SRSTI 50.51.19, 55.31.29 Rakishev Asset
PhD, Senior Lecturer, Department of Technological equipment, Mechanical Engineering and Standardization, Karaganda State Technical University, Karaganda, 100027, Republic of Kazakhstan, e-mail: [email protected].
Sherov Karibek
Doctor of Technical Sciences, Professor, Department Technological Equipment,
Mechanical Engineering and Standardization,
Karaganda State Technical University,
Karaganda, 100027, Republic of Kazakhstan,
e-mail: [email protected].
Donenbayev Bakhytzhan
PhD, Senior Lecturer, Department of Mechanics,
Karaganda State Technical University,
Karaganda, 100027, Republic of Kazakhstan,
e-mail: [email protected].
Sovet Nurlanat
master student, Department of Technological equipment, Mechanical Engineering and Standardization, Karaganda State Technical University, Karaganda, 100027, Republic of Kazakhstan, e-mail: [email protected].
STUDYING THE RIGIDITY OF PARTS OF ROTATIONAL-FRICTIONAL TOOL WITHIN NX CAE
The design analysis of the rotationalfriction tool is carried out. In the course ofthe analysis, the stress-strain state of the tool elements was determined, a solution method was presented using the NX CAE software package.
This article focuses on the study of the mechanical behavior of a rotary friction tool in modeling the load that appears during the cutting process, determining the rigidity of a rotary friction tool with a self-rotating cup cutter.
As a result of the calculations, stresses were determined according to Von-Mises of the support elements of the tool. The numerical methods of analysis incorporated in the NX CAE program provide insignificant discrepancies compared with empirical research methods.
Keywords: structural rigidity, rotational friction tool, deformation, stress, finite element method, NX CAE.
INTRODUCTION
The development of present day mechanical engineering which is characterized by continuous increasing power and rapidity, durability and reliability of machines and units alongside with the sharp increasing of the need for them of the national economy is impossible without improving the technology of machining.
Machining by cutting possesses the predominating role in the technological process of producing parts of machines, both from the point of view of the labor input and concerning the reached accuracy and quality of their production.
Under the influence of the cutting force applied to the links of the elastic technological system (machine - device - tool - workpiece), its deformation occurs. The accuracy of processing is influenced mainly by those deformations of the system, which change the distance between the cutting edge of the tool and the surface to be machined, that is, deformations that are directed normally to the surface being machined.
The ability of a system to withstand the action of a force causing deformation characterizes its rigidity.
Within performing the grant subject: 2162/GF4 «Development special machine tool designs permitting to supply pulse cooling and replace the cutting tool made of a hard alloy with the tool made of constructional steel in thermo-frictional cutting of metal workpieces», the authors have studied the method of rotational and frictional turning of external cylindrical surfaces with the use of a special cutting tool: a frictional cut tool [1-3].
The performed experimental studies have shown that the right choice of parameters and the reliability of the tool directly affect the quality and accuracy of the rotational-friction processing. In this regard, the determination of the rigidity of the rotational-friction tool (RFT) with a self-rotating cup cutter is an important task.
The purpose of this study is to master the computer-aided method for analyzing and calculating the stress-strain state of the structural elements of the tool that resist the simplest types of loading, which will ensure the creation of reliable and cost-effective structures [4, 5].
In this paper, the focus is on the method of calculating the RFT, a computer analysis of the loading process of the tool structure is carried out in the Nastran module of the NX CAE program.
NX Advanced Simulation is a feature-rich system for multi-physics calculations that can be used to study strength and dynamics, aerodynamic performance, internal and external flow of liquids and gases, cooling systems, experimental engineering, and more.
Materials [6] show the great potential of NX Advanced Simulation in engineering analysis in the field of CAE - design technologies. The program complex covers a wide range of tasks for modeling physical processes.
MAIN PART
The paper deals with the RFT (fig. 1), which consists of the cutting part and body elements (fig. 1 b). Material components - structural steel, steel 45.
a) tool assembly; b) tool detailing Figure 1 - Rotational friction tool and its detailing.
The analysis is performed to determine the stress-strain state and reliability of the supporting parts of the tool. To implement computer numerical analysis (FEM), as mentioned earlier, we will use the NX Advanced Simulation program [7].
Three-dimensional models of tool components with realistic geometry were created for the study in the calculation module of the CAE system of the NX mechanical system. For modeling RFT, we used the most approximate values of the parameters that were used in empirical studies earlier. Discretization of the components of the RFI components were performed using the finite element (FE) generators of the NX computation module, which allow you to create very high quality FE meshes with economical use of computer resources.
Creating a finite element mesh is one of the most important and critical stages in the process of numerical engineering analysis, and the accuracy of the results directly depends on the quality of the mesh created.
Parts of the RFT have a mesh element mapped by the finite element method, as shown in Figure 2. A quadratic element was chosen as the type of elements, namely, the 10-node tetrahedron (CTETRA10). The size of the elements was uniform throughout the tool body [8-10].
After creating the model grid FE, the next step is to create a calculation model (Simulation Part). For the developed FE model, loading conditions, boundary and initial conditions, conditions of possible contact interaction, one or several types of analysis and solver options are determined. This stage is the most important because it directly affects the results.
NX Extended Simulation allows a wide range of types of numerical analysis. During the transition to NX, the Advanced simulation and the creation of the computational model were given the NX Nastran solver and the type of analysis - linear static analysis (SOL 101) [11-13].
To simulate the loads of the tool cutting process, the bearing surfaces of the parts were fixed, while corresponding forces were applied to the surfaces that were under load. When fixing the tool holder, it was modeled taking into account the limitations of the tool holder of the lathe (fig. 3c). A schematic representation of the boundary conditions of the parts of the RFT are shown in figure 3.
L J
a) shaft; b) housing; c) holder. Figure 2 - RFT finite element mesh model
С 1
a) shaft; b) housing; c) holder. Figure 3 - Boundary conditions
Calculations were performed to estimate the stresses according to Von-Mises. The stresses distribution across the grid of RFT components is shown in Figure 4.
a) shaft; b) housing; c) holder. Figure 4 - Stress distribution
In the diagram, you can observe the distribution of stress in the vulnerable places of the tool. The maximum stress points on each surface are shown in red, and its exact value can be found from the scale shown alongside. The value of the maximum stress for the shaft is 0.3 MPa, for the housing 17.99 MPa and for the holder 15.3 MPa, respectively.
CONCLUSION
Thus, the presented FE model used for calculating the stress for RFT reference elements is rather rigid. This is confirmed by the results of computer simulation.
REFERENCES
1 Sherov K. T., Sikhimbayev M. R., Musayev M. M., Rakishev A. K., Donenbayev B. S. Pilot study of grinding turn the process using special friction plant made of HARDOX steel // Metallurgical industry and Mining industry. 2016, v. 11-2016, p. 52-59.
2 Sherov K. T., Rakishev A. K., Musayev M. M., Donenbayev B. S. Qiystyrushy adispen ondeude bettin mikropishinin qalyptastyru [Formation of microstructure in combined machining] - University Proceedings. Karaganda: Publishing house of KSTU, 2016, no. (63), p. 12-14.
3 Sherov K. T., Hodzhibergenov D. T., Rakishev A. K., Musayev M. M. Issledovanie deformacii srezaemogo sloja pri rotacionno-frikcionnoj obrabotke [Studying deformation of the cut-off layer in rotational and frictional machining] // Scientific periodical by materials of the XV All-Russian scientific and technical conference with the international participation «Mechanics to the 21st century» -Bratsk : FSBOU VPO publishing house, 2016. P. 22-24.
4 Sherov K. T., Sikhimbayev M. R., Donenbayev B. S., Rakishev A. K. Mathematical modeling of thermofrictional milling process using Ansys WB software// Journal of Theoretical and Applied Mechanics, Sofia, Vol. 47 No. 2 (2017) pp. 24-33.
5 Atanasovska I. Finite element model for stress analysis and nonlinear contact analysis of helical gears/Nikolic-Stanojlovic V., Dimitrijevic D., MomЁciloviC D., -Scientific Technical Review (Serbia J.) LVIX. - 2009. - P. 61-68.
6 Zbiciak M., Grabowik C., Janik W. An automation of design and modelling tasks in NX Siemens environment with original software - generator module// IOP Conf. Series: Materials Science and Engineering doi:10.1088/1757-899X/95/1/012117
7 Goncharov P. S., Artamonov I. A., Halitov T. F., Denisihin S. V., Sotnik D. E. NX Advanced Simulation. Engineering Analysis : Tutorial. - M . : DMK Press, 2012. - 504 p.
8 Смагулова А. С., Кияшова А. М. Расчёт зубчатых передач с применением конечно-элементного анализа в рамках пакета ANSYS WB // Наука и техника Казахстана - 2018. - № 3 - С. 39-47
9 Goncharov P. S. NX for the designer-mechanical engineer. (UG Manual NX6) 2010. - 504р.
10 ANSYS Modeling and Meshing Guide. USA: ANSYS, A. W. 11.0, Inc., 2006
11 Kamenev S. V. Osnovy modelirovaniya mashinostroitel'nyh izdelij v avtomatizirovannoj sisteme Siemens NX 10// Orenburg: University, 2015. - 166 p.
12 Kasenov A. Zh., Zhanbulatova L. D., Aidarkhanov D. A. Applications in engineering // Наука и техника Казахстана - 2016. - № 3-4 - С. 75-81
13 Goncharov P. S., Artamonov I. A., Halitov T. F., Denisihin S. V., Sotnik D. E. NX Advanced Simulation// Practical guide. - M. : DMK Press, 2014. - 112 p.
Material received on 16.09.19.
Ракишев Асет Каргулович
PhD, aFa окытушы, «Технологияльщ жабдыктар, машинажасау жэне стандарттау» кафедрасы, КaрaFaнды мемлекеттiк техникалык университетi, КaрaFaнды к., 100027, Казахстан Республикасы, e-mail: [email protected]. Шеров Карибек Тогаевич т^.д, профессор, «Технологиялык жабдыктар, машинажасау жэне стандарттау» кафедрасы, КaрaFaнды мемлекеттiк техникалык университетi, КaрaFaнды к., 100027, Казакстан Республикасы, e-mail: [email protected]. Доненбаев Бахытжан Серикович PhD, aFa окытушы, «Механика» кафедрасы, КaрaFaнды мемлекеттiк техникалык университет^ КaрaFaнды к., 100027, Казакстан Республикасы, e-mail: [email protected]. Совет Нрланат ддшетулы магистрант, «Технологиялык жабдыктар, машинажасау жэне стандарттау» кафедрасы, КaрaFaнды мемлекетлк техникалык университетi, КaрaFaнды к., 100027, Казакстан Республикасы, e-mail: [email protected]. Материал бaспaFa 16.09.19.тYстi.
NX CAE багдарламасында ротациялык-фрикциялык куралдыц Heri3ri бвлшектершщ катавдыгын зерттеу
Ротациялык-фрикциялык куралдыц курылымдъщ есептж талдауы emmsMi. Талдау барысында куралдыц негiзгi белшектерШц кернеулi деформациялъщ куш анъщталды, NX CAE багдарламалъщ кешенШц крлданылуымен есептеу жолдары KepcemMi.
Усынылып отырган маккалада багдарламаныц кeмeгiмeн улгшенген куралдыц жуктеу кeзiндeгi механикалъщ эрекеттерш зерттеуге ден крйылган. Аталмыш жагдай мэжбypлi айналдырылатын ^cK^i бар ротациялык-фрикциялык куралдыц кесу пpоцeciндeгi катацдыгына карасты.
Есептеу нэтижестде куралдыц нeгiзгi бeлiкmepi ушт Вон-Мизес кepнeуi анъщталды. NX CAE багдарламасында eнгiзiлгeн талдаудыц санактъщ эдicmepi зерттеудщ эмпирикалык эдicmepiмeн салыстырганда кшкентай айырмашылъщтарды кepcemeдi.
Кiлmmi ceздep: курылым щтацдыгы, ротациялык-фрикциялык курал, деформация, кернеу, шeкmi элементер эдШ, NX CAE.
Ракишев Асет Каргулович
PhD, ст. преподаватель, кафедра «Технологическое оборудование, машиностроение и стандартизация»,
Карагандинский государственный технический университет,
г. Караганда, 100027, Республика Казахстан, e-mail: [email protected].
Шеров Карибек Тогаевич
д.т.н., профессор, кафедра «Технологическое оборудование, машиностроение и стандартизация»,
Карагандинский государственный технический университет,
г. Караганда, 100027, Республика Казахстан,
e-mail: [email protected].
Доненбаев Бахытжан Серикович
PhD, ст. преподаватель, кафедра «Механика»,
Карагандинский государственный технический университет,
г. Караганда, 100027, Республика Казахстан,
e-mail: [email protected].
Совет Нурланат ддтетулы
магистрант, кафедра «Технологическое оборудование, машиностроение и стандартизация»,
Карагандинский государственный технический университет, г. Караганда, 100027, Республика Казахстан, e-mail: [email protected].
Исследование жесткости опорных частей ротационно-фрикционного инструмента в NX CAE
Проведен расчетный анализ конструкции ротационно-фрикционного инструмента. В процессе анализа было определено напряженно-деформированное состояние элементов инструмента, представлен метод решения с применением программного комплекса NX CAE.
В этой статье основное внимание уделяется изучению механического поведения инструмента при моделировании нагрузки, которая появляется при процессе резания, определению жесткости ротационно-фрикционного инструмента с самовращающимся чашечным резцом.
В результате расчетов найдены напряжения по Вон-Мизесу опорных элементов инструмента. Численные методы анализа, заложенные в программе NX CAE, дают несущественные расхождения по сравнению с эмпирическими методами исследований.
Ключевые слова: жесткость конструкции, ротационно-фрикционный инструмент, деформация, напряжение, метод конечных элементов, NX CAE.