Литература: 1. Коновальцев А.А., Омаров М.А., Пащенко-Д.А., Шокало В.М. Элекродинамические структуры с распределенными нелинейными элементами. I // Радиоэлектроника и информатика. 2000. №2. С. 17-21. 2.Navaro J.A., Chang K. Integrated Active Antennas and Spatial Power Combining. - New York: John Wiley & Sons, 1996. 368p. 3. Jain F.C., Bansal R. Monolithic Semiconductor Antennas for Millimeter Wave Si and GaAs Integrated Circuit Technologies// Int. Journal of Infrared and Millimeter Waves. 1985. Vol.6. N 2. P. 141-147. 4. UeharaK, Miyashita K., Natsume K.-I., HatakeyamaK., Mizuno K. Lens- Coupled Imaging Arrays for the Millimeter and Submillimeter-Wave Regions// IEEE Trans. 1992. Vol. MTT-40, N5. P. 806-811. 5. KoertP, Cha J.T. Millimeter wave technology for space power beaming // IEEE Trans. 1992. Vol.MTT-40, N6. P. 1251-1258. 6. Christodoulou CM., Yin S, Kauffman J.F. Effects of the Schottky Impedance of Wire Contact Points on the Reflection Properties of a Mesh// IEEE Trans. 1988. V.AP-36. N12. P. 1714-1721. 7. Панов В.В., Саркисьян А.П. Некоторые аспекты проблемы создания СВЧ-средств функционального поражения // Зарубежная радиоэлектроника. 1993. № 10, 11, 12. С.3-11. 8. Лучанинов А.И., Шифрин Я. С. Антенны с нелинейными элементами//Елава X в кн: Справочник по антенной технике. Т. 1./Под ред. Л.Д. Бахраха и E.F. Зелкина. М.: Изд-во ИПРЖР, 1997. С. 207-235. 9.Bratchikov A.N., Voskresensky D.I., Sadekov T.A. Fiberoptic technology for antenna signal transmission and distribution: present state and perspectives// Proc. of 3rd Int. Conf. on Antenna Theory and Techniques, Sevastopil, Ukraine. 1999. P.3-10. Ю.Горбань А.М., Лонин Ю.Ф., Харченко И.Ф. Передающая линия с нелинейными элементами при импульсном возбуждении // Матери-
УДК 517.87; 537.958 '
ТРАНСФОРМАЦИЯ ПЛОСКОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ИМПУЛЬСНЫМ ВОЗМУЩЕНИЕМ ПОЛУОГРАНИЧЕННОЙ ОБЛАСТИ
СЛИПЧЕНКО Н.И., ШУЛЬГА Л.Н, РЫБИН О.Н.
Рассматривается преобразование плоской монохроматической электромагнитной волны, вызванное изменением во времени диэлектрической и магнитной проницаемостей полуограниченной области в диэлектрическом пространстве. Получены выражения для компоненты электрического поля на всей положительной полуоси времени. Проводится детальный анализ эволюции электрического поля во времени.
1. Введение
Возможность полезного использования переходного излучения, как и необходимость учета его негативного влияния на распространение электромагнитных волн, требует рассмотрения причин возникновения этого излучения. Различные варианты таких причин рассмотрены в работе [1]. В качестве одной из них рассматривается изменение во времени электрических и магнитных свойств среды, обусловленное изменением диэлектрической и магнитной проницаемостей среды. В определенной спектральной области [2] изменение данных параметров во времени можно считать скачкообразным. Это обуславливает интерес к исследова-
алы 7-й Межд. Крымской микроволновой конф., Севастополь, Украина. 1997. С.237-238. 11. Шифрин Я.С., Лучанинов А.И. Современное состояние теории и техники антенн с нелинейными элементами// Радиоэлектроника. 1996. Т. 39, № 9-10. С.4-16.
Поступила в редколлегию 14.04.2000
Рецензент: д-р. физ.-мат. наук, проф. ЕордиенкоЮ.Е.
Коновальцев Андрей Алексеевич, канд. техн. наук, докторант кафедры основ радиотехники ХТУРЭ. Научные интересы: антенны и устройства микроволновой техники, беспроводная передача энергии СВЧ лучом. Адрес: Украина, 61166, Харьков, проси. Ленина, 14, тел. 40-94-30.
Омаров Мурад Анверович, канд. техн. наук, докторант кафедры основ радиотехники ХТУРЭ. Научные интересы: нелинейные эффекты в электродинамических структурах. Адрес: Украина, 61166, Харьков, проси. Ленина, 14, тел. 40-94-30.
Пащенко Дмитрий Александрович, аспирант, кафедры основ радиотехники ХТУРЭ. Научные интересы: антенны, интегрированные с нелинейными элементами. Адрес: Украина, 61166, Харьков, проси. Ленина, 14, тел. 40-94-30.
Шокало Владимир Михайлович, д-р. техн. наук, профессор, декан радиотехнического факультета ХТУРЭ. Научные интересы: информационные и энергетические радиоэлектронные системы КВЧ и ЕВЧ диапазонов. Адрес: Украина, 61166, Харьков, проси. Ленина, 14, тел. 40-94-78.
нию влияния изменения во времени электрических и магнитных свойств в безграничных и полуограниченных областях на распространение электромагнитных волн аналитически [3-9].
В настоящей работе исследуется влияние импульсного синхронного изменения диэлектрической проницаемости s(t) и магнитной проницаемости /u(t) в области полупространства х > 0 на прохождение плоской монохроматической электромагнитной волны в свободном диэлектрике. Считается, что до нулевого момента времени диэлектрическая среда была однородной и изотропной с диэлектрической и магнитной проницаемостями, соответственно, £о и цо. Импульсы проницаемостей имеют прямоугольную форму и длительность Т , так что в области х > 0 изменение параметров среды описывается формулами
s(t) = єо {д{- 0 + - г)) + еі (0(0 -в^ - 0), 1
Ж)=мо И- 0+- 0)+д (0(0 - 0^ - r))J
где єі и ^і — соответственно диэлектрическая и магнитная проницаемости области х > 0 в возмущенном состоянии на интервале времени t є (0, г); 0(t) — единичная функция Хевисайда. Среда в области х < 0 имеет диэлектрическую и магнитную проницаемости, соответственно, ^0 и Ц0, для всех времен t є (-да; да).
Пусть первичное электрическое поле представляет собой ТМ волну с компонентой E^t, х) Тогда
РИ, 2000, № 3
22
поведение электрической компоненты поля в области х > 0 может быть описано интегральным уравнением Вольтерра второго рода [9], которое для данной задачи имеет вид
е(г , х) =Ео(г, х) + J dt'\ йх'К (t, t', х, х')е(і', х'), (2) 0 0
где K(t, t, х, х) — ядро интегрального уравнения (1) разностного типа:
K(t, t', х, х') = [і - m 2(t')]s(t -1')§( х - х') -
9(t -1’) 2a2(t' )m2(t')
1 - tn2( 8(vo(t _ X
Iх - х'і), (3)
здесь RR = ,Jmo/RX , a(0 = 4Є0ІXX , v0 = clлІМоє0
— скорость света в вакууме; s(t) — дельта- функция Дирака.
Решение уравнения (2) в области х > 0 может быть получено методом резольвенты [10] посредством интеграла
E(t,х) = Eo(t,х + Jdt'\йх’ Rt,Ґ,х,х') Eo(t',х’), (4) 0 0
где резольвента Rt, t', х, х') является решением уравнения
Rt, t', х, х') =
= K(t, t', х, х) + J dt" J йх” K(t, t", х, х”) Rt", t', X, х) (5) о о
Для случая, когда e(t) = 81 = const, RX = ^1 = const, резольвента имеет разностный вид:
1 - 2
Rt,t', х, х) = —Rt - RR - х')о(х')-m2
22
- - f)—am— (^(v^(f - X-|х - х'|) +
2 dt
+ S(П( t - X-х - х)
1 + am
(6)
Здесь m =уІ^о/Рі, а = уІє0/єі, vi = cf JRR .
Первые два слагаемых в (6) с точностью до функции Rx) являются резольвентой безграничной задачи, а второе слагаемое учитывает влияние границы раздела двух сред, которая образовывается при скачке параметров области х > 0 в момент времени t = 0 .
Таким образом, на интервале времени t є (0, т) электрическое поле Rt, X в области х > 0 может
быть получено из выражения (4) при помощи резольвенты (6), а в области х < 0 — с помощью выражения (2) и ядра (3).
2. Поле в области возмущенной среды на интервале времени t є (0, т)
Пусть первичное поле представляет собой плоскую монохроматическую волну единичной амплитуды
Ео (t, х = exp(/ (at - kR, (7)
где k = а/vo — волновое число; ш — частота первичной волны. Подставив (6) в (4), получим выражение, описывающее поведение электрической компоненты поля в области возмущенной
среды х > 0 на интервале времени t є (0, т):
Ei(t, X =
= 0(_t + х )в+eiam(0t+ Bj"e_^amrot+^ + v1
х
+ 0(t----)
v1
f ( k \ ^
і mt---х I , .
am j , -q „-іуашШ-кх)
Aie
+ В2Є
V
(8)
где
+ 1 + am
Bi =±—;—
am, A1 =
2am
1 + am
_ _ am (1 - amf
B2 =---------•
2 1 + am
Первые два слагаемых в (9) описывают преобразованное поле в случае безграничной задачи, первичная плоская волна — волна 1 на рис. 1 (здесь и далее название волн будет совпадать с названием их амплитудных коэффициентов), после скачка параметров в области х > о в нулевой момент времени расщепляется на две плоские волны: прямую (первое слагаемое в выражении (8), в| на рис. 1),
которая распространяется в направлении первичной волны, и обратную (второе слагаемое в выражении (8), Bf на рис. 1), которая распространяется к образовавшейся границе раздела двух сред х = 0 . Эти волны имеют такое же значение волнового числа, как и первичная волна, но новые частоты: ama .
Первые два слагаемых в (8) описывают электрическое поле в области х > 0 непосредственно сразу после возмущения области. Начиная с момента
времени t = х^1 (t є (х^1,т)), на формирование поля начинает влиять присутствие границы раздела сред [9]. Это заключается в возникновении в области двух новых волн: прямой плоской волны
А1 (третье слагаемое в выражении (9)), рис. 1, которая является прошедшей первичной волной, и прямой плоской волны В2 (четвертое слагаемое в выражении (8)), рис. 1, которая является результатом отражения от границы х = 0 обратной волны
РИ, 2000, № 3
23
Bf. Как и следовало ожидать, частота прошедшей первичной волны не меняется, а меняется значение волнового числа, отвечающее новым значениям
проницаемостей, а волна В2 сохраняет значение частоты и волнового числа волны Bf.
Как видно из выражения (8), с точки зрения пространственного распределения дискретного спектра волн, скачок параметров в области x > 0 приводит к отделению от границы раздела двух сред x = 0 фронта поля x = vtf, которое движется в направлении первичной волны со скоростью vj.
4. Остаточные явления после снятия возмущения параметров полуограниченной области
Электрическое поле во всем пространстве после скачкообразного возвращения параметров области x > 0 к исходным значениям выражается формулой
Т X
E(t, x) = Eo(t, x) + J dt J dx’ K(t, t', x, x')Ei(t', x'). (10)
0 0
После подстановки сюда (3) и (8) получим, что E(t, x) =
= A(t, x)E0 (t, x) + B(t, x)e-iam(at “**) +
Q
Ai
b1
B1
C2
B2
1
+ C{t, x> am (rot tk) + D(t, xY1^~kx) +
+ F{t, x>-^“'+kxx + L{t, xYiammt+kx +
+ M{t, xY(rot+k) + N(t, xy(at+kx), (11)
где
Ц
x = —v0t x = 0
Ф
x = V0t
Рис. 1. Полная диаграмма распределения волн в пространстве на интервале времени t є (0, г)
3. Реакция внешнего поля на возмущение полуограниченной области
Подставляя (8) в (2), получаем выражение, описывающее поведение электрической компоненты поля в невозмущенной части пространства (x < 0):
Е^t, x) =
= Е0 (t, x) + Q(t + x/v0) (C1e^ш+kx + C2e~iam(“'+k^), (9)
1 - am „ „
где Cj =-----, C2 = amCj.
1 + am
Из последнего выражения следует, что в нулевой момент времени наряду с фронтом поля x = vjt от границы x = 0 отделяется и движется со скоростью v0 в направлении, противоположном направлению первичной волны, фронт поля x = -v^t. Этот фронт ограничивает слева область внешнего поля, возбуждаемого отраженной первичной волной Q (второе слагаемое в выражении (8)), а также прошедшей через границу раздела двух сред x = 0, Bf (волна C2, описываемая третьим слагаемым в выражении (8)), рис. 1.
Фазовые скорости волн Q и C2 совпадают с фазовой скоростью первичной волны, частота и волновое число волны Cj совпадают с соответствующими характеристиками первичной волны, а частота и волновое число волны Q равны, соответственно, ama и amk.
A(t, x) =
_ m (l + am)2
4a
9(1 - am)of t - -—x^v° 1 - б(-1 + x/v0 ) H f 1 - am )
+ Q(am - 1)еТ - xl • e~1^-am^' -
f 1 - am )
-0(x-1 + x/v0 Y1 (1+am^l +
4am
-0(t - x/v0 )o(x -1 + x/v0)
(1 + am)2
B{t, x) = - m ^ 2 am^ (1 - am)o(t - x/v0 )o(x -1 + x/vo C(t, x) =
= - И/ amh'Q(T- t + x/v0) X
a
f>(am - rtela, -1 + 0(1 - am}{ '-^0. _ f)
f 1 - am ) f 1 - am ))’
d{- x) =_ ц,-1+x/v0) x
<i(«m - Defx- 1 + e (1 - am)i{ - f
^ 1 - am ) ^ 1 - am )
F(t. x) = - m 1 - mV) x
_ q| ' + x/v0 _ j|eK1+ am )ют 1 _ e^1—am)юх
1 + am
L{t, x) = -m3 a -—rma ^x-1 - x/vo\
1 + ma
РИ, 2000, № 3
24
M(t,x) = ofx - 1 + xXvv° lo(-x +1 + x/v§)> ^ 1 + am )
x m_ 1 - maei(1+1 am)ит a 1 + am ’
Nil, x) =- 'A1 - ^ ef,-ИЗ5. lx
2a I 1 + am )
x (2a0(x -1 - x/v!) +
+ ^ T a^ e-Ki+amH(t + ^v0 - t)
2m (1 + am
Таким образом, из формулы (11) видно, что возвратный скачок параметров в области x > 0 приводит к расщеплению уже существующих там плос-
ких волн А1, в* , В2, каждую на прямую и обратную плоские волны. Амплитуды образовавшихся волн имеют разрывную пространственновременную структуру. Это обусловлено тем, что второй скачок параметров области x > 0 приводит к расщеплению фронта x = vjt на два фронта, которые движутся во взаимно противоположных направлениях с фазовой скоростью первичной волны. Кроме того, возвратный скачок параметров приводит к тому, что от уже не существующей границы раздела двух сред отделяются и расходятся в двух взаимно противоположных направлениях с фазовой скоростью первичной волны два новых плоских фронта поля: x = +vo(t-г). Образовавшийся таким образом набор движущихся параллельных плоскостей (фронтов поля) ограничивают области с разной структурой поля. Исследование структуры амплитуд образовавшихся волн показало, что в установившемся режиме, когда все движущиеся фронты поля уходят на бесконечность, в пространстве останутся только первичная волна и волна F с постоянной амплитудой:
E(t, x) =
= EoO1,x)
3 2
m - m a 4a
(1 - 2cos(1
+ ampy^1+^, (12)
где T = ют .
Исследование поведения модуля амплитуды обратной волны в (12) от значений скачков диэлектрической и магнитной проницаемостей для реальных диэлектрических материалов показало, что при определенных значениях скачков проницаемостей амплитуда обратной волны из (12) по модулю может превосходить амплитуду первичной волны , причем данное превосходство может иметь место как при изменении диэлектрической проницаемо -сти (рис.2), так и при изменении магнитной проницаемости (рис.3). Из рис.2 и 3 также видно, что при определенных значениях скачков проницаемостей, частоты первичной волны и длительности возмущенного импульса первичный сигнал не чувствует скачков параметров, т.е. амплитуда обратной волны равна нулю.
a
Рис.2. График зависимости модуля амплитуды обратной волны от величины относительного изменения электрической проницаемости a для разных значений величины относительного изменения магнитной проницаемости m (для линии 1 m = 0.7 , для линии 2 m = 1.2, для линии 3 m = 1.4) при T = 5
Рис.3. График зависимости модуля амплитуды обратной волны от величины относительного изменения магнитной проницаемости m для различных значений величины относительного изменения диэлектрической проницаемости a (для линии 1 a = 0.6 , для линии 2 a = 1.1, для линии 3 a = 1.3) при T = 5
5. Заключение
Таким образом, импульсное изменение диэлектрической и магнитной проницаемостей полуограниченной области диэлектрического пространства преобразует плоскую монохроматическую электромагнитную волну в поле со сложной пространственно-временной структурой. Образованная структура поля представляет собой систему областей пространства с различным дискретным набором плоских монохроматических волн. Области ограничены плоско-параллельными фронтами, движущимися в двух взаимно перпендикулярных направлениях (в направлении первичной волны и в противоположном направлении) с фазовой скоростью первичной волны. Асимптотически в конечной области пространства из всех волн остаются
РИ, 2000, № 3
25
только первичная и обратная по отношению к ней волны, фазовые характеристики которых совпадают с соответствующими характеристиками первичной волны. Показано, что величина амплитуды обратной волны для типичных диэлектрических сред может превосходить амплитуду первичной волны.
Литература: 1. Гинзбург В.Л. Переходное излучение и рассеяние. М.: Наука, 1984. 484 с. 2. Болотовский Б.М., Давыдов В.А., Рок В.Е. Об излучении электромагнитных волн при мгновенном изменении состояния излучающей системы // УФН. 1978. Т.126. С. 311-321. 3. Болотовский Б.М., Плис А.И., Столяров C.H. Распространение импульсного излучения в нестационарных средах // Изв. вузов. Радиофизика. 1976. T. 19, №4. C. 567-573. 4. Борисов В.В. Трансформация электромагнитного поля при изменении проводимости среды во времени / / Геомагнетизм и аэрономия. 1989. T.29, №5. C. 730-737. 5. Афанасьев С.В. Излучение модели сверхсветового источника в нестационарной среде // Изв. вузов Радиофизика. 1991. T. 34,№5. C. 605-607. 6. RybinO, Nerukh A. Transient Electromagnetic Field in a Dissipative Medium With Rectangular Pulse Modulated Parameters / / Proc. International Conf. on Mathematical Methods in Electromagnetic Theory. Kharkov (Ukraine). 1998. P. 336338. 7. Рыбин O.H., Сахненко H.K. Преобразование электромагнитного импульса временным возбуждением среды в полупространстве / / Радиоэлектроника и информатика. 1998. №1. C. 31-34. 8. НерухА.Г., Рыбин
O.H., Щербатко И.Б. Преобразование плоской волны повторяющимися импульсными изменениями параметров безграничной cреды // Радиоэлектроника и информатика. 1998. №1. C. 28-31. 9. Нерух А.Г., Рыбин O.H., Щербатко И.Б. Воздействие импульсного возбуждения ограниченной среды на плоскую электромагнитную волну // ЖТФ. 1999. Т.69, №8. C. 84-92. 10. Нерух А.Г, Хижняк Н.А. Современные проблемы нестационарной макроскопической электродинамики. X.: НПО Тест-Радио, 1991. 280c.
Поступила в редколлегию 12.07.2000
Рецензент: д-р техн. наук, проф. Асеев Г.Г.
Слипченко Николай Иванович, канд. техн. наук, доцент, проректор по научной работе ХТУРЭ. Научные интересы: радиофизика и электроника. Адрес: Украина, 61166, Харьков, пр. Ленина, 14, тел. (0572) 40-90-20.
Шульга Лариса Николаевна, аспирант кафедры микроэлектроники, полупроводниковых приборов и устройств ХТУРЭ. Научные интересы: математическое моделирование в радиофизике. Адрес: Украина, 61166, Харьков, пр. Ленина, 14, тел. (0572) 40-93-62.
Рыбин Олег Николаевич, канд. физ.-мат. наук, старший научный сотрудник кафедры микроэлектроники, полупроводниковых приборов и устройств ХТУРЭ. Научные интересы: математическое моделирование в радиофизике. Адрес: Украина, 61166, Харьков, пр. Ленина, 14, тел. (0572) 40-93-62.
УДК 543.082/.084: 681.325.5
МИКРОПРОЦЕССОРНОЕ
ОБЕСПЕЧЕНИЕ
ДИАГНОСТИЧЕСКИХ СРЕДСТВ В
ПОЛУПРОВОДНИКОВОМ
МАТЕРИАЛОВЕДЕНИИ
БОРОДШБ.Г, ГОРДИЕНКОЮ.Е, ФУРДЫЛОА.Ф.
Рассматриваются вопросы микропроцессорного обеспечения средств СВЧ диагностики полупроводниковых материалов. Предлагается вариант конструкции установки для автоматического многопараметрового фотомодуляционного контроля плоских полупроводниковых структур.
В современных научных экспериментальных исследованиях и в практике технологического контроля вместо отдельных измерений параметров объектов и процессов всё шире используются комплексные измерения для более обстоятельной оценки их качества [1]. В связи с этим уместно говорить о диагностике материалов, устройств, процессов, которая не может быть всеобъемлющей, а является специализированной по определенным качествам.
В полупроводниковом материаловедении и технологии твердотельной электроники одним из вариантов диагностики представляется оценка функционально-значимых электрофизических свойств исходного материала и последующих технологических структур.
К таким свойствам можно отнести: удельное или поверхностное сопротивление; фоточувствительность; скорость рекомбинационных процессов; подвижность носителей; распределение электрически активной примеси; глубину залегания энергетических барьеров и т.п.
Диагностические оценки наиболее полезны, когда они выполняются в условиях эксплуатации и не возмущают объект и его свойства. Применительно к полупроводниковому материаловедению существующие зондовые (контактные) методы и средства контроля электрофизических параметров [2] нельзя считать оптимальными в рассматриваемом диагностическом смысле, а комплексность диагностики может обеспечиваться в основном простыми аддитивными приёмами.
Альтернативой такому подходу является СВЧ диагностика полупроводников [3,4]. В особенности перспективным для функционального диагностирования представляется фотомодуляционный вариант этого метода [5].
Суть его в общих чертах сводится к модуляции электропроводности общего или локального объёма полупроводника излучением из области его фоточувствительности, и безэлектродное (СВЧ) выделение сигнала при различных вариантах включения образца в СВЧ поле и в поле излучения. Вариацией включения можно набрать необходимое количество линейно-независимых выходных сигналов измерительной информации для обеспечения требуемой многопараметровости контроля.
26
РИ, 2000, № 3