SRSTI 55.19.03
Sherov Karibek Tagayevich
Doctor of Technical Scicnccs. professor. Department of «Technological equipment.
engineering and standardization», Karaganda State Technical University,
Karaganda. 100027, Republic of Kazakhstan, e-mail: sliktl965@mail.ru;
Mazdubay Assylkhan Vladimirovich
PhD. associate professor (doccnt), Department of «Metallurgy»,
S. Toraighvrov Pavlodar State University,
Pavlodar. 140008. Republic of Kazakhstan.
e-mail: asylkhan_m@mail.ru;
Orymbayeva Aliza Kumisbekkyzy
graduate student Department of «Metallurgy »,
S. Toraighvrov Pavlodar State University,
Pav lodar, 140008, Republic of Kazakhstan,
e-mail: aliza.orymbayeva@mail.ru
CONSTRUCTIVE FEATURES OF CUTTING MACHINES FOR CUTTING METALLIC BLANKS
7 he cutting operation is one of the most used in machine building and many other industries. Depending on the material, shapes and dimensions ofthe blanks, different methods of cut ting and matching equipment are used. This article discusses only the mechanical separation methods on the part of the blanks. Normally for cutting hollow and solid billets circular and band saws, various cutters are used. In this case, the machines can also be mobile. The solution to this problem was the development of a new TFO method for metal blanks with pulsed cooling. Keywords: blank, the cutting operation, metal, cutting machines, rolling.
INTRODUCTION
The cutting operation is one of the most used in machine building and many other industries. For example, for cutting rolled in proposed a traveling saw, fixed via a swinging bracket on the frame. As this and other similar sawing machines tend to disadvantage associated with the presence of cutting tools - saws. A large friction of the tool on the blank often leads to the appearance of bums. The diameter of the saw greatly exceeds the diameter of the blank to create the necessary cutting forces. Teeth quickly wear out, due to both the friction of the blank and the tool, and great effort, because of what the saw breaks down. The quality of the cut (accuracy and cleanliness of the surface) is not high [1-6]. Figure 1 shows a cutting machine with a movable saw.
MAIN PART
In part, these disadvantages are devoid of machines equipped with an abrasive wheel as a cutting tool. For example, the cutting machine comprises a frame, a table, a driving cutting tool fixed to a rocker arm, and is supplied with a spring-loaded lock installed on the table in one plane with a cutting tool and a pusher disposed on the rocker arm and cooperating with the lock [2].
Figure 2 shows the cutting machine.
The machine allows you to cut large-sized billets from both sides without burning them. However, this requires a permutation, which is a drawback.
Figure 3 shows the cutting machine.
The cutting machine comprises a frame, a pivot table, a spindle with a drive and a circular saw under it, and a guide bar provided with a frame located on the frame and mounted in a rotatable manner, and a drive spindle are disposed on said frame.
Figure 2 - Cutting machine
Figure 3 - Cutting machine
The disadvantage of this machine is the narrow technological capabilities and low productivity.
In Figure 4, a cut-off machine for cutting the driving of moving pipes to dimensional blanks.
Figure 4 - Cutting machine for cutting continuously moving pipes on
dimensional blank
The machine for cutting continuously moving pipes on measuring blanks, contains a frame with guides, a cut-off carriage, a carriage movement mechanism made in the form of a reducer and rack-and-pinion transmission, and with the purpose of increasing reliability, the carriage movement mechanism is provided with a bar.
The disadvantage of the machine for cutting continuously moving pipes is the unreliability of the carriage drive operation and technological narrowness.
Figure 5 shows a cutting machine with a continuous feed of blanks [7, 8].
Figure 5 - Cutting machine with continuous feed of blanks
In the cutting machine for continuous feeding of blanks, and for feeding blanks, a mechanism is used in the form of a drum fixed to the shaft of the reducer.
The abrasive disc is located above the drum. The drum is made with radially disposed longitudinal seats for free placement of blanks in them, which are automatically clamped in the cutting zone by the clamping bars.
The quality of the surface of the cut with abrasive wheels is also not high. The use of abrasive wheels is limited both by this factor and by the release of hazardous dust (leads to silicosis) and a large consumption of grinding wheels due to friction.
Cutting blanks with cutters is used mainly for blanks of small diameter. At the same time, when cutting pipes, cutters are the most common tool, they are more effective than other methods. Also, the incisors usually provide an acceptable cut quality and good performance. Another advantage of using cutting tools for cutting pipes is the possibility of combining the cutting with the preparation of the edges for welding, if you use shaped cutters. But here too, a large consumption of cutters is observed due to friction of the tool on the blanks. Also there is a high labor input [9-11 ].
To reduce labor intensity and increase productivity while reducing the consumption of cutting tools, the method of thennal friction processing (TFO) allows. The design features of machines for thermo-friction processing (TFO) provide a large friction between the blanks and the tool. Thus, if in all previous methods friction was an undesirable factor, here it becomes a positive phenomenon. Preheating the blank to a high temperature is necessary to reduce the cutting resistance, which leads to a reduction in the required cutting forces and an increase in the cutting speed. But the instrument itself is practically not heated, since any point of the cutting edge of the tool is in contact with the blanks only for a very short time and does not have time to warm up to a high temperature [12-14].
For this reason, if the material of the blanks is strongly softened by the action of high temperature, the cutting tool retains its strength properties. Thus, the tool can be manufactured
not from special tool steels and alloys, but from conventional structural ones, which significantly reduces the cost of the tool and the cost of processing. But then the same problem arises - the loss of strength of the tool from structural steel from the effect of temperature.
The solution to this problem was the development of a new TFO method for metal blanks with pulsed cooling. Its essence consists in the application of a cooling liquid with pulsating pulsation in the cutting zone, hi this case, the thermal and deformation fields are localized in the blanks, which makes it possible to translate the external friction between the method and the cut material into internal. The speed of rotation and the geometry of the cutting edge of the tool correspond to a certain frequency of pulsating, which was initially selected empirically. However, at the moment a mathematical model of the process has been compiled. It is sampled by the finite element method and implemented in the corresponding program using the Ansys package. The model makes it possible to determine the radial and tangential critical cutting forces (in dimensionless criterial values) and then, from the graphs, determine the required cutting regime.
For the wide implementation of the above method of cutting with pulsed cooling, the authors carry out the theme: «Development of the structures of a special machine allowing the supply of pulsed cooling and replacement of a cutting tool from hard alloy with a tool made of structural steel during thermal cutting of metal blanks» under the budget program: 055 «Scientific and/or scientific and technical activities», sub-program 101 «Grant financing of scientific research».
CONCLUSION
At present, the existing designs of machines for cutting metal pieces in the machine-building industry of the Republic of Kazakhstan and the CIS have been explored. The optimum variant of a design of the designed machine is determined and the following technical characteristic is developed:
- The number of revolutions of the friction disk varies stepwise due to the ratio of the pulleys of the electric motor and the spindle n = 2500; 3000; 3500; 4000; 4500; 5000 rpm;
- hydraulic feed with automatic control;
- disk diameters D . = 260 mm; D = 550 mm;
mm max
- power of the electric motor of the main drive N = 11 kW, n = 2800 rpm, power of the electric motor of the oil pump drive 3,5 kW, n = 780 rpm;
- the coolant flow rate of the pump in the range 10 ^ 45 1/min.
REFERENCES
1 Шеров, К. Т., Сихимбаев, М. Р., Кузембаев, С. Б., Маздубай, А. В., Мусаев, М. ML, Шеров, А. К., Доненбаев, Б. С. Конструктивные особенности отрезных станков для резки металлических заготовок // Международный журнал прикладных и фундаментальных исследований. - 2015. - № 10-5. - С. 785-788.
2 [Electronic resource] URL: https://applied-research.ru/ru/article/view?id:=7626 ( date of the application: 11.09.2018).
3 Нечаев, К. Н. Возможности термофрикционной обработки плоских поверхностей // Металлообработка. - 2004. - № 1 (19). - С. 2-3.
4 Сухинин, В. Б. Способы и условия обеспечения точности технологического оборудования // Омский научный вестник. - 2010. - № 2 (90). - С.55-56;
5 Жуматаев А. К., Олжабаев P.O. Повышение надежности оборудования // Наука и Техника Казахстана. - 2010. - № 2. - С. 52-54.
6 Назаров, О., Хасанов, Г., Хурбоев, М. Современная технология механической обработки, металлорежущие станки - высокой степени совершенства // Современные исследования. - 2018. - № 5 (9). - С. 223-226;
7 Kotelnikova, V. Y., Umarova, А. P., Mikhailova, A. A., Iskakova, D. A. Metal Cutting Tool // Наука и Техника Казахстана. - 2015. - № 3-4. - С. 41-44.
8 Мука нов, Р. Б., Мендебаев, Т. М., Касенов, А. Ж. Усовершенствование конструкций инструментов// Сборник трудов IX Международной научно-практической конференции «Инновационные технологии в машиностроении». - Юрга, 24—26 мая 2018. - С. 151-154
9 Волков, О. А. Исследование теплодеформационного влияния при поверхностном упрочнении сталей термофрикционной обработкой // Восточноевропейский журнал передовых технологий. - 2016. - Т. 2. - № 5 (80). - С. 38^14.
10 Покинтелица, Н. И. Кинематика процесса и геометрия инструмента при термофрикционной обработке металлов резанием // Ученые записки крымского инженерно-педагогического университета. - 2013. - № 40. - С. 86-91.
11 Шеров, К. Т., Сихимбаев, М.Р., Шеров, А. К., Мусаев, М. М., Доненбаев, Б. С. Математическое моделирование температурного поля при термофрикционной обработке // Труды университета. - 2016. - № 1 (62) - С. 27-33.
12 Кравченко, О. С., Покинтелица, Н. И. Деформационные и тепловые явления в зоне термофрикционного резания металла // Вестник пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. - 2016. - Т. 18 - № 1. - С. 7-20.
13 Плахотник, В. А., Мелконов, JI. Д., Нерубащенко, А. В. Оптимизация режимов термофрикционного резания плоских поверхностей деталей // Ресурсосберегающие технологии производства и обработки давлением материалов в машиностроении. - 2010. - № 1. — С. 184-193.
14 Головлев, А. А., Нечаев, К. Н. Экспериментальное исследование процесса термофрикционной обработки отверстий // Металлообработка. - 2005. - № 4 (28). - С. 22-24.
Material received on 21.09.18.
КАЗАХСТАН РЫЛЫМЫ МЕН ТЕХНИКАСЫ. ISSN 1680-9165. № 3, 2018 Шеров Карибек Тогаевич
т.г.д., профессор, «Технологиялык жабдыктар, машинажасау
жене стандарттау» кафедрасы,
Караганды мемлекепчк техникалык университету
Караганды к;., 100027, Казакстан Республикасы,
e-mail: shktl965@mail.ru;
Маздубай Асылхан Владимирович
PhD, кауымд. профессор (доцент), «Металлургия» кафедрасы С. Торайгыров атындагы Павлодар мемлекетпк университет!, Павлодар к-, 140008, Казакстан Республикасы, e-mail: asylkhan_m@mail.ru; Орымбаева Ализа Кумгсбекцызы магистрант, «Металлургия» кафедрасы,
С. Торайгыров атындагы Павлодар мемлекеттж университет!, Павлодар к., 140008, Казакстан Республикасы, e-mail: aliza.orymbayeva@mail.ru. Материал баспага 21.09.18 тустг
Металл дайындамаларды кесуге арналган машиналардыц конструктива
ерекшел!ктер1
Кесу операциясы машинажасауда жене басца да коптеген салаларда ец цолайлы. Кесудщ эртурлi эд'ютертщ материалга, гшшшне жене влшемше байланысты. Бул макалада бос жагынан механикальщ болу odicmepi гана царастырылады. Э дет те шуцкырлы жэне цатты бореиелерд1 кесу yuiin доцгелек жене диапазондагы аралар, mypni кесюштер крлданылады. Бул жагдайда, машиналар уялы болуы мумк/'н. Бул мэселеш шешу импульбтт салкындатуга арналган металдан жасалган буйымдар ушт жаца ТФО odic in куру болды.
Kuimmi евздер: болат, кесу жумыстары, металл, кесу машиналары, илем.
Шеров Карибек Тогаевич
д.т.н., профессор, кафедра «Технологическое оборудование, машиностроение и стандартизация», Карагандинский государственный технический университет, г. Караганда, 100027, Республика Казахстан, e-mail: shktl965@mail.ru; Маздубай Асылхан Владимирович
PhD, ассоц. профессор (доцент), кафедра «Металлургия»,
Павлодарский государственный
университет имени С. Торайгырова,
г. Павлодар, 140008, Республика Казахстан,
e-mail: asylkhan_m@mail.ru;
Орымбаева Ализа Кумисбеккизы магистрант, кафедра «Металлургия»,
Павлодарский государственный университет имени С. Торайгырова, г. Павлодар, 140008, Республика Казахстан, e-mail: aiiza.orymbayeva@mail.ru. Материал поступил в редакцию 21.09.18.
Конструктивные особенности машин предназначенных для резки
металлических заготовок
Режущая операция является одной из наиболее используемых в машиностроении и многих других отраслях. В зависимости от материала, форм и размеров заготовок используются различные методы резки и согласования оборудования. В этой статье обсуждаются только методы механического разделения заготовок. Обычно для резки полых и сплошных заготовок используются круглые и ленточные пилы, различные фрезы. В этом случае машины также могут быть мобильными. Решением этой проблемы было создание нового метода ТФО для металлических заготовок с импульсным охлаждением.
Ключевые слова: заготовка, операция резания, металл, режущие машины, прокат.