Научная статья на тему 'Synthesis and spectroscopic studies of bismuth(III) iodide porphyrins'

Synthesis and spectroscopic studies of bismuth(III) iodide porphyrins Текст научной статьи по специальности «Химические науки»

CC BY
85
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Макрогетероциклы
WOS
Scopus
ВАК
Область наук
Ключевые слова
ВИСМУТ / BISMUTH / ПОРФИРИН / PORPHYRIN / МЕТАЛЛОКОМПЛЕКСЫ / METALLOCOMPLEXES / ИК-СПЕКТРОСКОПИЯ / IR-SPECTROSCOPY / РФЭС / XPS / КВАНТОВОХИМИЧЕСКИЕ РАСЧЕТЫ / QUANTUM CHEMICAL CALCULATIONS

Аннотация научной статьи по химическим наукам, автор научной работы — Ageeva Tatyana A., Golubev Denis V., Gorshkova Anastasiya S., Ionov Andrey M., Koifman Oskar I.

Synthesis of bismuth complexes of etioporphyrin II, protoporphyrin IX dimethyl ester and three tetraphenylporphyrin derivatives in which iodine atom is an extraligand, was carried out. Obtained compounds were characterized by mass spectrometry, UV-vis, 1H NMR spectroscopy, and HPLC. The study of X-ray spectra showed that bismuth valence is +3. Bismuth atom coordinates four nitrogen atoms and one iodine atom. All four nitrogen atoms have equivalent binding energies. IR absorption spectra of free porphyrins bases and their bismuth complexes were studied. The comparison of IR absorption spectra of neat porphyrins shows no significant differences in vibrations of nitrogen-carbon cycles. As for bismuth complexes, vibrations bands of bismuth-iodine bonds ν(Bi-I) appear at 90-130 cm-1 in the long-wavelength spectra regions, as well as deformation vibrations involving bismuth, iodine and nitrogen atoms δ(NBiI) with frequencies 150-165 cm-1, deformation vibrations of δ[BiN4] pyramid at ~300 cm-1 and stretching vibrations bands of this complex fragment involving deformations of nitrogen-carbon ring, in the region of 335-375 cm-1. Quantum-chemical calculations were conducted including calculations of the vibrational spectra, dipole moments, and charge distribution on atoms (according to Mulliken). It was found that complex of bismuth iodide with etioporphyrin II is the most polar among the studied series compounds.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Ageeva Tatyana A., Golubev Denis V., Gorshkova Anastasiya S., Ionov Andrey M., Koifman Oskar I.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Синтез и спектроскопические исследования порфиринатов висмута(III) иодида

Осуществлен синтез висмутовых комплексов этиопорфирина II, ДМЭ протопорфирина IX и трех производных тетрафенилпорфина, в которых в качестве экстралиганда выступает атом йода. Полученные соединения охарактеризованы методами масс-спектрометрии, электронной и 1H ЯМР спектроскопии, ВЭЖХ. Изучение РФЭ-спектров комплексов показало, что висмут имеет валентность +3. Атом висмута координирует четыре атома азота и один атом йода, при этом в комплексах все энергии связей электронов атомов азота выровнены. Изучены ИК спектры поглощения свободных оснований порфиринов и их висмутовых комплексов. Сравнение ИК спектров поглощения исходных порфиринов показывает, что существенных различий в колебаниях азотно-углеродного циклов не наблюдается. При переходе к висмутовым комплексам в длинноволновых областях спектров появляются полосы колебаний связей висмут-йод ν(Bi-I) при 90-130 см-1, а также деформационных колебаний с участием атомов висмута, йода и азота δ(NBiI) с частотами 150-165 см-1, деформационных колебаний пирамиды δ[BiN ] при ~300 см-1 и в области 335-375 см-1 полосы валентных колебаний этого фрагмента комплекса с участием деформаций азотно-углеродного кольца. Выполнены квантовохимические расчеты, в том числе рассчитаны колебательные спектры, дипольные моменты и распределение зарядов на атомах (по Малликену). Наиболее полярным из полученных соединений является комплекс йодида висмута с этиопорфирином II.

Текст научной работы на тему «Synthesis and spectroscopic studies of bismuth(III) iodide porphyrins»

Порфирины

Porphyrins

iVJaKporaTepoLii/JKj-JbJ

Статья

Paper

http://macroheterocycles.isuct.ru

DOI: 10.6060/mhc180171

Synthesis and Spectroscopic Studies of Bismuth(III) Iodide Porphyrins

Tatyana A. Ageeva,a Denis V. Golubev,b Anastasiya S. Gorshkova,b Andrey M. Ionov,c Oskar I. Koifman,a Rais N. Mozhchil,c Valentina D. Rumyantseva,b Aleksandr S. Sigov,b and Valeriy V. Fomichevb@

Dedicated to Academician of the Russian Academy of Sciences Prof. I. P. Beletskaya

on the occasion of her Birthday

aIvanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia bMoscow Technological University, 119571 Moscow, Russia cInstitute of Solid State Physics RAS, 142432 Chernogolovka, Russia @Corresponding author E-mail: valeryfom@rambler.ru

Synthesis of bismuth complexes of etioporphyrin II, protoporphyrin IX dimethyl ester and three tetraphenylporphyrin derivatives in which iodine atom is an extraligand, was carried out. Obtained compounds were characterized by mass spectrometry, UV-vis, HNMR spectroscopy, andHPLC. The study of X-ray spectra showed that bismuth valence is +3. Bismuth atom coordinates four nitrogen atoms and one iodine atom. All four nitrogen atoms have equivalent binding energies. IR absorption spectra of free porphyrins bases and their bismuth complexes were studied. The comparison ofIR absorption spectra of neat porphyrins shows no significant differences in vibrations of nitrogen-carbon cycles. As for bismuth complexes, vibrations bands of bismuth-iodine bonds v(Bi-I) appear at 90-130 cm1 in the long-wavelength spectra regions, as well as deformation vibrations involving bismuth, iodine and nitrogen atoms d(NBiI) with frequencies 150-165 cm1, deformation vibrations of 8[BiN4] pyramid at ~300 cm1 and stretching vibrations bands of this complex fragment involving deformations of nitrogen-carbon ring, in the region of335-375 cm1. Quantum-chemical calculations were conducted including calculations of the vibrational spectra, dipole moments, and charge distribution on atoms (according to Mulliken). It was found that complex of bismuth iodide with etioporphyrin II is the most polar among the studied series compounds.

Keywords: Bismuth, porphyrin, metallocomplexes, IR-spectroscopy, XPS, quantum chemical calculations.

Синтез и спектроскопические исследования порфиринатов висмута(Ш) иодида

Т. А. Агеева,а Д. В. Голубевь А. С. Горшковаь А. М. Ионов,с О. И. Койфман,а Р. Н. Можчиль,с В. Д. Румянцева^ А. С. Сигов,ь В. В. Фомичевъ@

аИвановский государственный химико-технологический университет, 153000 Иваново, Россия ьМосковский технологический университет, 119571 Москва, Россия сИнститут физики твердого тела РАН, 142432 Черноголовка, Московская обл., Россия ®Е-таИ: valeryfom@rambler.ru

Осуществлен синтез висмутовых комплексов этиопорфирина II, ДМЭ протопорфирина IXи трех производных тетрафенилпорфина, в которых в качестве экстралиганда выступает атом йода. Полученные соединения охарактеризованы методами масс-спектрометрии, электронной и Н ЯМР спектроскопии, ВЭЖХ. Изучение РФЭ-спектров комплексов показало, что висмут имеет валентность +3. Атом висмута координирует четыре атома азота и один атом йода, при этом в комплексах все энергии связей электронов атомов азота выровнены. Изучены ИК спектры поглощения свободных оснований порфиринов и их висмутовых комплексов. Сравнение

ИК спектров поглощения исходных порфиринов показывает, что существенных различий в колебаниях азотно-углеродного циклов не наблюдается. При переходе к висмутовым комплексам в длинноволновых областях спектров появляются полосы колебаний связей висмут-йод v(Bi-I) при 90-130 см-1, а также деформационных колебаний с участием атомов висмута, йода и азота 8(ЫВИ) с частотами 150-165 см-1, деформационных колебаний пирамиды S[BiNJ при ~300 см-1 и в области 335-375 см-1 полосы валентных колебаний этого фрагмента комплекса с участием деформаций азотно-углеродного кольца. Выполнены квантовохимические расчеты, в том числе рассчитаны колебательные спектры, дипольные моменты и распределение зарядов на атомах (по Малликену). Наиболее полярным из полученных соединений является комплекс йодида висмута с этиопорфирином II.

Ключевые слова: Висмут, порфирин, металлокомплексы, ИК-спектроскопия, РФЭС, квантовохимические расчеты.

Introduction

Interest towards bismuth containing complexes to a large degree is due to their use in medicine. First reports about application of bismuth containing salts for treatment of dyspepsia appeared in 1786.[1] Currently, such medicinal compounds of bismuth as de-nol, desmol, tribimol, vicair, vikalin and etc, are well-known for treatment of gastritis and peptic ulcer disease.[2,3] Recently, antitumor effectiveness of bismuth complex with diethylenetriaminepentaacetic acid was demonstrated in binary radiation therapy.[4]

First syntheses of bismuth complexes with porphy-rins were described by A. Treibs in 1969.[5] The bismuth ion insertions into mesoporphyrin IX dimethyl ester and eti-oporphyrin II were carried out in pyridine in the presence of bismuth nitrate. However, the complexes structures were not fully established.

Later, Buchler[6] described the synthesis of bismuth octaethylporphyrin (OEP) complex also in pyridine with bismuth nitrate. The authors attributed to bismuth in OEP-Bi(O)NO2 the oxidation state (V). The complex was found to be decomposing upon recrystallization or treatment with dilute hydrochloric acid.

Subsequently, complexes of Bi(III) with substituted tolyl- and methoxy-derivatives of tetraphenylporphyrin (TPP) in chloroform with bismuth chloride were synthe-sized.[7] At the same time, dimeric porphyrin structures bound together by Bi2Cl6 fragment were isolated.

The bismuth(IlI) ion insertion into porphyrin macrocycle in dimethylformamide and pyridine was carried out using bismuth nitrate and bismuth triflate.[8] OEP, TPP, tetramesityl- and tetra(4-tolyl)porphyrins were chosen as free bases. It turned out that complexes with nitro group are more stable than chlorides and bromides, the latter complexes are not stable and sensitive to light and water. The use of bismuth triflate led to increase in complexes stability and syntheses yield (75% - OEP, 50% - TPP, 70% - tolyl-porphyrin). This is due to steric protection provided by relatively large triflate ligand.

In recent years, bismuth(III) compounds containing radioactive isotopes 212Bi (t1/2=60 min) and 213Bi (t1/2=45 min), have been used in cancer therapy.[9-11] Bismuth drugs in the form of porphyrins complexes have found application as chemotherapeutic agents for leishmania treatment.[12]

BimNO3 complexes with TPP and 5,10,15,20-tetrakis (4-methoxycarbonylphenyl)porphyrin have been studied.

The compounds were characterized by UV-vis, 'H NMR spectroscopy, mass spectrometry and elemental analysis.

Along with hydrophobic bismuth complexes, kineti-cally labile complexes with tetrasulfophenylporphyrin in an anion form and 5,10,15,20-tetrakis(1-methyl-4-pyri-dyl)porphyrin in a cation form were synthesized.[13]

It is well-known that in its complexes bismuth has oxidation states +3 and +5, and its coordination number can vary from 3 to 10. Due to the large ionic radius of bismuth(III) 1.03 A, it can not fit in porphyrin macrocycle plane, so bismuth is located above it. This fact leads to lability of bismuth-porphyrin complexes.

The objective of the study reported here was to search for planar complexes with a strongly polarized «apix» metal-ligand bond - promising elements for a new electronic materials design. From this point of view bismuth(III) compounds with its spatially localized 6s2 orbital are the perspective targets. The problem solution involves the synthesis of various BimI-porphyrins and their study by IR and X-ray spectroscopy methods, as well as analysis of porphyrin molecule spatial configuration influence on a possibility of complexation with bismuth iodide. Etiopor-phyrin II, whose bismuth(III) iodide complex thermal stability was studied previously,[14] protoporphyrin IX dimethyl ester (PP IX DME) (1) and three tetraphenylporphyrin derivatives (2-4) differ by substituents on phenyl rings and on macrocycle periphery, were selected as research objects (Figure 1).

Experimental

Electronic absorption spectra were recorded using UV-vis spectrophotometer Helios Alpha Local Control System («TermoSpectronic», USA). Mass spectra were measured using Ultraflex TOF/TOF device (Bruker Daltonics, Germany), a matrix was 2,5-dihydroxybenzoic acid. The 'H NMR spectra in a S(ppm) scale were obtained with a Bruker DPX-300 (300 MHz) (Germany) in deuterochloroform. HPLC was performed using Waters «Breeze» chromatograph on a Nova-Pack column with 18.4 ^m, 4.6x150 mm. A substance was eluted with a mixture of water-acetonitrile (6:4), was detected at 400 nm. Silica gel Kieselgel 60 (Merck, Germany) was used for a column chromatography. X-Ray photoelectron spectroscopy (XPS) studies were performed using Kratos AXIS Ultra DLD electronic spectrometer (Kratos Analytical, UK) with a monochromatized X-ray source Al Ka (hv=1486.6 eV). FT-IR spectra were recorded using EQUINOX 55 spectrometer (Bruker, Germany). For study in the mid-IR-

NS

N

\

J

\\ ,M\ // NN

ч

\\

O'

4OCH3 O'

1. a: M=2H b: M=Bil

OCH3

2. a: R=(4-CO2MePh); M=2H b: R=(4-CO2MePh); M=Bil

3. a: R=mesytyl; M=2H b: R=mesytyl; M=Bil

4. a: R=C6F5; M=2H

6 5'

b: R=C6F5; M=Bil

65

Figure 1. Structural formulas of reviewed porphyrins and their bismuth complexes.

range (4000-700 cm-1) the samples were prepared in the form of a powder with KBr and spectra were recorded using a diffuse reflection attachment EasiDiffTM Diffuse Reflectance Accessory (PIKE Technologies, Inc.). For study in the far-IR range (70050 cm-1) the samples were prepared in the form of a suspension in vaseline on windows of high-density polyethylene. The spectra were processed using 0PUS6.0 software.

The geometry optimization and the absorption frequencies calculation were performed with the Priroda 16 software package[15-17] using the density functional method: dft/pbe/ L1 in the full-electron scalar-relativistic Dyall Modified Dirac approximation. The optimized geometric structure image was prepared with the Chemcraft software.

General methods of bismuth iodide porphyrin complexes synthesis

Protoporphyrin IX DME (PP IX DME) (1a) was obtained from blood hemin following the previously described method.[18] Porphyrin 2a was synthesized from pyrrole and 4-formylbenzoic

acid methyl ester by Rothemund method in propionic acid.[19] 5,10,15,20-Tetrakis-mesitylporphyrin (TMP) (3a) and pentafluoro-phenylporphyrin (TPPF20) (4a) were prepared by Lindsey method.[20]

To a boiling porphyrin pyridine solution in argon stream, a 5-10 fold excess of bismuth iodide was added, and the mixture was boiled for 3-7 hours. The reaction was monitored spectropho-tometrically and by TLC on Silufol plates. At the end of the reaction, the solvent was evaporated to dryness in vacuum. The isolated red-brown solid was treated with chloroform. The bismuth iodide and bismuth oxoiodide precipitate was filtered off, washed with chloroform and discarded. The green color mother liquor was concentrated and chromatographed on a silica gel column using solution of CH2Cl2 and petroleum ether (3:2). At this step the unre-acted free porphyrin base was separated. The bismuth complexes were eluted with solution of CH2Cl2-i-PrOH (20:1), evaporated and recrystallized from methylene chloride-methanol.

BiI-PP IX DME (1b). Yield 28 %. UV-vis (CHCl3) Xmax nm (lge): 477(4.85), 586 (4.07). m/z 797.468 [M-I]+. Calculated for C36H36N4O4Bi 797.686.

36 36 4 4

BiI-TPP(4-COOCH3Ph) (2b). Yield 63 %. UV-vis (DMSO) Xmax nm (lge): 472 (5.03), 600 (3.87), 646 (3.96). m/z 1053.281 [M-I]+. Calculated for C52H36N4O8Bi 1053.862. 'H NMR ppm: 8.89 (8H, s, ß-H), 8.4 (8H, m, o-C6H5). 8.17 (8H, br. s , m-C6H5), 4.2 (12H, s, COOCH 3). HPLC: RT 17.856 min; complex content 98.33 %.

BiI-TMP (3b). Yield 50.7 %. UV-vis (CHCl3) Xmax nm (lge): 474 (5.17), 605 (3.91), 653 (4.01). m/z 989.008 [M-lf.lcalculated for C56H52N4Bi 990.064. 'H NMR ppm: 8.98 ( 8H, s, ß-H), 7.38 (4H, s, m-H-C6H5), 7.28 (4H, s, m-H-C6H5), 2.65 (12H, s, o-CH3-Ph), 2.15 (12H, s, o-CH3-Ph), 1.27 (12H, s, p-CH3-Ph).

BiITPPF20 (4b). Yield 16.4 %. UV-vis (CHCl3) Xmax nm (lge): 473 (5.188), 589 (4.13). m/z 1180.550 [M-I]+ . Calculated for C44H8N4F20Bi 1181.51. 'H NMR ppm: 9.0 (8H, s, ß-H).

Results and Discussion

Analysis of the results of chemical syntheses of bismuth porphyrin complexes indicates that derivatives of tetra-arylporphyrins have higher metallocomplexes yields than protoporphyrin containing two labile vinyl groups. The yield of etioporphyrin II (36.8 %) occupies an intermediate posi-tion.[14] The presence of ester groups in meso-tetraarylpor-phyrin increases its stability and, accordingly, leads to higher yield of the bismuth complex. The use of the bismuth pen-tafluorophenylporphyrin (4b) complex seems to be the least promising because of its spatially distorted configuration and lower stability.

Table 1. The binding energies of the core electrons of bismuth triiodide molecules, porphyrins and their iodide complexes with bismuth (eV).

Compound

Elements (photoelectron line)

N1s

C1s

Bi4f

I3d

BiI3 164.5; 159.2 630.8; 619.6

PP IX DME 399.5; 397.4 284.7

BiI-PP IX DME 398.5 284.7 164.4; 159.2 630.3; 618.8

EP II 399.4; 397.4 287.5; 284.7

BiI-EP II 398.4 284.7 164.4; 159.2 630.3; 618.7

TPP(4-COOMePh) 400.1; 398.0 287.8; 284.8

BiI-TPP(4-COOMePh) 398.6 284.8 164.7; 159.3 630.3; 618.8

TPPF 20 400.02; 398.2 284.6; 285.8; 288

BiI-TPPF20 398.8 284.7; 284.4; 288 164.7; 159.5 630.3; 618.7

R

R

R

R

The XPS data for the metal-containing and metal-free porphyrin compounds and the binding energies of the core electrons of nitrogen, carbon, bismuth and iodine atoms of the synthesized porphyrins samples and their iodide complexes with bismuth are summarized in Table 1 while the spectra are shown in Figure 2.

One can note the existence of two nitrogen atoms types (aza- and pyrro-) in the structure of all porphyrins molecules. Moreover, the binding energies of N1s electrons of nitrogen atoms in tetraphenylporphyrins are higher than the binding energies of proto- and etioporphyrins nitrogen atoms. As for the metallocomplexes spectra, degeneracy of the corresponding states is observed. Nevertheless, the binding energy of 1s-electrons of nitrogen atoms in the complexes, assuming the average value, remains higher for compounds with tetraphenylporphyrins. Doublets with the energy values close to the binding energies in bismuth triiodide were registered for 4f-electrons of bismuth, while the doublets for tetraphenyl-porphyrin complexes have slightly higher values. XPS spectra of BiI-PP IX DME and PP IX DME are shown in Figure 2.

Therefore, we conclude that the bismuth atom in the prepared complexes is coordinated with four nitrogen atoms with equal electron binding energies and one iodine atom. Taking into account the stereo-active unshared pair of 6s2 electrons, the characteristic for Bi coordination number 6 is realized.

The comparison of IR absorption spectra of neat por-phyrins considered in this paper, shows no significant differences in vibrations of nitrogen-carbon cycle. Frequencies of the deformational vibrations are summarized in Table 2. General increase in the number of observed adsorption bands parallels the increase in molecules complexity and the increase in the number of different CCC fragments, including aromatic rings.

One can note a slight increase in the cycle deformation vibrations frequencies 5(CNC) upon transition to the spectrum of tetraphenylporphyrin (2a). The picture naturally changes during the transition to bismuth complexes (Fig-

ure 3). The vibration bands of v(Bi-I) bonds with frequencies 90-130 cm-1 are observed in the long-wave spectra regions; motions of these heavy atoms perturb additional deforma-tional vibrations of the nitrogen-carbon ring. The bands of deformational vibrations with the participation of bismuth, iodine and nitrogen atoms 5(NBiI) with frequencies 150-165 cm-1 lie somewhat higher. The deformation vibration frequencies of the pyramid [BiN4] lie even higher. And finally, the frequencies of stretching vibrations of this complex fragment involving deformations of the nitrogen-carbon ring, are in the region 335-375 cm-1.

The quantum-chemical calculations were performed (Table 3), namely, the geometries of free bases and complexes with bismuth iodide were optimized; vibrational spectra, dipole moments and charge distributions on atoms (according to Mulliken) were calculated.

Calculated atomic charges indicate that the complex formation leads to the polarization of the porphyrin cycle. A positive charge increases one and a half times on carbon atoms associated with nitrogen. A negative charge on nitrogen atoms increases by almost one and a half times. At the same time, if the values of charges on nitrogen are equal for porphyrins molecules, then the transition to complexes leads to the differentiation of charges. The difference reaches 10 %. A significant positive charge is established for bismuth atoms in iodide complexes - 1.53, and even higher charge in hydroxy-complex - 1.58.[14] The latter is compensated by a large negative charge on oxygen. But the hydroxy-group charge as a whole is close to the negative charge on iodine atoms in iodide complexes.

The calculation of dipole moments gives the following values: 6.47 D for BiI-EP II and 3.87 D for BiI-TPPF20.

It follows from the analysis of the populations of orbitals that 6s-electrons are localized to a large extent. The population of molecular orbitals for bismuth atoms is 1.80-1.86 e. At the same time, bismuth plays a role of an electron density translator from porphyrin cycle atoms to iodine atom.

Figure 2. XPS spectra of BiI-PP IX DME (black) and PP IX DME (blue).

Table 2. The vibrational frequencies of bismuth porphyrins complexes in the region of porphyrin cycle oscillations (cm-1).

BiI-PP IX DME BiI-TMP BiI-TPPF BiI-TPP(4-COOMePh) BiI-EP II[14]

Assignment*

v, cm 1 v, cm 1 v, cm 1 v, cm 1 v, cm 1

110 117 91 103 80 101 v(BiI)+vas(BiN)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

132 134 122 137 120 137 125 S(IBiNC)+v(BiN)+v(BiI)

165 161 153 - 156 v(BiI)+v(BiN)+S(BiNC)

182 176 175 173 v(BiN)+S(BiNC)+S(IBiN)

226 217 202 204 228

248 236 212 247 242 S(BiNC)+S(IBiN)

226 260 267 253 277 S(BiNC)

248 290 280 280 301

300 314 302 293 305 S(NBiN)+S(ring)

348 336 340 346 346

362 375 368 372 373 v(BiN)+S(BiNC)

427 419 397 396 399

443 416 443 421 443 418 S(CNC)+S(ring)+S(NBiN)

500 470 471 467 461

487 504 523 490 492 S(CNC)+(Sring)+S(NBiN)

568 569 566 582 572 561 S(CNC)+S(ring)

643 640 646 637 624

687 667 690 670 682 650 684 662 679 S(CNC)+S(ring)

* Vibrational frequencies assignments were done on a basis of quantum-chemical calculations results.

Figure 3. The FT-IR spectra of TMP (3a) (red) and BiI-TMP complex (3b) (blue) in the frequency range of porphyrin cycle oscillations. Макрогетер0циmbl/Macroheterocycles 2018 11 (2) 155-161 159

Table 3. Values of Mulliken charges on porphyrin cycle atoms (e).

EP II

BiI-EP II

BiOH-EP II

TPPF„,

BiI-TPPF„,

atom charge atom charge atom charge atom charge atom charge

N1 -0.4267 N1 -0.6838 N1 -0.6815 N1 -0.4209 N1 -0.6451

C4 0.1549 C4 0.2187 C4 0.2070 C3 0.1864 C3 0.2789

C5 0.1606 C5 0.2293 C5 0.2156 C4 0.1880 C4 0.2638

N2 -0.4258 N2 -0.6525 N2 -0.6212 N2 -0.4210 N2 -0.6778

C7 0.1544 C7 0.2395 C7 0.2315 C6 0.1880 C6 0.2504

C8 0.1624 C8 0.2621 C8 0.2681 C7 0.1862 C7 0.2439

C10 0.1554 C10 0.2623 C10 0.2697 C9 0.1862 C9 0.2408

N3 -0.4259 N3 -0.6838 N3 -0.6821 N3 -0.4208 N3 -0.6383

C14 0.1614 C14 0.2399 C14 0.2333 C12 0.1879 C12 0.2446

C16 0.1546 C16 0.2295 C16 0.2167 C14 0.1881 C14 0.2607

N4 -0.4260 N4 -0.6529 N4 -0.6229 N4 -0.4210 N4 -0.6780

C24 0.1613 C24 0.2187 C24 0.2074 C17 0.1864 C17 0.2777

Bi1 1.5332 Bi1 1.5813 Bi1 1.5280

I1 -0.6503 O1 H37 -0.7985 0.2201 I1 -0.5685

It should be noted that BiI-TPP(4-COOMePh) and BiI-EP II complexes have the greatest Bi-I bond polarity, that agrees with the maximum charge difference and the lower bond residual covalence.

The dipole moment vector of the molecule (Figure 4) deviates from the Bi-I bond direction under the influence of 6s-electrons.

Thus, the obtained results indicate that the complex of bismuth iodide with etioporphyrin II is the most polar of the studied compounds.

Conclusions

The comparative study of bismuth porphyrin complexes demonstrated that peripheral environment in a porphyrin macrocycle has a significant effect on a metallocomplex-es yield. It was shown that the distortion of a spatial configuration in the case of pentafluorophenylporphyrin leads to a significant decrease in the complex yield. The low complex yield can be caused not only by its distorted structure, but also by the presence of electron-acceptor substituents weakening the Bi-N bound. In IR-spectra the vibrational bands with a participation of bismuth-iodine and bismuth-nitrogen bonds appear in the long-wave regions of the spectra due to coordination of bismuth ion with porphyrin macrocycles. The electronic structure features of Bi4f, N1s, C1s and I3d core levels were studied and the electronic structure change was revealed due to the insertion of central bismuth atom, which coordinates four nitrogen atoms (with equal electron binding energies) and one iodine atom. On the basis of quantum-chemical calculations, it was shown that the complex formation leads to the porphyrin cycle polarization. Dipole moments for all bismuth complexes have

Figure 4. Optimized geometry of bismuth(III) iodide complex with etioporphyrin II (the dipole moment vector is indicated).

been determined, and the bismuth complex of etioporphyrin II appears to be the most polar.

Acknowledgements. The work was carried out within the framework of the State task of the Ministry of Education and Science of the Russian Federation (project № 4.9596.2017/8.9). The work was carried out using the equipment of the Collective Use Center of the Moscow Technological University.

References

1. Yang Y., Ouyang R., Xu L., Li W., Feng К., Ouyang L., Yang Z., Zhou S., Miao Y. J. Coord Chem. 2015, 68, 379-397.

2. Yukhin Yu.M., Mikhailov Yu.I. Chemistry ofBismuth Compounds and Materials. Novosibirsk, SO RAN. 2001. 359 p. (in Russ.) [Юхин Ю.М., Михайлов Ю.И. Химия висмутовых соединений и материалов. Новосибирск, СО РАН, 2001. 359 с.].

3. Mashkovsky M.D. Medications. Moscow: Meditsina. 1993. Vol. 1. 390 (in Russ.) [Машковский М.Д. Лекарственные средства, Т. 1. М.: Изд-во Медицина, 1993. 390 с.].

4. Lipengolts A.A., Cherepanov A.A., Grigor'eva E.Yu., Kulakov VN. Rossiysky Bioterapevtichesky Zh. 2016, 75(1), 58 (in Russ.).

5. Treibs A. Lieb. Ann. Chem. 1969. B. 728, 115-143.

6. Buchler J.W., Lay K.L. Inorg. Nucl. Chem. Lett. 1974, 10, 297-300.

7. Dehghani H., Ansari S., Ali R. Bull. Chem. Soc. Japan. 2007, 80, 518-522.

8. Michaudet L., Fasseur D., Guilard R., Ou Z., Kadish K.M., Dahaoui S., Lecomte C. J. Porphyrins Phthalocyanines 2000, 4, 261-270.

9. Lemon C.M., Brothers P.J., Boitrel B. Dalton Trans. 2011, 40, 6591-6609.

10. Le Gac S., Najjari B., Motreff N., Remaud-Le Saec P., Faivre-Chauvet A., Dimanche-Boitrel M., Morgenstern A., Bruchertseifer F., Lachkar M., Boitrel B. Chem. Commun. 2011, 47, 8554-8556.

11. Yang N., Tanner J.A., Wang Z., Huang J.-D., Zheng B.-J., Zhu N., Sun H. Chem. Commun. 2007, 4413-4415.

12. Gomes M.L., De-Freitas-Silva G., Reis P.G., Melo M.N., Frezard F., Demicheli C., Idemori Y.M. J. Biol. Inorg. Chem. 2015, 20, 771-779.

13. Valicsek Z., Horvath O., Patoney K. J. Photochem. Photobiol. A: Chemistry 2011, 226, 23-35.

14. Golubev D.V., Rumyantseva V.D., Fomichev V.V. Tonkie Khim. Tekhnol. 2017, 12, 26-30 (in Russ.).

15. Laikov D.N. Chem. Phys. Lett. 2005, 416, 116-120.

16. Laikov D.N. Chem. Phys. Lett. 1997, 281, 151-156.

17. Laikov D.N., Ustynyuk Yu.A. Russ. Chem. Bull., Int. Ed. 2005, 54, 820-82.

18. Smith K.M. Porphyrins andMetalloporphyrins. Elsevier. Amsterdam-Oxford-New York. 1975, p. 800.

19. Koifman O.I., Semeikin A.S., Berezin B.D. In: Porphyrins: Structure, Propertties, Synthesis (Enikolopyan N.S., Ed.). Moscow: Nauka, 1985. 205-212 (in Russ.) [Койфман О.И., Семейкин А.С., Березин Б.Д. В кн.: Порфирины: структура, свойства, синтез (Ениколопян Н.С., ред.). М.: Наука, 1985. 205-212].

20. Lindsey J.S., Schreiman I.C., Hsu H.C., Kearney P.C., Marqu-erettaz A.M. J. Org. Chem. 1987, 52, 827-836.

Received 23.01.2018 Accepted 02.03.2018

i Надоели баннеры? Вы всегда можете отключить рекламу.