ПРОЕКТИРОВАНИЕ И КОНСТРУИРОВАНИЕ СТРОИТЕЛЬНЫХ СИСТЕМ. ПРОБЛЕМЫ МЕХАНИКИ
В СТРОИТЕЛЬСТВЕ
УДК 699.86 DOI: 10.22227/1997-0935.2018.8.935-943
Thermal regime of enclosing structures in high-rise buildings
Tatyana A. Musorina, Ol'ga S. Gamayunova, Mikhail R. Petrichenko
Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Politechnicheskaya s., St. Petersburg, 195251, Russian Federation
ABSTRACT: Subject of research: the main heat loss occurs through the building fence. In the paper, the object of research is enclosing structures with different thermal conductivity. The problem of moisture accumulation in the wall is quite relevant. One of the main problems in construction is saving on building materials and improper design of building envelope. This in turn leads to a violation of the heat and humidity regime in the wall. This paper presents one of the methods to address this issue.
Purpose: description of heat and humidity conditions in the wall fence of high-rise buildings. It is also necessary to analyze the relationship between the thermophysical characteristics.
Materials and methods: the temperature distribution in the layers will be analyzed on the basis of the structure consisting of 10 layers; the layer thickness is 0.05 m. Materials with different thermal conductivity were used. Each subsequent layer differed in thermal conductivity from the previous one by 0.01. Next, these layers are mixed. The calculation of the humidity regime includes finding the temperature distribution along the thickness of the fence at a given temperature of the outside air. The quality factor of the temperature distribution is the maximum average temperature. This research are conducted in the field of energy efficiency.
Results: the higher the average wall temperature, the lower the air temperature differs from the wall temperature. In addition, ^ J the higher the average temperature of the wall, the drier the surface inside the wall. However, moisture accumulates on the t о surface inside the room. The working capacity of multilayer enclosing structures is determined by the temperature distribution з j and distribution of moisture in the layers. T к
Conclusions: moisture movement through the fence is due to the difference in the partial pressure of water vapor contained M _ in the indoor and outdoor air. A layer with minimal thermal conductivity should be located on the outer surface of the wall in S Г a multi-storey building. The maximum change in the amplitude of temperature fluctuations is observed in the layer adjacent ^ О to the surface by periodic thermal effects. It is also taken into account that the process of heat absorption has a great influence on the temperature change in the thickness of the wall fence to the greatest extent within the layer of sharp fluctuations r (outer layer). The Central part of the wall (bearing layer) will be the driest. These calculations
of the ventilated facade.
humid conditions, enclosing structures, temperature, indoor climate
4
n CO
KEY WORDS: civil engineering, building, energy efficiency, heat loss, building materials, thermal conductivity, thermal and s z
CD CD 7
FOR CITATION: Tatyana A. Musorina, Ol'ga S. Gamayunova, Mikhail R. Petrichenko. Thermal regime of enclosing structures in high -rise buildings. Vestnik MGSU [Proceedings of the Moscow State University of Civil Engineering]. 2018, vol. 13, 0 3 issue 8 (119), pp. 935-943. DOI: 10.22227/1997-0935.2018.8.935-943 S ((
t r
r 2
s m
3 й
>< о
ff -
2 CD
О CT)
v о
2 о
По
g i
Тепловой режим ограждающих конструкций высотных зданий
Т.А. Мусорина, О.С. Гамаюнова, М.Р. Петриченко
Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), 195251, г. Санкт-Петербург, ул. Политехническая, д. 29
АННОТАЦИЯ: Предмет исследования: основные потери тепла происходят через оболочку здания. Исследуются ограждающие конструкции с различной теплопроводностью. Проблема накопления влаги в стене достаточно е ) актуальна. Одна из главных проблем в строительстве это экономия на строительных материалах и неправильное п ■ проектирование ограждающих конструкций, что в свою очередь приводит к нарушению тепловлажностного режима <а в стене. Представлен один из методов решения данного вопроса.
Цели: описание тепловлажностного режима в стеновом ограждении высотных зданий, анализ зависимости между 1 О
теплофизическими характеристиками. с ^
Материалы и методы: распределение температуры в слоях анализируется на основе структуры, состоящей из 10 3 ^ слоев; толщина слоя — 0,05 м. Использовались материалы с различной теплопроводностью. Каждый последующий слой отличался по теплопроводности от предыдущего на 0,01. Далее данные слои перестанавливались. Расчет ы И
влажностного режима включает нахождение распределения температуры по толщине ограждения при заданной ц 5
температуре наружного воздуха. Фактором качества распределения температуры является максимальная средняя с с
температура. Данные исследования проводятся в области энергоэффективности. ф ф
Результаты: чем выше средняя температура стены, тем ниже температура воздуха, она отличается от температуры со со
стенки. Кроме того, чем выше средняя температура стены, тем суше поверхность внутри стены. Однако влага на- м м
капливается на поверхности внутри помещения. Работоспособность многослойных ограждающих конструкций опре- О 2
деляется температурным распределением и распределением влаги в слоях. ю ю
© Tatyana A. Musorina, Ol'ga S. Gamayunova, Mikhail R. Petrichenko, 2018
935
Выводы: перемещение влаги через ограждение происходит за счет разности парциальных давлений водяного пара, содержащегося во внутреннем и наружном воздухе. Слой с минимальной теплопроводимостью должен располагаться на внешней поверхности стены в многоэтажном здании. Максимальное изменение амплитуды колебаний температуры наблюдается в слое, прилегающем к поверхности со стороны периодического теплового воздействия. Также учитывается, что процесс теплоусвоения оказывает большое влияние на изменение температур в толще стенового ограждения в наибольшей мере в пределах слоя резких колебаний (наружный слой). Центральная часть стены (несущий слой) будет наиболее сухой. Данным расчетам удовлетворяет конструкция навесного вентилируемого фасада.
КЛЮЧЕВЫЕ СЛОВА: гражданское строительство, здание, энергоэффективность, потеря тепла, строительные материалы, теплопроводность, тепловлажностный режим, ограждающие конструкции, температура, внутренний климат помещения
ДЛЯ ЦИТИРОВАНИЯ: Мусорина Т.А., Гамаюнова О.С., Петриченко М.Р Thermal regime of enclosing structures in high-rise buildings // Вестник МГСУ. 2018. Т. 13. Вып. 8 (119). С. 935-943. DOI: 10.22227/1997-0935.2018.8.935-943
«О во
г г
О о
сч сч
со со
* (V U 3 > (Л С (Л 2 "" 00 M
(О
ш
г
ф
ф Ф
cz Ç ^
О Ш
О ^ О
со О
СО ч-
4 °
о
со -Ъ
ГМ <л
от
га
ÛL от
« I
со О
О) "
СП СП
с w ■8
iE 3s
Ü to
INTRODUCTION
Multi-layer walls with facing stone layer have been widely used in the Russian Federation since the mid-90s of the last century due to the increased regulatory requirements for the element-by-element level of thermal protection of buildings. Nowadays, as the concern of sustainability and energy efficiency increases, it is important to evaluate a great number of resources and their behavior while exposed to diverse climate conditions. The temperature regime of the enclosing structures is determined not only by fluctuation (change) indoor air temperature, but also by natural changes in humidity and temperature, pressure of outside air, direction and intensity of the processes of heat and moisture transfer inside the walls, etc. Therefore, the purpose humidity condition forecasting of the walling is very important at the stage of building design, when calculations for determination of comfort indoor climate are performed.
The article shows that the heat accumulation in the wall and its thermal resistance are opposite factors. Stationary and periodic temperature, humidity regimes of the walls depend substantially on the layers alternation. Sufficient thickness of the walls helps to reduce energy consumption for heating of building and structures. Consequently, saving of energy consumption exists.
There are amount of ways to thermal insulation buildings using different materials that have their technological parameters and price. the issue of consequently gains the importance from economical point of view — of various materials for the insulation of structures.
Z CT
от -от
— ф ф о о
£ GOAL
The purpose of this article is to describe the thermal regime of the enclosing structures.
TASKS
1. According to the temperature distribution consideration, the "ideal" model of the layer sequence should be made.
2. To determine the partial pressure in a enclosing structures
3. To calculate the existing enclosing structures for the temperature distribution through the thickness of the wall.
LITERATURE REVIEW
There are many criteria when choosing a material for a construction [1-5]. The most easy and cheap materials are porous materials. During the heating period, the building gets warm instantly, but also cools down very quickly. In consequence of the fact that the material is porous, cracks is appeared because of the temperature differences [6-11].
The quality factor of the temperature distribution is the maximum average temperature. The higher the average temperature of the wall, the less the temperature of the air differs from the temperature of the wall. Besides that, the higher the average temperature of the walls, the drier the inside part of the wall. Although, the moisture is accumulated on the surface layer inside the room [12-16].
To compensate for the loss of heat to the building it is necessary to bring heat, connect it to the heating system. The higher the level of thermal insulation of external enclosing structures, the less are the losses of thermal energy through the shell of the building, provided that the specified parameters of the microclimate are maintained in the premises. Thus, the loss of thermal energy in the building with the correct regulation of the coolant parameters directly depend on the level of thermal insulation of external enclosing structures [17-20].
However, despite the large amount of research on this topic, there are still no works containing an objective assessment of the heat and moisture regime of multilayer fences.
MATERIALS AND METHODS
The accumulative capacity of the wall structure determines the amount of the heat which can be ab-
sorbed or transmited in order to maintain the required temperature level in the room.
The object of the research is enclosing structures. The first step is to consider the theoretical model of the enclosing structures. The temperature distribution in the layers will be analyzed on the basis of the structure consisting of 10 layers ( i = 1,10 ); the thickness ofeach layer is 0.05 m.
The values of the thermal conductivity coefficients are defined by the following terms: arithmetic and geometric increase in thermal conductivity coefficients is determined by the formula:
X xx = 0.1 + 0.l(i -1) ;
0 — dimensionless temperature gradient; Th — the temperature on the hot surface of the wall (inside the room); T — the temperature of the layer x; Tc — temperature on the cold surface (the street).
According to the formula (2) the temperature value in the layer X can be defined:
T - T Tx =Th -e, (Th-rc). (3)
6 =-
t - T
Jh 1 c
X 5 = 1 - 0.12(/-1).
(1)
Table 1 presents the original data of the theoretical model and two types of the thermal conductivity coefficients are given.
The temperature distribution across the wall is determined by the formula:
: S,.
Th - T Th - T
s
s:
(2)
Table 2 presents the temperature values for two cases of thermal conductivity coefficient. Let's consider the case of different variants of layers sequence.
Based on the data (table 2) graphs are made, depending on the alternating layers. Next step is transposition in the rearrangement of layers by one in each cycle. All permutations are even-numbered and do not change an ordered sequence of layers. Figure 1 and 2 shows the graphs for theoretical method.
Figure 1 shows the calculation of the thermal conductivity which is occurred in an arithmetic progression. The best option out of 10 possible combinations is combination number: 4, 5, 6...10, 1, 2, 3, when the average temperature is equal 10.21 (pink line). Worst case is combination number: 1, 2, 3...10, when the average temperature is minimum and equal 4.35 (green line).
Table 1. Initial data
Number of layer Thickness of layer Coefficient of thermal conductivity Xxx Coefficient of thermal conductivity X g
1 0.05 0.1 1.00
2 0.05 0.2 0.68
3 0.05 0.3 0.44
4 0.05 0.4 0.32
5 0.05 0.5 0.25
6 0.05 0.6 0.21
7 0.05 0.7 0.17
8 0.05 0.8 0.15
9 0.05 0.9 0.13
10 0.05 1 0.12
Table 2. Significance of the temperatures distribution
Number of layer Thickness of layer Temperature for thermal conductivity Xxx Temperature for thermal conductivity X g
1 0.05 11.85 17.60
2 0.05 8.78 17.01
3 0.05 6.73 16.09
4 0.05 5.20 14.84
5 0.05 3.97 13.23
6 0.05 2.94 11.28
7 0.05 2.07 8.98
8 0.05 1.30 6.34
9 0.05 0.61 3.34
10 0.05 0.00 0.00
e e
<D (D t O
i H G !
C" c y
(Q en
O CD
C g 8 3 « ( t r
a n t Ij CD )
r «
s m t
o
ff
« CD
O CT)
v o
0 o
no
1 i n
CD CD CD
f?
ü ü
W ?
s □
s y c o O ü , CO
M 2
o o
a -A
» 00
i=0
Figure 2 shows the best and the worst options of alternating layers with geometric increase of thermal conductivity coefficients. The best option out of 10 possible combinations is combination number: 1, 2, 3...10, when the average temperature is equal 10.87 (pink line). Worst case is combination number: 6, 7...10, 1, 2, 3, 4, 5, when the average temperature is minimum and equal 6.64 (green line).
It is necessary to determine the saturated vapor pressure in each layer.
PsJ" = I I bar Pressure'
(4)
ps.s — saturated steam; Tx — the temperature of the layer x.
RESULTS
It is necessary to apply this theory to the existing structure, which is used in practice very often.
Let's consider the construction of a wall composed of: brick — 380 mm, insulation — 100 mm, brick — 120 mm. Figure 3 presents the dependence of the alternating layers on the temperature distribution [21-24].
It follows from the graph, that the layer with minimum thermal conductivity should be located on the outer surface of the wall in a high-rise building. Therefore, the working capacity of the enclosing structure, consisting of the layers, is determined by the temperature distribution and moisture distribution in the layers.
Heat insulators are elements of the wall structural which reduce the process of heat transfer and perform the role of primary thermal resistance in the structure. Heat insulators are porous medium with high water absorption, which have low thermal conductivity and low strength, so the insulator must alternate with a solid wall.
Of the above mentioned, it is necessary to consider the distribution of pressures in enclosing structure. Since the processes in the humid air generally go
00 00 r r
o o
N N 00 00
* (V U 3
> in
E M
m M
Til
<D <U cz Ç
1=
o ^
O
CD O CD
4 °
o
CO
CM <»
z g
ûl 5o
« I
CO O
CO "
CD ? °
Z CT OT £= 10 T3
— <u <u o o
■8
O (0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Fig. 1. The temperature distribution along the wall thickness in dependence of thermal conductivity tipe of X'
Fig. 2. The temperature distribution along the wall thickness in dependence of thermal conductivity tipe of X
I thickness
Fig. 3. Dependence of thermal expansion from the thickness of the wall
e e
<D (D t O i X
G !
C" c y
(O en
Wall thickness
Fig. 4. Dependence of temperature from the thickness of the wall
CD CD
6 3 o cj
« ( t r
r «
s m 3 ^
o
f -
CD
O CD v 0
0 o
no
1 Q
n =J CD CD CD
f?
® W
I ?
s □
W y c o W W
5° 5°
M 2
o o
a a
» 00
with atmospheric pressure, it can be considered as discharged mixture.
In contrast to gas mixtures water vapor in the air under certain conditions can be converted into liquid or even solid state. This circumstance should be considered in further calculations.
For the estimation of the absolute humidity of the layers it is necessary to calculate:
• the relative humidity as the volume of the saturated vapor;
• vapor pressure as function of the temperature.
Figure 4 shows the steam pressure.
The graph shows that this theory is proven. The vapor pressure also drops in the layer with the smallest thermal conductivity — insulation layer.
CONCLUSIONS
1. The higher the average temperature of the wall, the lower the temperature of the air differs from the temperature of the wall. Besides, the higher the average temperature of the wall, the drier the surface inside the wall. However, the moisture is accumulated on the surface inside the premises.
2. The working capacity of the multilayer enclosing structures is determined by the temperature distribution and moisture distribution in the layers.
3. It follows that the layer with the minimum conductivity should be located on the outer surface of the wall in high-rise building. The central part of the wall (load-bearing layer) would be the most dry.
REFERENCES
co co
r r O O
N N
CO CO
* (V U 3
> in
E (A 2 "" 00
(0
(O
0 i
<D <U
cz ç 1=
O W
o ^
o =ï
CD O CD
4 °
o
CO
CM <»
CO
ra
« I
CO O CO "
CD ? °
Z OT OT £= 10 T3
— <u <u o o
■8
ü lñ
1. de Gracia A., Castell A., Fernández C., Cabeza L.F. A simple model to predict the thermal performance of a ventilated facade with phase change materials. Energy and Buildings. 2015, no. 93, pp. 137-142. DOI: 10.1016/j.enbuild.2015.01.069.
2. Kornienko S.V., Vatin N.I., Petrichenko M.R., Gorshkov A.S. Otsenka vlazhnostnogo rezhima mno-gosloynoy stenovoy konstruktsii v godovom tsikle [Assessment of moisture conditions of walls with fa-cade's thermoinsulation composite systems with external mortar layers]. Stroitel'stvo unikal'nykh zdaniy i sooruzheniy [Construction of Unique Buildings and Structures]. 2015, vol. 6 (33), pp. 19-33. (In Russian)
3. Minea A.A. Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids. International Journal of Heat and Mass Transfer. 2014, vol. 68, pp. 78-84. D01:10.1016/j.ijheatmasstransfer.2013.09.018.
4. Korniyenko S.V. Potentsial vlazhnosti dlya opredeleniya vlazhnostnogo sostoyaniya materialov na-ruzhnykh ograzhdeniy v neizotermicheskikh usloviyakh [The moisture potential for determining the moisture content of outdoor fencing materials in non-isothermal conditions]. Stroitel'nye materialy [Construction Materials]. 2006, no. 4, pp. 88-89. (In Russian)
5. Gabitova G., Zaborova D., Barinov S. Experimental determination of permeability coefficient. Advances in Intelligent Systems and Computing. 2017, vol. 692, pp. 830-836. DOI: 10.1007/978-3-319-70987-1_88.
6. Tusnina O.A., Emel'yanov A.A., Tusnina V.M. Teplotekhnicheskie svoystva razlichnykh konstruk-tivnykh sistem navesnykh ventiliruemykh fasadov [Thermal insulation properties of various ventilated facade systems]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2013, no. 8 (43), pp. 54-63. (In Russian)
7. Yavtushenko E.B., Petrochenko M.V. Diffuzor-naya konstruktsiya navesnogo ventiliruemogo fasada [Diffusive construction of a hinged ventilated façade]. Inzhenerno-stroitel 'nyy zhurnal [Magazine of Civil Engineering]. 2013, no. 8 (43), pp. 38-45. DOI: 10.5862/ MCE.43.6. (In Russian)
8. Zaborova D.D., Kukolev M.I., Musorina T.A., Petrichenko M.R. Matematicheskaya model' energet-icheskoy effektivnosti sloistykh stroitel'nykh ograzhdeniy [The simplest mathematical model of the energy efficiency of layered building envelopes]. Nauchno-tekhnicheskie vedomosti SPbGPU Sankt-Peterburgsk-ogo gosudarstvennogo politekhnicheskogo universiteta [Scientific and technical statements of Peter the Great St. Petersburg Polytechnic University (SPbPU)]. 2016, no. 4 (254), pp. 28-33. (In Russian)
9. Kukolev M.I., Petrichenko M.R. Opredele-nie temperaturnogo polya stenki pri periodicheskom teplovom vozdeystvii [Determination of the wall temperature field under periodic thermal action]. Dviga-tel' — 2007 : sbornik. nauchnykh trudov po materi-alam Mezhdunarodnoy konferentsii, posvyashchen-noy 100-letiyu shkoly dvigatelestroeniya MGTU im. N.E. Baumana [The engine — 2007 Collection of proceedings on the materials of the International conference dedicated to the 100th anniversary of the engine building school of the Bauman Moscow State Technical University N.E. Bauman]. Moscow, MGSU, 2007, pp. 71-75. (In Russian)
10. Vatin N., Gamayunova O. Choosing the right type of windows to improve energy efficiency of buildings. Applied Mechanics and Materials. 2014, vol. 633634, pp. 972-976. D0I:10.4028/www.scientific.net/ amm.633-634.972.
11. Korniyenko S.V., Vatin N.I., Gorshkov A.S. Thermophysical field testing of residential buildings
made of autoclaved aerated concrete blocks. Magazine of Civil Engineering. 2016, vol. 64, issue 4, pp. 10-25. D0I:10.5862/mce.64.2.
12. Korniyenko S.V. Raschetno-eksperimen-tal'nyy kontrol' energosberezheniya zdaniy [Settlement and experimental control of energy saving for buildings]. Inzhenerno-stroitel 'nyy zhurnal [Magazine of Civil Engineering]. 2013, no. 8 (43), pp. 24-30. DOI: 10.5862/MCE.43.4. (In Russian)
13. Vatin N.I., Kukolev M.I. Teplovye nakopiteli v stroitel'stve: uchet primeneniya neskol'kikh teploak-kumuliruyushchikh materialov [Thermal storage in construction: accounting for the application of several heat-accumulating materials]. Inzhenernye sistemy. AVOK — Severo-Zapad [Engineering systems. ABOK — NorthWest]. 2016, no. 1, pp. 50-51. (In Russian)
14. Musorina T., Olshevskyi V., Ostrovaia A., Statsenko E. Experimental assessment of moisture transfer in the vertical ventilated channel. MATEC Web of Conferences. 2016, vol. 73, pp. 02002.
15. Petrichenko M.R., Petrichenko R.M., Kanish-chev A.B., Shabanov A.Yu. Trenie i teploperedacha v porshnevykh kol 'tsakh dvigateley vnutrennego sgora-niya [Friction and heat transfer in piston rings of internal combustion engines]. Leningrad, 1990, 248 p. (In Russian)
16. Gladkikh A.A., Gorshkov A.S. Vliyanie rast-vornykh shvov kladki na parametry teplotekhnicheskoy odnorodnosti sten iz gazobetona [Influence of mortar joints on the parameters of thermal engineering homogeneity of walls made of aerated concrete]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2010, no. 3, pp. 39-42. (In Russian)
17. Vatin N., Gamayunova O. Energy saving at home. Applied Mechanics and Materials. 2014,
vol. 672-674, pp. 550-553. DOI:10.4028/www.scien-tific.net/amm.672-674.550.
18. Haase M., Marques da Silva F., Amato A. Simulation of ventilated facades in hot and humid climates. Energy and Buildings. 2009, vol. 41, issue 4, pp. 361-373. DOI:10.1016/j.enbuild.2008.11.008.
19. Gagarin V.G., Kozlov V.V. Teoreticheskie predposylki rascheta privedennogo soprotivleniya teplo-peredache ograzhdayushchikh konstruktsiy [Theoretical preconditions for calculating reduced resistance to heat transfer of enclosing structures]. Stroitel'nye mate-rialy [Construction Materials]. 2010, no. 12, pp. 4-12. (In Russian)
20. Korniyenko S. Evaluation of thermal performance of residential building envelope. Procedia Engineering. 2015, vol. 117, pp. 191-196. DOI:10.1016/j. proeng.2015.08.140.
21. Balocco C. A simple model to study ventilated facades energy performance. Energy and Buildings. 2002, vol. 34, issue 5, pp. 469-475. DOI:10.1016/ s0378-7788(01)00130-x.
22. Minea A.A. Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids. International Journal of Heat and Mass Transfer. 2014, vol. 68, pp. 78-84. DOI:10.1016/j.ijheatmasstransfer.2013.09.018.
23. Zhang L. Production of bricks from waste materials — A review. Construction and Building Materials. 2013, vol. 47, pp. 643-655. DOI:10.1016/j.con-buildmat.2013.05.043.
24. Zajacs A., Zemitis J., Tihomirova K., Boro-dinecs A. Concept of smart city: first experience from city of Riga. Journal of Sustainable Architecture and Civil Engineering. 2014, vol. 7, issue 2, pp. 54-59. DOI:10.5755/j01.sace.7.2.6932.
Received June 13, 2018.
Adopted in revised form on July 12, 2018.
Approved for publication on July 31, 2018.
About the authors: Tatyana A. Musorina — postgraduate student, Hydraulics and Strength Department, Civil Engineering Institute, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Politechnicheskaya st., St. Petersburg, 195251, Russian Federation, tamusorina@mail.ru;
Ol'ga S. Gamayunova — Senior lecturer, Department of Construction of Unique Buildings and Structures, Civil Engineering Institute, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Politechnicheskaya st., St. Petersburg, 195251, Russian Federation, 9658825@mail.ru;
Mikhail R. Petrichenko — Doctor of Technical Sciences, Professor, Head of the Hydraulics and Strength Department, Civil Engineering Institute, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Politechnicheskaya st., St. Petersburg, 195251, Russian Federation, fonpetrich@mail.ru.
e e
<D (D t O
i H G !
C" c y
(Q en
CD CD
Ö 3 o CO
« ( t r a i
r «
s m 3 ^
o
f -
CD
O CD v 0
0 o
no
1 i n =J CD CD CD
[M
ü ü « ?
s □
s y c o O ü , 00
M 2
O o
a -A
00 00
ЛИТЕРАТУРА
1. de Gracia A., Castell A., Fernández C., Cabeza L.F. A simple model to predict the thermal performance of a ventilated facade with phase change materials // Energy and Buildings. 2015. No. 93. Pp. 137-142. DOI: 10.1016/j.enbuild.2015.01.069.
2. Корниенко С.В., Ватин Н.И., Петриченко М.Р., Горшков А.С. Оценка влажностного режима многослойной стеновой конструкции в годовом цикле // Строительство уникальных зданий и сооружений. 2015. № 6 (33). С. 19-33.
3. Minea A.A. Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids // International Journal of Heat and Mass Transfer. 2014. Vol. 68. Pp. 78-84. D0I:10.1016/j.ijheatmasstransfer.2013.09.018.
4. Корниенко С.В. Потенциал влажности для определения влажностного состояния материалов наружных ограждений в неизотермических услови-
со во ях // Строительные материалы. 2006. № 4. С. 88-89.
5. Gabitova G., Zaborova D., Barinov S. Experi-
(V C4
со со mental Determination of Permeability Coefficient // к ш Advances in Intelligent Systems and Computing. 2017. Ü in Vol. 692. Pp. 830-836. DOI: 10.1007/978-3-319-
E 1П
3 - 70987-1_88.
6. Туснина О.А., Емельянов А.А., Туснина В.М. f g Теплотехнические свойства различных конструк-§ JE тивных систем навесных вентилируемых фасадов //
L О
> Инженерно-строительный журнал. 2013. № 8 (43). ст С. 54-63.
'¡= 7. Явтушенко Е.Б., Петроченко М.В. Диф-
с с фузорная конструкция навесного вентилируемого
^ £= фасада // Инженерно-строительный журнал. 2013.
~ = № 8 (43). С. 38-45. DOI: 10.5862/MCE.43.6.
со О 8. Заборова Д.Д., Куколев М.И., Мусорина Т.А.,
4 ° Петриченко М.Р. Математическая модель энерге-is тической эффективности слоистых строительных
z g ограждений // Научно-технические ведомости
41 5 СПбПУ. 2016. № 4 (254). С. 28-33.
tz-2 9. Куколев М.И., Петриченко М.Р. Определе-
ol оо ние температурного поля стенки при периодическом
о тепловом воздействии // Двигатель — 2007 : сб.
0 g науч. тр. по мат. Междунар. конф., посвящ. 100-ле-
05 ^ тию школы двигателестроения МГТУ им. Н.Э. Бау-^ ° мана. М. : МГСУ, 2007. С. 71-75.
ся s 10. Vatin N., Gamayunova O. Choosing the Right
_ $ Type of Windows to Improve Energy Efficiency of
о Buildings // Applied Mechanics and Materials. 2014.
^ Vol. 633-634. Pp. 972-976. D0I:10.4028/www.scien-
?5 Э tific.net/amm.633-634.972.
L W
g Ó 11. Korniyenko S.V., Vatin N.I., Gorshkov A.S.
* ® Thermophysical field testing of residential buildings
1 '¡= made of autoclaved aerated concrete blocks // Magazine o In of Civil Engineering. 2016. Vol. 64. Issue 4. Pp. 10-25. ta£ D0I:10.5862/mce.64.2.
12. Корниенко С.В. Расчетно-эксперименталь-ный контроль энергосбережения зданий // Инженерно-строительный журнал. 2013. № 8 (43). С. 24-30. DOI: 10.5862/MCE.43.4.
13. Ватин Н.И., Куколев М.И. Тепловые накопители в строительстве: учет применения нескольких теплоаккумулирующих материалов // Инженерные системы. АВОК — Северо-Запад. 2016. № 1. С. 50-51.
14. Musorina T., Olshevskyi V., Ostrovaia A., Stat-senko E. Experimental assessment of moisture transfer in the vertical ventilated channel // MATEC Web of Conferences. 2016. Vol. 73. Pp. 02002.
15. Петриченко М.Р., Петриченко Р.М., Кани-щев А.Б., Шабанов А.Ю. Трение и теплопередача в поршневых кольцах двигателей внутреннего сгорания. Л., 1990, 248 с.
16. Гладких А.А., Горшков А.С. Влияние растворных швов кладки на параметры теплотехнической однородности стен из газобетона // Инженерно-строительный журнал. 2010. № 3. С. 39-42.
17. Vatin N., Gamayunova O. Energy saving at home // Applied Mechanics and Materials. 2014. Vol. 672-674. Pp. 550-553. D0I:10.4028/www.scien-tific.net/amm.672-674.550.
18. Haase M., Marques da Silva F., Amato A. Simulation of ventilated facades in hot and humid climates // Energy and Buildings. 2009. Vol. 41. Issue 4. Pp. 361-373. D0I:10.1016/j.enbuild.2008.11.008.
19. Гагарин В.Г., Козлов В.В. Теоретические предпосылки расчета приведенного сопротивления теплопередаче ограждающих конструкций // Строительные материалы. 2010. № 12. С. 4-12.
20. Korniyenko S. Evaluation of thermal performance of residential building envelope // Procedia Engineering. 2015. Vol. 117. Pp. 191-196. D0I:10.1016/j. proeng.2015.08.140.
21. Balocco C. A simple model to study ventilated facades energy performance // Energy and Buildings. 2002. Vol. 34. Issue 5. Pp. 469-475. D0I:10.1016/ s0378-7788(01)00130-x.
22. Minea A.A. Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids // International Journal of Heat and Mass Transfer. 2014. Vol. 68. Pp. 78-84. D0I:10.1016/j.ijheatmasstransfer.2013.09.018.
23. Zhang L. Production of bricks from waste materials — A review // Construction and Building Materials. 2013. Vol. 47. Pp. 643-655. D0I:10.1016/j. conbuildmat.2013.05.043.
24. Zajacs A., Zemitis J., Tihomirova K., Boro-dinecs A. Concept of smart city: first experience from city of Riga // Journal of Sustainable Architecture and Civil Engineering. 2014. Vol. 7. Issue 2. Pp. 54-59. D0I:10.5755/j01.sace.7.2.6932.
Поступила в редакцию 13 июня 2018 г. Принята в доработанном виде 12 июля 2018 г. Одобрена для публикации 31 июля 2018 г.
Об авторах: Мусорина Татьяна Александровна — аспирант кафедры гидравлики и прочности, Инженерно-строительный институт, Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), 195251, г. Санкт-Петербург, ул. Политехническая, д. 29, tamusorina@mail.ru;
Гамаюнова Ольга Сергеевна — старший преподаватель кафедры строительства уникальных зданий и сооружений, Инженерно-строительный институт, Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), 195251, г. Санкт-Петербург, ул. Политехническая, д. 29, 9658825@mail.ru;
Петриченко Михаил Романович — доктор технических наук, профессор, заведующий кафедрой гидравлики и прочности, Инженерно-строительный институт, Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), 195251, г. Санкт-Петербург, ул. Политехническая, д. 29, fonpetrich@mail.ru.
e е
(D (D t О
Î.Ï G Г
С" с У
(О сл
CD CD 7
О 3 о CJ
« ( t r
r «
S M
3 Й
>< о
f -
CD
О CD
О о
По
Q Q
П =J
CD CD CD
ем
« «
I ? s □
s у с о (D « , СО
M 2 О О л -А
00 00