doi: 10.18720/MCE.80.11
Temperature and velocity conditions in vertical channel of
ventilated facade
Температурный и скоростной режимы в вертикальном канале
вентилируемого фасада
E.A. Statsenko*, Студент Е.А. Стаценко*,
A.F. Ostrovaia, студент А.Ф. Островая,
V.Y. Olshevskiy, аспирант В.Я. Ольшевский,
M.R. Petrichenko, д.т.н., зав. кафедрой М.Р. Петриченко,
Peter the Great St. Petersburg Polytechnic Санкт-Петербургский политехнический
University, St. Petersburg, Russia университет Петра Великого,
Санкт-Петербург, Россия
Key words: ventilated facades; convective air Ключевые слова: вентилируемые фасады; flows; grooved lines; air velocity; air temperature; конвективные воздушные потоки; русты; facing layer; air gap скорость воздуха; температура воздуха;
облицовочный слой; воздушный зазор
Abstract. The most economically viable and practicable method of moisture removal from the air gap with the help of free convective air flows are presented in the article. An experiment conducted on a laboratory bench simulating a hinged ventilated facade is described. The parameters and design features of a particular building envelope are determined. Also, the impact of technological gaps - grooved lines is described, which influence the air velocity in the ventilated channel, which in turn affects the temperature and humidity conditions of the building envelope. The experimental evaluation of air velocity and air temperature along the height of ventilated layer is provided in the article. The impact of grooved lines density and the method of hot plane heating on the distribution of air temperature and velocity. Optimal is the construction which is designed with the least number of rusts, from the technological point of view.
Аннотация. Был рассмотрен наиболее экономичный и практичный метод удаления влаги из воздушного зазора навесного вентилируемого фасада - с помощью свободноконвективных потоков воздуха. Описан эксперимент, проведенный на лабораторном стенде, имитирующем собой навесной вентилируемый фасад. Были определены параметры тепломассообмена и конструктивные особенности отдельно взятой ограждающей конструкции. Также было рассмотрено влияние технологических зазоров-рустов, воздействующих на скорость воздуха в вентилируемом канале, которая, в свою очередь, влияет на температурно-влажностный режим ограждающих конструкций. Приведена численная оценка скорости движения и температуры воздуха по высоте вентилируемой прослойки. Установлено влияние рустов и способа обогрева «горячей» стенки на распределение скорости и температуры воздушного потока. Оптимальной является конструкция с наименьшим, с технологической точки зрения, количеством рустов.
1. Introduction
Ventilated facade - is a facade with ventilated air gap aimed at climatic action protection and exterior development.
The system is constructed in the way, where air gap, which is located between insulation and outer cladding, provides free air movement. Free convective air flows occur in air gap because of volume force, which depends on density difference and which is justified by heat energy transfer due to temperature non-uniformity. Besides, there are technological gaps - grooved lines. From a physics perspective, a facade without grooved lines forms an ideal channel.
These constructive features influence air velocity in vertical channel. Air velocity affects temperature and humidity conditions of external envelope.
As can be seen from the above, natural air movement in a gap provides dryness of a wall and prevent condensate formation in insulation layer.
At the present times suspended ventilated facades building is relevant to many Russian and foreign scientists. A great contribution to the study of free-convection flow in a vertical ventilated channel was made by Russian and foreign researchers. The article of V.G. Gagarin, V.V. Kozlov, D.V. Nemova, M.V. Petrochenko, E.B. Yevtushenko and many other specialists have been devoted to the determination of the thermophysical properties of ventilated air gaps and their influence on the temperature and humidity conditions of the enclosing structures [1-29].
The paper [1] studies physical processes of free convective current and determines the conditions of cool air filtration in the gap. There are a number of problems associated with the condensation of moisture in the structure in the operation of ventilated facade systems with air gap widely used today in construction [3-7].
The article [8] determines best hydraulic ventilated cavity of a suspended facade. The author of the article [10] estimates the average velocity of free-convective current dependence with different wall temperature.
The author of the article [11] gives the description of air-vent quarter division with different air motion modes. The research [15] determines experimentally and theoretically the average velocity and temperature profiles along the ventilated channel width.
The article [27] provides evaluation methods of thermal insulation with longitudinal air filtration of ventilated facade.
The article describes the impact of arrangement of assembling grooved lines and the heating methods of interior wall plan on air velocity and temperature in vertical ventilated air gap. That is especially important in the conditions of the temperature and climatic zone of St. Petersburg.
Research objective:
• determining the influence of grooved lines density and the method of hot plane heating on the distribution of air temperature and velocity in free convective flow.
Goal Setting:
• determining the average velocity and temperature of free convective flow in air gap in relation to grooved lines pitch with constant geometric parameters of the gap;
• determining of heat and mass transfer parameters for various degrees of hot surface heating.
2. Methods
Imperfection of building constructions leads to excess humidification. That is why it is necessary to focus on water storage capacity of materials. Most methods of insulation layer moisture control aimed at reducing moisture inflow to the air gap.
Moisture removal with the help of free convective air-flows is the most economically viable and practicable method, since the energy source is the heat flow from the hot wall to air. No other external energy sources (ventilators) are needed. Free convection in gravity field is justified by the existence of negative air density gradient, which is associated with temperature gradient. If the surface temperature is higher than the ambient temperature, the air flow in the surface runs hot, becomes lighter and ascends. In this case, less denser air layers replace the ascended layers.
When considering moisture removal, significant attention should be paid to grooved lines, which perform thermal compensator function. Cladding grooved lines provide hydraulic connection with outdoor air. All mentioned factors are prevailing when designing and engineering air cavities. All results of the research were obtained experimentally. Schematic view of a ventilated gap (Fig. 2), which is located between the "hot" plane y = 0 (with the temperature Th = 67) and the cold plane y = h (with the temperature Tc = 22). Pressure at level z = 0 equals po, pressure at level z = h equals pi, while po>pi. It is required to estimate average velocity and temperature through free-convective flow. To measure the speed are used a thermo-anemometer Testo 435-2, with a resolution of 1 cm/s, it allows to measure the velocity with an error of 0.5 cm/s, air temperature - with an error of 0.1 °C
Required control volume comes over the air-vent and spreads out from zero level to z = L plane, which lays above the outlet air-vent cut in still air. It is taken, that outdoor air penetrates air cavity through lower air holes. Outdoor air ascends along the air-vent and passes through upper air holes [16].
Heating is provided by three vertical fastened thermal elementary units. For equal heat distribution the elementary units are fastened to the tin sheet with high thermal conductivity. Consequently, Th = const. Model height equals L = 2040 mm, while L >> h. When manufacturing the facade model, we should take into consideration the difference in the temperatures of outer and inner layers, which is justified by the heating systems operation. The model considers heating of the wall and heat inflow to the air cavity. For this experiment different combinations of thermal elements are used: lower-middle, lower-upper. Upper-middle combination is not used, since the lower installation section is not heated and there is no air heating in channel inlet. The temperature in this section stays homothermal, consequently, there is no active air movement and the flow is inefficient.
Velocity depends on the air supply method, internal parameters of the gap and the method of hot plane heating. In the experiments the gap width /h/ was set at h = 80 mm = const. In the experiments grooved lines pitch with different fixed activation methods of heating elements was determined. For this purpose, the average velocity and temperature of air in central part of the low were measured.
Figure 1.Thermal anemometer
Figures 2,3. Installation scheme
3. Results and Discussion
Within the scope of the given measurements, the following charts were obtained, fig. 4-12. Figures 4-5 show air and velocity dependence on height with different grooved lines pitch and constant heating along the height. Based on the obtained dependencies it was identified that air flow temperature increases when grooved lines pitch increases (with constant heat flow density along the heated channel height). The most significant reason is the decrease of high-density air inflow to the channel. The velocity is maximum in the ideal channel (grooved lines are fully closed).
Figure 4. Temperature distribution along the channel height in relation to grooved lines pitch with
constant height heating
v, m/s n A C
0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 ■ grooved lines are opened ♦ interval 600 mm
____X—
A""*" ___--Î ♦____J j.______
"Vm—"
A grooved lines are
closed
310 5 2 0 9 3 0 1240 155 0 1 8 6 0 L, mm
Figure 5. Velocity distribution along the channel height in relation to grooved lines pitch with
constant height heating
Figures 6-7 show the velocity-temperature to height relations with different grooved lines pitch and activated central and lower heat sources. While lower and central installation sections heating, the temperature of the top section does not change significantly. As may be supposed, air flow temperature increase occurs due to blowing-out through the upper grooved lines. In the top unheated section of the channel, the velocities converge and have no relations to the grooved lines pitch.
Figure 6. Temperature distribution along the channel height in relation to grooved lines arrangement with activated central and lower heat sources
V, m/s 0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
О
.....■
ш ^ - ~ ~ Z.
A
**** ■ —♦—
310 62 0 930 1240 15 5 0 I860
♦ grooved lines are opened
■ interval 600 mm
grooved lines are dosed
Figure 7. Velocity distribution along the channel height in relation to grooved lines arrangement
with activated central and lower heat source
Figures 8-9 show the velocity-temperature to height relations with different grooved lines pitch and activated central and lower heat source. Based on the results it is concluded that temperature and velocity distribution in relation to grooved lines pitch corresponds the above given charts, while heating of channel inlet and outlet, and central section adiabatization. There is minimal fibration of experimental data in central unheated section.
t, °c
24 r
♦ grooved lines are opened
■ Interval 600mm
grooved line s are dosed
21.5 V-21
310 620 9 3 0 1240 1550 i860 L, mm
Figure 8. Temperature distribution along the channel height in relation to grooved lines arrangement with activated central and lower heat sources
v, m/s 0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
3io 620 930 1240 1550 i860 L, mm
Figure 9. Velocity distribution along the channel height in relation to grooved lines arrangement
with activated central and lower heat sources
Figures 10-12 show the velocity to height relation with different variations of heat flow distribution. It was identified that velocity increases in heated areas. From Figures 11, 12 it is observed that the velocity growth rate is maximal in the ideal channel.
This can be explained by inability of high-density air to penetrate the channel, and by change absence of air flow movement with hermetic sealing of grooved lines.
v, m/s 0.4
0.35
0.3
0.25
0.2
0.15
i
F—A
♦ all heating elements
A lower-middle
heating elements
lower-upper heating elements
Figure 10. Velocity distribution along the channel height in relation to variations of heat flow with
opened grooved lines
Figure 11. Velocity distribution along the channel height in dependence with heat flow variations
with groove line pitch of one meter
Figure 12. Velocity distribution along the channel height in dependence with heat flow variations
in the ideal channel
The main goal of this article is to study the mechanisms of the method of heating the wall on the heat and mass transfer parameters of the facade along its height. The article focuses on the experimental determination of temperature and airflow velocity dependences from combinations of heat sources in the ventilated channel of the facade and the width of the facing layers panels.
In articles by other authors on the same topic are described the heated enclosing structure with a constant temperature and averaged height parameters of the air in the channel [1, 4, 8-9], but the contribution of technological gaps - grooved lines is not taken into account. In this researching examines the influence of the variable position of heat sources and various combinations of grooved lines on the efficiency of the entire system.
4. Conclusions
Based on the results the following conclusions can be summarized:
1. A series of experimental studies was carried out and the result of which it was found that the facade is sensitive to changes in grooved lines number and heating method change.
2. The maximum velocity - around 0.37 m/s - is observed with hermetically-sealed grooved lines (the ideal channel), but at the present time such system is technologically impracticable. Minimum number of grooved lines is optimal (in this case interval is 600 mm).
3. For thermal energy saving purposes, heating of the middle section of the channel can be neglected. When heating of the middle section is neglected, the average velocity undergoes minor changes.
4. Temperature variation rate in different heating areas changes in dependence with grooved lines spacing. The fibration of experimental data in unheated sections is minimal.
Reference
1. Nemova D.V., Olshevskyi V.Ja., Cejtin D.N. Gidrostatika termogravitacionnoj konvekcii v vertikal'nom kanale [Hydrostatics of thermogravitational convection in the vertical channel]. Nauchno-tehnicheskie vedomosti SPBGPU, Jekonomicheskie nauki. 2013. Pp. 295-301. (rus)
2. Ostrovaia A.F., Stacenko E.A., Olshevskyi V.Ja., Musorina T.A. Moisture Transfer in Ventilated Facade Structures. MATEC Web of Conferences. 2016. Pp. 1-5.
3. Nemova D.V., Emel'janova V.A., Miftahova D.R. Jeksperimental'nye zadachi rascheta svobodnokonvektivnyh dvizhenij v navesnyh ventiliruemyh fasadah [Experimental problems of calculation the free-convection movements in the hinged ventilated facades]. Magazine of Civil Engineering. 2010. No. 8. Pp. 46-53. (rus)
4. Emel'janova V.A., Nemova D.V., Miftahova D.R. The optimized design of the hinged ventilated facade. Magazine of Civil Engineering. 2014. No. 6. Pp. 67-74. (rus)
5. Petrichenko M.R. Convective heat and mass transfer in combustion chambers of piston engines. Basic results. Heat transfer. Soviet research. 1991. Vol. 23(5). Pp. 703-715.
6. Ostrovaia A.F., Petrichenko M.R., Stacenko E.A. The glass ventilated facades. Research of an air gap. Applied Mechanics and Materials. 2015. Pp. 725-726.
7. Petrichenko M.R. Rasshcheplyayushchie razlozheniya v predel'nyh zadachah dlya obyknovennyh kvazilinejnyh differencial'nyh [The splitting decomposition in limit tasks for the ordinary quasilinear differential equations]. Second Edition St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2012. Pp. 143-149. (rus)
8. Petrichenko M.R., Petrochenko M.V., Yevtushenko E.B. Hydraulically optimum ventilated gap. Magazine of Civil Engineering. 2013. No. 2(37). Pp. 35-40. (rus)
Литература
1. Немова Д.В., Ольшевский В.Я., Цейтин Д.Н. Гидростатика термогравитационной конвекции в вертикальном канале // Научно-технические ведомости СПбПУ, Экономические науки. 2013. С. 295-301.
2. Ostrovaia A.F., Stacenko E.A., Olshevskyi V.Ja., Musorina T.A. Moisture Transfer in Ventilated Facade Structures. MATEC Web of Conferences. 2016. Pp. 1-5.
3. Немова Д.В., Емельянова В.А., Мифтахова Д.Р. Экспериментальные задачи расчета свободноконвективных движений в навесных вентилируемых фасадах // Инженерно-строительный журнал. 2010. № 8. С. 46-53.
4. Емельянова Д.А., Немова Д.В., Мифтахова Д.Р. Оптимизированная конструкция навесного вентилируемого фасада // Инженерно-строительный журнал. 2014. № 6. С. 67-74.
5. Petrichenko M.R. Convective heat and mass transfer in combustion chambers of piston engines. Basic results // Heat transfer. Soviet research. 1991. No. 23(5). Pp. 703-715.
6. Ostrovaia A.F., Petrichenko M.R., Stacenko E.A. The glass ventilated facades. Research of an air gap // Applied Mechanics and Materials. 2015. Pp. 725-726.
7. Петриченко М.Р. Расщепляющие разложения в предельных задачах для обыкновенных квазилинейных дифференциальных уравнений // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Физико-математические науки. 2012. С. 143-149.
8. Петриченко М.Р., Петроченко М.В., Явтушенко Е.Б. Гидравлически оптимальная вентилируемая щель // Инженерно-строительный журнал. 2013. № 2(37). С. 35-40.
9. Vatin N.I., Petrichenko M.R., Nemova D.V. Hydraulic methods for calculation of system of rear ventilated facades
9. Vatin N.I., Petrichenko M.R., Nemova D.V. Hydraulic methods for calculation of system of rear ventilated facades. Applied Mechanics and Materials. 2014. Vol. 633-634. Pp. 1007-1012.
10. Petrichenko M.R., Petrochenko M.V. Gidravlika svobodnokonvektivnyh techenij v ograzhdayushchih konstrukciyah s vozdushnym zazorom [Hydraulics of free-convective flows in enclosures with an air gap]. Magazine of Civil Engineering. 2011. No. 8(26). Pp. 51-56. (rus)
11. Girgidov A.D. Raschety, issledovaniya, ehksperimenty Struktura i teploprovodnost' vozdushnogo potoka v ventiliruemom fasade zdaniya GEHS [Calculations, studies, experiments, Structure and thermal conductivity of the air flow in the ventilated facade of the building HEP]. Hydraulic engineering. 2015. No. 6. (rus)
12. Yevtushenko E.B. Fundamentals of hydraulic design for ventilated facades. Construction of Unique Buildings and Structures. 2013. No. 2(7). Pp. 55-61. (rus)
13. Gebhart B., Jaluria J., Mahajan R., Sammakia B. Svobodnokonvektivnye techeniya, teplo - i massoobmen [Free-convective flow, heat and mass transfer]. MIR. 1991. P. 678. (rus)
14. Lapin V.G., Lapin S.V. Calculation of convective air movement in canadaontario facade in the presence of horizontal cracks between the tiles lining [Calculation of convective air movement in canadaontario facade in the presence of horizontal cracks between the tiles lining]. Privolzhsky scientific journal. 2012. No. 2(22). Pp. 85-92. (rus)
15. Petrochenko M.V. Osnovy gidravlicheskogo rascheta SKT v ograzhdayushchih stroitel'nyh konstrukciyah [Fundamentals of hydraulic calculation of spiral FCM in the enclosing building structures]. SPbSTU. 2012. P. 20. (rus)
16. Kornienko S.V. Testirovanie metoda rascheta temperaturno-vlazhnostnogo rezhima ograzhdajushhih konstrukcij na rezul'tatah naturnyh izmerenij parametrov mikroklimata pomeshhenij [Testing of a method of calculation of temperature moisture conditions of the protecting designs on results of natural measurements of parameters of a microclimate of rooms]. Magazine of Civil Engineering. 2012. No. 2. Pp. 18-23. (rus)
17. Petrichenko M.R., Petrochenko M.V. Dostatochnye uslovija sushhestvovanie svobodno-konvektivnogo techenija v vertikal'nom shhelevom kanale [Sufficient conditions existence of a free and convective current in the vertical slot-hole channel]. Nauchno-tehnicheskie vedomosti SPBGPU. 2012. No. 2. Pp. 34-39. (rus)
18. Yevtushenko E.B., Petrochenko M.V. Diffuzornaya konstrukciya navesnogo ventiliruemogo fasada [The diffuser design of ventilated facades]. Magazine of Civil Engineering. No. 8. Pp. 38-45. (rus)
19. Nemova D.V., Sistemy ventilyacii v zhilyh zdaniyah kak sredstvo povysheniya ehnergoehffektivnosti [Systems of ventilation in residential buildings as means of increase of energy efficiency]. Construction of Unique Buildings and Structures. 2012. Pp. 84-86. (rus)
20. Gagarin V.G., Kozlov V.V. Metodika proverki vypadenija kondensata v vozdushnom zazore ventiliruemogo fasada [Technique of check of loss of condensate in an air gap of the ventilated facade]. Stroitel'naja fizika vXXI veke. 2006. Pp. 73-80. (rus)
21. Bukhartsev V.N., Petrichenko M.R. Approximation of the depression curve of the inflow to an ideal trench. Power Technology and Engineering. 2011. No. 5. Pp. 374-377.
22. Li J., Chow Y. Heat transfer and air movement behaviour in a double-skin faсade. Centre for Sustainable Energy Technologies (CSET). 2014. Pp. 198-203.
23. Hana J., Lua L., Penga J., Hongxing Ya. Performance of ventilated double-sided PV facade compared with
// Applied Mechanics and Materials. 2014. Vol. 633-634. Pp. 1007-1012.
10. Петриченко М.Р., Петроченко М.В. Гидравлика свободноконвективных течений в ограждающих конструкциях с вентилируемым зазором // Инженерно-строительный журнал. 2011. № 8(26). С. 51-56.
11. Гиргидов А.Д. Расчеты, исследования, эксперименты. Структура и теплопроводность воздушного потока в вентилируемом фасаде здания ГЭС // Гидротехническое строительство. 2015. № 6.
12. Явтушенко Е.Б. Основы гидравлического расчета навесных вентилируемых фасадов // Строительство уникальных зданий и сооружений. 2013. № 2(7). С. 55-61.
13. Гебхарт Б., Джалурия Й., Махаджан Р., Саммакия Б. Свободноконвективные течения, тепло - и массообмен. МИР, 1991. 678 с.
14. Лапин И. Г., Лапин С. В. Расчет конвективного движения воздуха в канале вентилируемого фасада при наличии горизонтальных щелей между плитками облицовки // Приволжский научный журнал. 2012. № 2(22). С. 85-92.
15. Петроченко М.В. Основы гидравлического расчета СКТ в ограждающих строительных конструкциях // Инженерно-строительный журнал. 2012. C. 20-24.
16. Корниенко С.В. Тестирование метода расчета термогравитационного режима ограждающих конструкций на результатах натурных измерений параметров микроклимата помещений // Инженерно-строительный журнал. 2012. № 2. С. 18-23.
17. Петриченко М.Р., Петроченко М.В. Достаточные условия существования свободноконвективного течения в вертикальном щелевом канале // Научно-технические ведомости СПбПУ. 2012. № 32. С. 34-39.
18. Явтушенко Е.Б., Петроченко М.В. Диффузорная конструкция навесного вентилируемого фасада // Инженерно-строительный журнал. № 8. С. 38-45.
19. Немова Д.В. Системы вентиляции в жилых зданиях как средство повышения энергоэффективности // Строительство уникальных зданий и сооружений. 2012. С. 84-86.
20. Гагарин В.Г., Козлов В.В. Методика проверки выпадения конденсата в воздушном зазоре вентилируемого фасада // Строительная физика в XXI веке. 2006. С. 73-80.
21. Bukhartsev V.N., Petrichenko M.R. Approximation of the depression curve of the inflow to an ideal trench // Power Technology and Engineering. 2011. No. 5. Pp. 374-377.
22. Li J., Chow Y. Heat transfer and air movement behaviour in a double-skin facade // Centre for Sustainable Energy Technologies (CSET). 2014. Pp. 198-203.
23. Hana J., Lua L., Penga J., Hongxing Ya. Performance of ventilated double-sided PV facade compared with conventional clear glass façade // Energy and Buildings. 2013. No. 56. Pp. 204-209.
24. Rosca Alin V., Pop loan. Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip // International Journal of Heat and Mass Transfer. 2013. No. 60. Pp. 355-364.
25. Barrios G., Huelsz G., Rechtman R., Rojas J. Wall roof thermal performance differences between air-conditioned and non air-conditioned rooms // Energy and Buildings. 2011. No. 43. Pp. 219-223.
26. Yang H., Feng., Xia G., Wan Q. Experimental study on impact of ventilated double-skin facade on the indoor thermal environment in winter // ISHVAC 2013. 2013. Pp. 384-396.
27. Gaillard L., Giroux-Julien S., Menezo C., Pabiou H. Experimental evaluation of a naturally ventilated PV double-
conventional clear glass façade. Energy and Buildings. 2013. Vol. 56. Pp. 204-209.
24. Rosca Alin V., Pop loan. Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip. International Journal of Heat and Mass Transfer. 2013. Vol. 60. Pp. 355-364.
25. Barrios G., Huelsz G., Rechtman R., Rojas J. Wall/roof thermal performance differences between air-conditioned and non air-conditioned rooms. Energy and Buildings. 2011. Vol. 43. Pp. 219-223.
26. Yang H., Feng., Xia G., Wan Q. Experimental study on impact of ventilated double-skin facade on the indoor thermal environment in winter. ISHVAC 2013. 2013. Pp. 384-396.
27. Gaillard L., Giroux-Julien S., Menezo C., Pabiou H. Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions. Chair Habitats and Energy Innovations. 2012. Pp. 54-67.
28. Korniyenko S.V., Vatin N.I., Gorshkov A.S. Thermophysical field testing of residential buildings made of autoclaved aerated concrete blocks. Magazine of Civil Engineering. 2016. No. 4(64). Pp. 10-25.
29. Gorshkov A., Vatin N., Nemova D., Shabaldin A., Melnikova L., Kirill P. Using life-cycle analysis to assess energy savings delivered by building insulation. Procedia Engineering. 2015. No. 1(117). Pp. 1085-1094.
30. Petritchenko M.R., Subbotina S.A., Khairutdinova F.F., Reich E.V., Nemova D.V., Olshevskiy V.Ya., Sergeev V.V. Effect of rustication joints on air mode in ventilated facade. Magazine of Civil Engineering. 2017. No. 5(73). Pp. 40-48.
skin building envelope in real operating conditions // Chair Habitats and Energy Innovations. 2012. Pp. 54-67.
28. Корниенко С.В., Ватин Н.И., Горшков А.С., Натурные теплофизические испытания жилых зданий из газобетонных блоков // Инженерно-строительный журнал. 2016. № 4(64). С. 10-25.
29. Gorshkov A., Vatin N., Nemova D., Shabaldin A., Melnikova L., Kirill P. Using life-cycle analysis to assess energy savings delivered by building insulation // Procedia Engineering. 2015. No. 117(1). Pp. 1085-1094.
30. Петриченко М.Р., Субботина С.А., Хайрутдинова Ф.Ф., Рейх Е.В., Немова Д.В., Ольшевский В.Я., Сергеев В.В. Влияние рустов на воздушный режим в вентилируемом фасаде // Инженерно-строительный журнал. 2017. № 5(73). С. 40-48.
Elena Statsenko,
+7(981)839-85-38; [email protected] Anastasia Ostrovaia,
+7(953)344-90-63; [email protected]
Vyacheslav Olshevskiy, +7(911)919-95-26; [email protected]
Mikhail Petrichenko, +7(921)330-04-29; [email protected]
Елена Александровна Стаценко, +7(981)839-85-38; эл. почта: [email protected]
Анастасия Федоровна Островая,
+7(953)344-90-63;
эл. почта: [email protected]
Вячеслав Янушевич Ольшевский, +7(911)919-95-26;
эл. почта: [email protected]
Михаил Романович Петриченко, +7(921)330-04-29; эл. почта: [email protected]
© Statsenko E.A., Ostrovaia A.F., Olshevskiy V.Y, Petrichenko M.R., 2018