Научная статья на тему 'Synthesis and stereochemistry of halogenated aromatic mono- and bis-imides'

Synthesis and stereochemistry of halogenated aromatic mono- and bis-imides Текст научной статьи по специальности «Химические науки»

i Надоели баннеры? Вы всегда можете отключить рекламу.
Azerbaijan Chemical Journal
Область наук
Ключевые слова

Аннотация научной статьи по химическим наукам, автор научной работы — Salakhov M.S., Bagmanov B.T., Mustafayeva F.A.

For the first time the optimum method of the synthesis of mono-, bis -imides and amide acids from halogenated derivatives of o -, m -, p -phenylenediamine, 4,4¢diaminodiphenylmethane and 3,3¢-dimethoxy-4,4¢-diaminodiphenylmethane with tetrahydropthal and norbornene dicarboxylic acids, the physical-chemical parameters has been found and the details of the spatial structure of the obtained new compounds are determined

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Synthesis and stereochemistry of halogenated aromatic mono- and bis-imides»



UDC 547.584..535.31



M.S.Salakhov, B.T.Bagmanov, F.A.Mustafayeva

Institute of Polymer Materials of Azerbaijan National Academy of Sciences

salahov_mustafa@mail.ru Received 06.02.2015

For the first time the optimum method of the synthesis of mono-, bis-imides and amide acids from halogenated derivatives of o-, m-, p-phenylenediamine, 4,4'- diaminodiphenylmethane and 3,3'-dimethoxy-4,4'-diaminodiphenylmethane with tetrahydropthal and norbornene dicarboxylic acids, the physical-chemical parameters has been found and the details of the spatial structure of the obtained new compounds are determined.

Keywords: phenylenediamine, diaminodiphenylmethane, brominated derivatives, mono- and bis-amide acids, imide, conformation.

Currently in techniques there is a great demand to new materials with high-temperature resistant and self-extinguishing property [1-2]. In this respect the compounds containing halogen atoms and imide groups based on di-carboxylic acid - monomer, oligomer and polymers are applied with great success [3]. The practical significance of the acylation products of mono- and bicyclic aromatic diamines containing halogen atoms with cyclic dicarboxylic acids is attractive, so in addition to being ac-

cessible and cheap raw materials it is possible to do concord between spatial structures and properties of obtained products, on this basis it is justified obtaining oligomer and polymers with the desirable properties. Recent years the extensive research carried out by us on the sphere of bis-diene and bis-diendienophiles obtained on the base of hexachlorocyclopentadien (HCCPD), joint polycondensation and self polyconden-sation of obtained bis-dien-diendienofils, appropriate products were investigated [4-10].











Cl O

Cl O










°CH3 OCH3 O Cl

O Cl

Study of the reactions of oxyhalogenation and halogenation of o-, m-, p-functionally substituted aromatic mono- and polycyclic hydrocarbons for obtaining the monomer and polymers containing imide groups and halogen atoms is a different way in terms of the above-mentioned

ones, we have conducted a thorough investigations in this direction too [11-15]. As a result, the interesting bromine-containing diamines have been obtained, which have been used for the subsequent conversions.

Research of the acylation reactions of the




synthesized bromine-containing aromatic amines shows that the obtaining amide acids and imides on the basis of compounds containing bromine atoms in o,o'-positions in comparison with amine groups is hard enough; selection of various solvents (acetone, benzene, toluene, dimethylfor-mamide, dimethylasetamide and etc.), or increasing of temperature do not help to achieve the desired products. This fact and study of models of noted bromine-containing diamines confirm that the problem in the acylation reactions of aromatic amines in which bromine atoms are situated in o,o'-position in comparison with amine groups are associated with "spatial difficulty". So, the voluminous bromine atoms in o,o'-pozi-tions "hide" amine groups with relatively small radius prevent could be attacked and thus che mical changes are possible. Exactly in terms of

the above one can be argue that renaming anilines with large scale nuclear or groups (e.g. Br-, J-, C(CH3)3- etc.) in o,o'-positions "hindered" anilines is a purely spatial problem, its overcome is required more geometric approach than a chemical effect.

We have witnessed the similar results in the carried out experiments for the o-, m-, p-phenylenediamines, also in diaminodiphenyl-methanes containing in o,o'-positions bromine atoms. But if one of the o,o'-positions in comparison with amine groups is free or busy with small radius groups, so acylation reactions take place without of any problem. Whether in o-, m-, p-phenylenediamines, or in a 4,4'-diaminodiphe-nylenemethanes mono- and di-bromine derivatives as a rule is spatial favorable from the terms of chemical structure.






















x=1.2 . °CH3 °CH3

. . -o. . -о-^ноь

The experiments show that at various stages of the acylation a role of solvent medium is different; if in the first stage of the acylation the acetone is a suitable solvent (the selection for this reactions solvents such as benzene,

toluene, CCl4, DMFA, DMAA make difficult to obtain individual products) for begining interaction between amine and anhydride groups and continuing dehydration with the obtaining of amide acids, passing from the






amide acids to imides mainly occurs as a result of intramolecular dehydration and it requires solvent with higher boiling temperature. The solvents like DMFA, DMAA are most often used for this purpose.

In the literature there are known the reactions in direction of obtaining the dihydrazines from bis-diazonium salts, obtained by dinitro-genation from the amine group of brominecon-taining diaminodiphenylmethane [16]. This researches also confirm that the favorable reactions going on amine groups in diaminodiphenylme-thane is possible in the case of at least one of this ortho-pozitions in comparison with this group free or capture with small scale radical. It should be noted that the reaction in the presence of one of the ortho-positions with methoxy group in comparison with the amine group is observed too and this is associated with the conformational ability of methoxy group.

The physical-chemical analysis and research with models of new synthesized compounds have allowed to open up of some structure thinness.

As a result of analysis on Stuart-Briqleb models it was revealed that in the forming of spatial structure of amide acids and imides obtained on the basis of cyclohexene- and norbornene-dicarboxylic acids and bromine-containing aromatic diamines, the bromine atoms with large volume and high electronegativity (2.80) play an important role. So, the aromatic amines with bromine atoms in orthoposition in comparison with amine groups because of spatial difficulty (isolation of amine group) get into reaction hardly. An introduction of appropriate mono-bromine aromatic amines

into reaction leads to obtaining of suitable amide acids and imides.

The similar indications of spatial structure of p-phenylenediamine and 4,4'-diaminodiphe-nylenemethane and its derivative with methoxy group in 3,3'-positions obtained amide acids and imides is associated with interaction between cyclohexene or norbornene rings and amide- and imidegroups. The experiments have shown that amide group situated in equatorial, as well as in axial position in cyclohexene ring has an opportunity to form intramolecular hydrogen bonds with ortho-brom atom on aromatic ring and due to this sustainable conformer is formed. This regularity does not depend on en-do- or exo-stucture of norbornene ring. It should be noted that the hydrogen bond is also formed between the amide group's hydrogen and car-boxylic oxygen and provides easy conversion of amide acids to imide.

In contrast with the phenylenediamines in diaminodiphenylmethanes as a result of rotation around the tetrahedral carbon the presence of two "face to face" and "mutually perpendicular" aside conformer causes the formation of new features in amide acid and imide samples. So if the amine group of small size with pyramidal structure does not create a new spatial order, the amine group acylated with cyclohexene or norbornene dicarboxylic acids is of great importance in geometry of molecule with its the unique spatial structure. Also being in aromatic ring voluminous bromine atoms cause the formation amide and imide groups sustainable sin- and anti-structures in the respect of each phenyl ring (Figure 1).

Pseudo perpendicular

Face to face

It should be noted that the election of a cyclic dicarboxylic acids creates different positions in terms of stereo structure in obtained amide acids and imides. The amide acids and imides based on cyclohexene dicarboxylic acids through the generation of different conformations are stored of occur dynamic and conformation changes in molecule. It is not possible to tell this idea

about mono- and è/'s-amide acids and imides based on norbornene dicarboxylic acid. In respect of norbornene ring in suitable amide acids and imides with endo- and exo-structure depending on intramolecular hydrogen bond and stereo factors difficulties in rotation provides living of available configurations in form of stable spatial izomer (atropoisomer).





"Pseudo perpendicular" state



sin- anti-

"Face to face" state

Fiqure 1. Models of bromine-containing 3,3'-dimethoxy 4,4'-diaminodiphenylmethane imides.

Experimental part

All of the synthesized compounds are in solid state. Their composition and structure are determined on the basis of physicochemical analysis.

The purity of the synthesized compounds is controlled by TLC method on "sulifol"; meantime as the solvent had been taken of a mixture benzene:chloroform:acetic acid in volume ratio of 5:4:1. the detection of spots was carried out by

mercury lamp with ultra-violet radiation [17]. The melting temperatures of newly synthesized compounds were determined, the element analysis, molecular formula were found. The IR spectra at "UR-20" device in vaseline oil in the form of slurry in 400-3800 cm-1 area, UV spectra at "Specord M-40" spectrophotometer in 180-400 nm area, in ethanol solution (concentration 10 mol/l, cuvette size 1cm) were taken [18].


Physical-chemical data of the synthesized amide acids and imides:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

№ The chemical formula of compound Yield % Melting temperature 0C Rf Element structure, % Found /Calculated

C H N O Br

1 .COOH Q J- C14 H15 N2O3Br 86.4 148 0.79 50.11 49.56 4.40 4.42 8.12 8.26 14.72 14.16 22.94 23.60

2 fnc00H r ^^^^^conh——NH2 C15 H15 N2O3Br 89.7 161 0.76 51.65 51.28 4.30 4.27 7.43 7.98 13.53 13.68 22.60 22.79

3 ,---\,C00H fl 1 OCHî _ Br ^^^conh^^^VCHJ^^^VNHJ Br OCH3 C23 H24 N2O5Br2 86.1 170 0.70 48.19 58.59 3.97 4.23 5.14 4.93 13.88 14.08 28.22 28.17

4 Br OCH3 C24 H24 N2O5Br2 89.0 179 0.68 49.75 49.66 4.14 4.14 4.91 4.83 13.66 13.79 27.83 27.58

5 p^C00H Er H00Cy^ CONH—— NHC 0 C22 H23 N2O6Br 91.5 166 0.54 53.84 53.77 4.42 4.68 5.85 5.70 19.63 19.55 16.41 16.30

6 iW A H00CP1 CONH^f NHCO ^^ C24 H23 N2O3Br 90.02 172 0.51 61.47 61.67 4.56 4.93 6.04 5.99 10.42 10.28 17.04 17.13

7 /COOH H00Cv 11 °CH- Y] Br OCH3 C31 H32 N2O8Br2 88,6 181 0.48 51.42 51.67 4.21 4.44 3.83 3.89 17.56 17.78 22.13 22.22

8 iTTC00H 004 .BrH00CVT1 ^JAoNH NHCoM^ Br OCH, C33 H32 N2O6Br2 87.1 196 0.43 55.43 55.62 4.52 4.44 3.89 3.93 13.12 13.48 22.51 22.47

9 ÖO^N, C14 H13 N2O2Br 91.4 176 0.74 51.96 52.34 3.87 4.05 8.53 8.72 9.76 9.97 25.00 24.92

10 Br C15 H13 N2O2Br 93.1 197 0.71 53.92 54.06 3.69 3.90 8.09 8.41 9.53 9.61 24.12 24.02

11 OCH3 Br Br OCH3 C23 H22 N2O4Br2 89.3 207 0.66 50.20 50.18 3.69 4.00 4.89 5.09 11.47 11.64 29.12 29.09

12 0CH3 a- Br OCH3 C24 H22 N2O4Br2 88.7 233 0.61 50.89 51.25 3.67 3.91 4.88 4.98 11.31 11.39 28.03 28.47

13 0>-b<0 C22 H19 N2O4Br 95.3 279 0.65 58.01 58.02 4.21 4.18 5.68 6.15 13.96 14.07 17.97 17.58

14 ®>N&<® C„ H19 N2O4Br 93.2 290 0.63 59.99 60.12 3.67 3.97 5.84 5.85 12.99 13.36 16.70 17.01

15 aH^to Br OCH, C31 H28 N2O6Br2 90.1 270 0.49 54.24 54.39 3.92 4.09 4.02 4.09 13.69 14.04 23.12 23.39

16 C33 H28 N2O6Br2 "" 88.9 298 0.53 55.87 55.94 3.91 3.95 3.89 3.95 13.43 13.56 22.69 22.60

The acylation of bromine-containing phenylenamines and diaminodiphenylmethanes with cyclohexene- and norbornenedicarboxylic acid anhydrides were contunued in two directions: synthesis of amide acids and obtaining of imides.

1. Synthesis of monoamide acids

0.01 mol brominated diamine dissolved in 100 ml acetone poured into a three-necked flask equipped with a mixer. The solution of 0.01mol anhydride in 50 ml acetone added into mixture as drops under the mixing conditions for 2 hours. After complete addition of solution the mixture is being mixed for 2 hours in the boiling temperature of acetone. The product is cooled, the precipitation being filtered and separated and analyzed. The yield of mono amide acids are consist of 85.1-90.5%. The IR spectrum - v, cm-1: C=O (1692-1750), C=C (1638-1630). The physical-chemical parameters of the synthesized mono amide acids are given in the Table.

2. Synthesis of 6is-amide acids

0.02 mol anhydride dissolved in 100 ml acetone is poured into a flask equipped with mixer and under the mixing conditions 0.01 mol brominated diamine dissolved in 100 ml acetone is added into solution as drops. After addition of the diamine solution the mixture kept for 12 hours in the covered condition, separated crystalline compound is filtered, washed, dried and analyzed. The yield of bisamide acids are consist of 86.5-92.2%. The IR spectrum - v, cm-1: C=O (1600-1680), C=C (1596-1620). The physical-chemical parameters of the synthesized bis-amide acids are given in the Table.

3. The synthesis of mono- (or bis-imides) was carried out directly and also on the basis of mono-(or bis-) amides:

a) Mono- (or bis-) amide acids have been imidized as follows: 0.01 mol amide acid is melted by heating and kept at this temperature for 1-1.5 hours. Mono- (or bis-)imides obtained as a result of dehydration are crystallized in the mixture of benzene-normal heptane. Recrystal-lization is continuing in an ethanol solution. Yield of mono- (or bis-)imides - 83.1-96.5%. The phy-

sical-chemical data of mono- (or ¿z's-)imides are shown in Table.

b) Mono- (or ¿/'^-)amide acids are heated at 100±50C temperature in sodium acetate dissolved acetic anhydride up to 40% for the 22.5 hours. Then the mixture is cooled to room temperature and is poured into the icy water. The formed crystalline compound is filtered, washed with distilled water several times, dried and analyzed. Yield mono- (or ¿z's-)imides 86-96%.

c) Appropriate 0.01 mol brominated amine dissolved in 100 ml DMFA is poured into three-necked flask fitted with a mixer and at the solvent boiling temperature (1520C) the solution of 0.01mol (or 0.02 mol) anhydride in 100 ml DMFA is added as drops. Then the mixture is heated 5-6 hours, left to cool. The mixture cooled to room temperature is poured into the icy water, kept for 12 hours. Crystalline compound separated by filtration, washed several times with distilled water, crystallized from benzene:и-heptane (1:1 ratio) mixture. Yield mono- (or 6^-)imides 90.8-96.4%. IR spectrum - v, cm-1: C=O (1640-1646), C=C (1690-1710). The physical-chemical data of mono- (or ¿/'^-)imides are shown in Table.


1. Михайлин Ю.А. Тепло-, термо- и огнестойкость полимерных материалов. М.: Научн. основы технологии. 2011. 416 с.

2. Бюллер К.У. Тепло- и термостойкие полимеры. М.: Мир, 1984. 1056 с.

3. Zhang T., Cail Q., Wul D.Z., Ri-Guang R.G. Jin. Phosphazene cyclomatrix network polymers: Some aspects of the synthesis, characterization, and flame-retardant mechanisms of polymer // J. Appl. Polym. Sci. 2005. V. 95.№. 4. P.880-889.

4. Салахов М.С., Умаева В.С., Алиханова А.И. Синтез полихлорированных имидодиенов циклических дикарбоновых кислот // Журн. орг. химии. 2008. Т. 44. № 10. С. 1462-1467.

5. Салахов М.С., Умаева В.С, Алиханова А.И.. Синтез стереорегулярных шарнирно-каркасных полиимидов по реакции Дильса-Альдера // Журн. прикл. химии. 2009. Т. 82. №. 2. С. 329333.

6. Салахов М.С, Умаева В.С., Алиханова А.И.. Синтез и стереохимия ^№-(арилен)-бис-ими-додиангидридов полихлорированных цикли-

ческих тетракарбоновых кислот // Журн. орг. химии. 2010. Т. 46. №. 10. С. 1498-2000.

7. Салахов М.С., Умаева В.С., Алиханова А.И. Синтез полихлорированных бис-имидов 1,2,3, 4,11,11 -гексахлортрицикло/,10/-ундец-2-ен-7,8-дикарбоновой кислоты.// Конф., посвящ. 100-летию М.Ф.Нагиева. 2008. С. 143.

8. Салахов М.С., Умаева В.С., Алиханова А.И. Синтез ^№-бисимидов эндо-, экзо-2,3,4,5-тет-рахлорбицикло/4.4.0/дека-2,4-диен-8,9-дикар-боновой кислоты // Журн. орг. химии. 2008. Т. 44. № 11. С. 1635-1637.

9. Салахов М.С., Умаева В.С., Алиханова А.И. Синтез полихлорированных моно- и бис-имидов циклических дикарбоновых кислот, содержащих диен-диенофильные фрагменты // Журн. орг. химии. 2014. Т. 50. № 2. С. 219-225.

10. Салахов М.С., Гречкина О.Т., Умаева В.С., Баг-манов Б.Т. Синтез новых N-алкилкарбоксиими-дов эндо-бицикло/2.2.1/-гепт-5-ен-2,3-дикарбо-новой кислоты с свойствами, прогнозированными на основе анализа зависимости "топологический индекс-свойство" // Докл. АН Азербайджана. 2011. 67. № 5. С. 88-93.

11. Salahov M.S., Tagmanov T.T, Mustafayeva F.O. Aromatik aminlarin oksixlorla§ma va oksibrom-la§ma reaksiyalarinin xususiyyatlari // Azarb. rnmya jurnali. 2013. № 3. S. 25-31.

12. Salahov M.S., Bagmanov B.T., Mustafayeva F.O. Aromatik aminlar asasinda bromlu funksional monomerlarin sintezi // SDU. II Respublika konfransi. 31.10.2012-01.11.2012. S. 20-24.

13. Салахов М.С., Багманов Б.Т., Аббасов З.С., Мустафаева Ф.А.. Корреляционный анализ топологических индексов с температурой плавления в ряду замещенных анилинов // Мате-риали за VIII международна научна практична конференция. Найновите научни постижения. 2012. София. 17-25.03. 2012. Т. 28. С. 75-81.

14. Salahov M.S., Bagmanov B.T., Mustafayeva F.O. Aromatik aminlarda molekulyar bromla§manin xüsusiyyatlari // Azarb. kimya jurnali. 2014. № 3. S. 22-27.

15. Багманов Б.Т. Стереохимия бромирования N-арилимидов циклических дикарбоновых кислот // Azarb. kimya jurnali. 2010. № 1. С. 43-52.

16. Parkes G.D., Morley R.H H. Derivatives of 4,4'-Diaminodiphenylmethane // J. Chem. Soc. 1936. P. 315-317.

17. Ахрем A.A., Кузнецова А.М. Тонкослойная хроматография, М.: Наука, 1965. 175 с.

18. Казицына А.Б., Куплетская Н.Б. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. M.: МГУ, 1978. 328 с.


M.S.Salahov, B.T.Bagmanov, F.O.Mustafayeva

Ilk dafa olaraq o-, m-, ^-fenilendiamin va 4,4'-diaminodifenilmetan va 3,3'-dimetoksi, 4,4'-diaminodifenilmetanin hallogenli töramalarinin tetrahidroftal va norbornendikarbon tur§ulari ila amala gatirdiyi bir sira mono- va bis-amidotur§u va imidlarin optimal sintez üsulu tapilmi§, alinmi§ yeni maddalarin, fiziki-kimyavi parametrlari va fazavi qurulu§ incaliklari tayin edilmi§dir.

Agar sözter: fenilendiamin, diaminodifenilmetan, bromlu töramalar, mono-, bis-, amidotur§u, imid, konformasiya.


М.С.Салахов, Б.Т.Багманов, Ф.А.Мустафаева

Впервые найден оптимальный метод синтеза моно- и бис-амидокислот и имидов, галогенированных производных о-, м-, п-фенилендиаминов, 4,4'-диаминодифенилметана и 3,3'-диметокси, 4,4'-диаминодифенил-метана с тетрагидрофталевыми и норборнендикарбоновыми кислотами, определены физико-химические параметры и особенности пространственной структуры полученных новых соединений.

Ключевые слова: фенилендиамин, диаминодифенилметан, бромированные производные, моно-, бис-амидо-кислоты, имид, конформация.

i Надоели баннеры? Вы всегда можете отключить рекламу.