = О, Л>0 hollarní alohída qaraymíz
l) Л = -k < 0 bo'lganda
Y i У) = C
" + 2
ß-l
"+2 ( ß + " + 1Л l~ß
г
" + 2
У 2 J ß-
i-1 "+2
( "+2 ^ 2ky ^
" + 2
У
+ C
" + 2
k
ß-l
-ß + " + Зл
У
v
" + 2
l-ß
У 2 J l-
У
i-I "+2
^ "+2 ^ 2ky ^
" + 2
У
(9) tenglamaníng yechímí
u( x, y) = (C1ekx + C2e - )x
C
ß-l
f" + 2 S "+2p( ß + " +1
v
k
v
" + 2
S —
I y2 Jß-l ' "+2
C
Z' "+2 ^
2ky ~ " + 2
+C
ß-l
f " + 2 S "+2_ (-ß + " + 3
k
г
" + 2
S —
|y 2 Jtu ' "+2
Z' "+2 ^
2ky ~ " + 2
2) Л = 0 bo'lganda Y (y) = —^ у1"1 + C6
1 -ß
(9) tenglamaníng yechímí u(x, y ) = (C1 + C2 x)
3) Л = k2 > 0 bo'lganda
c
1 -ß
5 ,,1-ß
у1"1- C6
ß-l
Y ( У) = Cs
+ 2 S "+2 ( ß + " + 1 ^
k
г
" + 2
l-ß
У 2 I i-
ßl "+2
^ "+2 ^ 2ky ^
" + 2
+C
ß-l
^ " + 2 S "+2 ^
v
k
У
-ß+"+3S
l-ß
v
" + 2
У 2 11-
ц "+2
^ "+2 ^ 2ky ^
" + 2
V
V
x
v
v
Central Asian Research Journal For Interdisciplinary Studies (CARJIS)
ISSN (online): 2181-2454 Volume 2 | Issue 5 | May, 2022 | SJIF: 5,965 | UIF: 7,6 | ISRA: JIF 1.947 | Google Scholar |
www.carjis.org DOI: 10.24412/2181-2454-2022-5-160-167
(9) tenglamaning yechimi
i(x, y) = C sin kx + C2 coskx)x
ß-1
C
m ■
+ 2 ^ m+2 Í ß+ m + 1 ^
k
r
m + 2
1-ß
y 2 I ß-1
m+2
Í m+2 \
2ky T m + 2
v
+ C
ß-1
m + 2 ^ m+2
k
r
ß+m+3^ m+2
1-ß
y 2 IM
m+2
/ m+2 ^
2ky ^
m + 2
J
x
v
v
XULOSA
Xulosa o'rnida oliy ta'limning matematikaning bakalavr va magistratura yo'nalishida Trikomi va yana ko'plab tenglamalarni maxsus funksiyalar yordamida ishlash va yechimni qurishda tenglamalarni o'zgaruvchiga ajratish usulidan foydalansak yaxshi natijalar olishga imkonini beradi.
REFERENCES
1. M. Mirsaburov B. Islomov N.B. Islamov "Ikkinchi tartibli singular koeffitsientli noklassik tenglamalar uchun korrekt qo'yilgan masalalar " Toshkent-2020; [102.b.]
2. A. Q. O'rinov " Maxsus funksiyalar va maxsus operatorlar" Farg'ona-2011: [17-24.b.]
3. M. Salohiddinovning "Matematik-fizika tenglamalari" Toshkent - 2003[87-150.b.]
4. math equation.com
5. ziyo.net ;
6. math Library_bot
7. Oliy matematika.tm