Научная статья на тему 'Сравнительный анализ планарной и пространственной аксиальной трёхфазных электромагнитных систем с параллельными образующими поверхностями стержней и обмоточных окон (потери активной мощности)'

Сравнительный анализ планарной и пространственной аксиальной трёхфазных электромагнитных систем с параллельными образующими поверхностями стержней и обмоточных окон (потери активной мощности) Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
172
29
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
PLANAR AND SPATIAL ELECTROMAGNETIC SYSTEM / RECTANGULAR AND SECTOR FORMING CONTOURS / MINIMUM WATT LOSS / OPTIMIZATION

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Авдеева Елена Андреевна

Получены аналитические зависимости определения оптимальных геометрических соотношений по критерию минимума потерь активной мощности трансформатора и выполнен сравнительный анализ энергетической эффективности планарной и пространственной аксиальной трехфазных электромагнитных систем с параллельными образующими поверхностями стержней и обмоточных окон.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Авдеева Елена Андреевна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Comparative analysis of planar and spatial three-phase electromagnetic systems with parallel forming surfaces of cores and coil windows (watt loss)

Analytical dependences for optimum geometrical relationship determination with a transformer minimal watt loss criterion are obtained. A comparative analysis of energy efficiency for planar and spatial axial three-phase electromagnetic systems with rectangular and sector forming contours of the cores and coil windows is made.

Текст научной работы на тему «Сравнительный анализ планарной и пространственной аксиальной трёхфазных электромагнитных систем с параллельными образующими поверхностями стержней и обмоточных окон (потери активной мощности)»

Електричні машини та апарати

УДК 621.314 Е.А. Авдеева

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПЛАНАРНОЙ И ПРОСТРАНСТВЕННОЙ АКСИАЛЬНОЙ ТРЁХФАЗНЫХ ЭЛЕКТРОМАГНИТНЫХ СИСТЕМ С ПАРАЛЛЕЛЬНЫМИ ОБРАЗУЮЩИМИ ПОВЕРХНОСТЯМИ СТЕРЖНЕЙ И ОБМОТОЧНЫХ ОКОН (ПОТЕРИ АКТИВНОЙ МОЩНОСТИ)

Отримані аналітичні залежності визначення оптимальних геометричних співвідношень за критерієм мінімуму утрат активної потужності трансформатора та виконано порівняльний аналіз енергетичної ефективності планарноі і просторової аксіальної трифазних електромагнітних систем з паралельними твірними поверхнями стрижнів і об-моткових вікон.

Получены аналитические зависимости определения оптимальных геометрических соотношений по критерию минимума потерь активной мощности трансформатора и выполнен сравнительный анализ энергетической эффективности планарной и пространственной аксиальной трехфазных электромагнитных систем с параллельными образующими поверхностями стержней и обмоточных окон.

Основой конструктивных схем большинства трехфазных индукционных статических устройств малой мощности, а также части трансформаторов I и II габаритов являются "традиционные" планарные структуры электромагнитных систем (ЭМС) с параллельными образующими поверхностями (ОП) стержней и обмоточных окон. Такие структуры, как и структуры более мощных ЭМС с цилиндрическими ОП, практически достигли предела развития [1].

Коэффициент полезного действия (КПД) индукционных преобразователей энергии малой мощности значительно ниже, а в диапазоне мощности до 60-250 кВ А ниже, чем при больших мощностях [2, 3]. Поэтому потери электроэнергии в распределительных сетях Украины составляют до 20% мощности отпущенной генерирующими станциями и значительную долю этой части составляют потери в трансформаторах I - II габаритов классов напряжения 6-35 кВ [4].

Указанные обстоятельства, а также современные требования энергоресурсозбережения при проектировании и организации производства новых индукционных преобразователей, обуславливают необходимость дальнейшего усовершенствования распределительных и специальных трансформаторов различной мощности. Особо важной и актуальной, в соответствии с [4], является задача разработки и освоения производства трансформаторов мощностью до 250 кВ А с повышенным КПД.

Замена планарной структуры ЭМС на симметричную пространственную аксиальную при использовании технологии изготовления магнитопроводов навивкой и разрезкой рулона электротехнической стали (ЭТС) [5], а также сохранении параллельных и взаимно перпендикулярных ОП, преобразует прямоугольные сечения стержней в секторные [6]. Подобное преобразование позволяет, согласно [7], снизить массу и стоимость ЭМС соответственно на 4-6 % и 5-8 % относительно традиционных аналогов с прямоугольным сечением стержней шихтованного или витого магнитопроводов.

Целью настоящей работы - продолжении [7] является сравнительный анализ энергетической эффективности вариантов трехфазного трансформатора (ТТ) с параллельными и взаимно перпендикулярными ОП ЭМС, отличающихся планарной (рис. 1,а) и пространственной аксиальной (рис. 1,6) структурами.

ас

ас

д„ -

б

Рис. 1. Поперечные сечения и геометрические параметры планарной (а) и пространственной (б) электромагнитных систем с витыми стыковыми магнитопроводами и плоскими параллельными образующими поверхностями обмоточных окон и стержней

При сравнительном анализе энергетической эффективности ЭМС (рис. 1) принимаются следующие известные допущения [7]. Используется конструкция обмоток с чередующимися фазными катушками и средними витками, расположенными на четверти ширины Ъ0 обмоточного окна. В таких обмотках одинаковы плотности фазных токов (/01=/02=/0) высокого и низкого напряжений. Исходя из принципа электромагнитной эквивалентности при сравнительном анализе, принимаются соответственно идентичными электромагнитные нагрузки (ЭМН) - плотности фазных токов проводников катушек(/0п=/0с=/0) и средние (по сечению) значения амплитуд магнитной индукции в стержнях (ВСП=БСС=БС) с прямоугольными (в планар-

ной ЭМС) и секторными (в пространственной ЭМС) образующими контурами. Также соответственно идентичными являются коэффициенты заполнения обмоточного окна (Кзоп= Кзос= К30) и коэффициенты заполнения магнитопровода ЭТС (КЗСП=КЗСС=КЗС). Средние значения амплитуд индукции ярем Бш (рис. 1,а), прямых участков ярем Бяс (рис. 1,6) и стержней одинаковы (Бяп(с)=Бс).

Значение КПД трансформатора определяется суммой потерь холостого хода (ПХХ) и потерь короткого замыкания (ПКЗ) [2,3]. Указанные потери на основе метода относительных коэффициентов целевых функций в виде относительных показателей технического уровня [8] представляются полной целевой функцией потерь активной мощности

Рт = )3Ппа , (1)

где Пвд - идентичный для сравниваемых ЭМС (рис. 1) показатель исходных данных и ЭМН ТТ. Ппа - целевая функция относительного показателя потерь активной мощности в виде коэффициента П па,

2 *

Ппа _ К дхУсРумБс Ппа ,

где Кдх - коэффициент добавочных ПХХ [3]; ус -плотность ЭТС; Рум - удельные потери ЭТС магнитопровода.

Входящий в (1) показатель П па является функцией К30 (класса напряжения), коэффициента удельных показателей и ЭМН Ку, двух основных относительных и третьей дополнительной (используемой в части ЭМС) геометрических управляемых переменных (УП) ам, Ъо ийс

Ппа _ I(К30,Ку,ам,^с), где ам - отношение наружного Дн и внутреннего Дв диаметров расчетных окружностей магнитопроводов ЭМС (рис. 1); Хо - отношение высоты ка и ширины Ъа обмоточного окна; - центральный угол стержня:

ам = Дн/Дв; (2)

X0 = И0 /Ъ0 . (3)

Коэффициент удельных показателей и ЭМН определяется соотношением [9]

= Кдку0Руо]о2 , (4)

Кдх У с Рум Бс

где Кдк - коэффициент добавочных потерь короткого замыкания [3]; у0 - плотность активного материала обмотки (АМО); Руо - удельные потери в АМО.

При принятых допущениях ПХХ Рххп(с), в соответствии с числом и пространственным положением ярем, а также, вне зависимости от особенностей структуры магнитопровода, ПКЗ Ркзп(с) ЭМС с прямоугольными (рис. 1,а) и секторными (рис. 1,6) образующими сечений стержня определяются уравнениями [3, 9]:

Р = К К у Р Б 2 х (V + V + V )• (5)

1 ххп ^дх^зс / с1 УМ^С Л V СП ~ ' ЯП ~ ' УП/ > V'

Pxxc - КдхКзсусPVMBc2 X (VCC + Vac + 0,757Vvc) ; (6)

"дх^зс / с* ум^с

yc>

Ркзп(с) !,5КдкРуоУоК30 х ] о ^о1»п(с)Ъоп(с) , (7)

где Vcп(c), Vш(0-) и Vyп(c) - соответственно объемы стержней, ярем и угловых участков ярем; /№п(с) и Ъоп(с) - средняя длина витка катушки чередующейся обмотки и ширина обмоточного окна магнитопровода вариантов ЭМС (рис. 1).

Согласно [7], средняя длина витка и ширина обмоточного окна каждого из рассматриваемых вариантов ЭМС определяются выражениями:

lwn 2Де

sln

a c

П

- + cos-e- + — I a„ -sln

(8)

2 2 8 ^ ” 2 lwc = Дв [2,0472(aM - і)+ 2,2092КаІ + І,5708Ка2 ]; (9) bon = Дв k - sln(a J2)]/2; (i0)

boc _ Ка2Дв , где Ка1 и Kq2 - коэффициенты угла (рис. 1,6):

(11)

К„і = sln

СОЄ

+ ЄІП

Vcn 3ho Scn ;

Vxn = 4bo Scn ; Vyn _ 6bc Scn ,

.3 2

Объемы стержней, ярем и угловых участков магнитопровода (рис. 1,а) при принятых допущениях определяются соотношениями:

(12)

(13)

(14)

где площадь прямоугольного сечения ^сп и ширина стержня Ьсп определяются из (4):

^ п = (Д2 /2)єіп ас; (15)

Ьс = Дв є1п(ас/2). (16)

После подстановки (3), (10) и (15), (16) соотно-

шения (12) - (14) преобразуется:

Гсп = -4-Х0Д3 [ам - єіп((Хс /2)]єіпас; (17)

(18)

Van = Дв [aM - sln(ac /2)]slnac ;

Ууп = 3ДВ єіп(ас /2)єіп«с . (19)

На основе (17) - (19) уравнение (5) принимает

вид

Pxxn КДХКЗСусРуМ5СДВ slnac х

n ■ а c /і 3 .a c

3sln^ + (1 + -Xo)(aM - sln—2^-)

(20)

Уравнение (7) после подстановки геометрических параметров (8) и (10) ЭМС (рис. 1,а) запишется в виде

Р = — ^ ^ V Р ;'2^ Л3 "

^КЗП 4 ^ ДК^ЗО / 0Г

:(aM - sln“y)2

yoJ

ac

c ac ^1 • ac

sln—— + cos—— h—I ax, - sln

.(21)

2 2 8 [С" 2 Суммарные потери ТТ с ЭМС (рис. 1,а) определяются на основе (4) и (20), (21) уравнением

P = P + Р = К v Р Я

Г£П ^ххп^^кзп JXffKlCryMJJC

<Дв^Кзсslnac+ l 1 + 4xo IIciM -sm^2.

з Q. о

+ -KyK30^0 («m - sln^p>

k. .a Cn

+ -(aM - sln —)

• a c a c

sln—— + cos——

(22)

c

c

c

2

2

2

2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

где диаметр внутренней расчетной окружности (рис. 1,а) определяется выражением [7]

Дв = 4

8П„

КзсКзо^о| «м - I sinac

. (23)

Подстановка (23) преобразует уравнение потерь (22) к виду

РЕП = Кдх У с Рум Д2 (4 Пид )П*ап , где относительный показатель потерь ТТ с ЭМС (рис. 1,а) определяется выражением

\3

п =

ААпап

К™ sin ac

КзсКзо^о (ам - sinac

га 3 га

3sin^ + (1 + -X0)(aM - sin—2^-)

(24)

3 ^ 2

+ — KyK30X 0 (aM — sin——)

. ac ac sin—— + cos—— +

ac

Ky *

1,15 • 8900 • 2,4-10“12 • (1.4-106)2

1,25 • 7650 -1,15 -1,7

2

Ky *

Ky *

1,15 • 8900 • 2,4 -10

-12

(2.4-106)2

1,25 • 7650 • 1,15 • 8900 • 2,4 -10'

1,15 -1,6 12

2

= 1,515:

(3.5-106)2

1,25 • 7650 -1,15 -1,6

2

= 10,689 .

Принимается минимальное Kymin и максимальное Kymax значения коэффициента удельных показателей и

ЭМН

1.5 = К,

< ку < к ^ = 5.5(11).

“■у min — — ^у max 5.5(11). (25)

Результаты расчета оптимальных значений УП и

показателей энергетической эффективности планарной ЭМС (рис. 1,а) при Кзс = 0,91, трех значениях К30 и значениях КутЫ, КУтах и К"Утах (25) представлены в табл. 1-3. Примеры функциональных зависимостей (24) от ам показаны на рис. 2. Указанные зависимости получены при экстремальных значениях соответственно 0^3=51,04° и 0^3=51,67° при К30 = 0,3.

Таблица 1

Экстремальные значения управляемых переменных и показателя потерь активной мощности планарной электромагнитной системы при Ку,

Коэффициент Экстремальные значения

заполнения управляемых переменных 11 пап?

обмоточного аМЭ5 ^ОЭ5 асэ, о.е.

окна, о. е. о.е. о.е. град.

0,3 1,872 2,769 51,04 31,69

0,25 2,006 2,764 50,99 33,35

0,2 2,189 2,756 50,89 35,59

+ -(ам -

В ТТ АМО являются электротехнические медь и алюминий, а при производстве магнитопроводов используется холоднокатаная рулонная ЭТС [2, 3, 10]. В связи с ортогональным, по отношению к направлению проката, направлением магнитного потока стержней, в магнитопроводе ЭМС (рис. 1,6) целесообразно использование аморфной или холоднокатаной изотропной ЭТС, например ЭТС 2412 с ус = 7650 кг/м3 и Руы = 1,15 Вт/кг. При разработке "сухих" и "масляных" ТТ различной мощности для рулонной ЭТС толщиной 0,35 мм принимаются значения коэффициентов добавочных потерь и расчетный диапазон индукции Кдк < 1,15, Кдх < 1,25 и Вс = 1,6-1,7 Тл. При использовании медных обмоточных проводов с у0 = 8900 кг/м3 и Руо = 2,4-10-12 Вт/кг, а также частоте сетиЦ = 50 Гц, в диапазонах номинальной мощности ТТ = 0,3-1 кВ А и £н = 1-2,5 кВ А, плотность тока соответствует значениям: }0 = 2,4-1,7 А/мм2 и }0 = 1,7-1,4 А/мм2 [2]. При аналогичных АМО и частоте, согласно [3], в масляных ТТ при £н = 2,5-63 кВ А, }0 = 1,8-2,2 А/мм2 и при £н = 63-630 кВ А, ]а = 2,2-3,5 А/мм2, а в "сухих" ТТ с £н = 10-1600 кВ А полусумма плотностей тока первичной и вторичной концентрических обмоток составляет }0 = 1,7-2,4 А/мм2. В указанных диапазонах изменения ЭМН расчетные значения коэффициента (4) составляют:

Таблица 2

Экстремальные значения управляемых переменных и показателя потерь активной мощности планарной электромагнитной системы при Ку

Коэффициент Экстремальные значения

заполнения управляемых переменных 11 пап;

обмоточного аМЭ5 ^ОЭ5 асэ, о.е.

окна, о. е. о.е. о.е. град.

0,3 1,196 2,807 51,67 62,015

0,25 1,269 2,793 51,56 64,307

0,2 1,363 2,796 51,502 67,412

Таблица 3

Экстремальные значения управляемых переменных и показателя потерь активной мощности планарной электромагнитной системы при К,

Коэффициент Экстремальные значения

заполнения управляемых переменных 11 пап5

обмоточного аМЭ5 ^ОЭ5 асэ, о.е.

окна, о. е. о.е. о.е. град.

0,3 0,978 2,812 51,903 92,466

0,25 1,029 2,818 51,903 95,192

0,2 1,097 2,815 51,789 98,885

Объемы стержней, ярем и угловых участков магнитопровода (рис. 1,6) при принятых допущениях определяются выражениями [9]

Vcc =пХ0К„2 Д>м -1)

К

а1

¥яс = 3,627Ка2Дв (ам -1)

Vvc = 2,418лД3 (ам -1)

ам -1 4 V

, ам - 1

л/э' 4 .

а,. -1

К

а1

(26)

(27)

а1

—bv~m \V3 4

На основе (26) - (28) уравнение (6) преобразуется

-^а! ^ ам ~ 1

Vs

(28)

Рхкс = КдхКзсусР В^Д3в(ам -1)1

умх

4

К ^1 а™ 1

(29)

Уравнение (7) после подстановки геометрических параметров (9) и (11) ЭМС (рис. 1,6) принимает вид

ркзс = 1,5КдкК30у0PyojlК22^0Дв х (30)

х [2,0472(ам -1) + 2,2092Ка1 + 1,5708Ка2 ]

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

б

Рис. 2. Зависимости показателем потерь активной мощности от геометрических соотношений трехфазной планарной электромагнитной системы сКу = 1,5 (а) иКу = 5,5 (б)

Суммарные потери ТТ с пространственной ЭМС определяются на основе (4), (29) и (30) уравнением

Pic = Рхкс + РКЗс = КдХУс.Ру„Вс2Д3j(aM "ifi1 + 1 х

4

+1,5КуК30 х (31)

х К22Х0 [2,0472^м -1)+2,2092Ка1 +1,570Жа2]}, где диаметр внутренней расчетной окружности определяется выражением [7]

Дв = 4

/ Г (

|3ПИд/ лКзсК30Х0 _ V

Kg1 , aM 1

V3 + 4

Л

Ka2(aM _1)

.(32)

Подстановка (32) преобразует уравнение суммарных потерь пространственной ЭМС к виду

РЕс = Кдх У с Рум Вс (4 Пид )3 Ппас , где относительный показатель потерь ТТ с ЭМС (рис. 1,6) определяется уравнением

П*

1 Ап

^ЗС^ЗО'^О

43

Кa2(a„ -1)

<aM -1)^ + V>a2(1,1545 + X0) +

(33)

+1,83|^-+

л/3 4

+1,5КуК30К22^0 х

представлены в табл. 4-6. Примеры функциональных зависимостей (33) от ам при К30 = 0,3 иОс =10° показаны на рис. 3.

ГГ

б

Рис. 3. Зависимости показателей потерь активной мощности от геометрических соотношений трехфазной пространственной электромагнитной системы сКу = 1,5 (а) иКу = 5,5 (б)

Таблица 4

Экстремальные значения управляемых переменных и показателя потерь активной мощности пространственной электромагнитной системы при Ку,

Коэффициент Экстремальные значения

заполнения управляемых переменных 11 пас^

обмоточного aмэ, ^ОЭ5 о.е.

окна, о.е. о.е. о.е.

0,3 2,219 2,346 30, 696

0,25 2,104 2,351 32,433

0,2 1,978 2,357 34,787

Таблица 5

Экстремальные значения управляемых переменных и показателя потерь активной мощности пространственной электромагнитной системы при Ку

Коэффициент Экстремальные значения

заполнения управляемых переменных 11 пас^

обмоточного aмэ, ^ОЭ5 о.е.

окна, о. е. о.е. о.е.

0,3 3,426 2,314 58,318

0,25 3,205 2,318 60,718

0,2 2,961 2,323 63,97

Таблица 6

Экстремальные значения управляемых переменных и показателя потерь активной мощности пространственной электромагнитной системы при К,

х [2,0472(ам -1)+2,2092Ка1 + 1,5708Ка2 ]}.

Результаты расчета оптимальных значений УП и показателя энергетической эффективности (33) пространственной ЭМС (рис. 1,6) при Кзс = 0,91, Ос = 10°, трех значениях К30 и значениях Кутш, К'^ и Кутс1Х (25)

Коэффициент Экстремальные значения

заполнения управляемых переменных 11 пас^

обмоточного aмэ, ^ОЭ5 о.е.

окна, о.е. о.е. о.е.

0,3 4,477 2,301 85,697

0,25 4,164 2,304 88,549

0,2 3,818 2,308 92,414

3

4

выводы

1. Трехфазная пространственная аксиальная ЭМС ТТ с витым стыковым магнитопроводом, медными обмотками и секторными ОК, в диапазоне мощности 0,3-630 кВ А, в дополнение к улучшенным массостоимостным показателям, отличается от электромагнитно-эквивалентного планарного аналога с прямоугольными ОК пониженными на 3-7 % потерями активной мощности.

2. Потери активной мощности планарной и пространственной ЭМС ТТ при / = 50Гц возрастают с повышением коэффициента соотношения плотностей тока обмоток и индукции стержня.

3. Энергетическая эффективность трехфазной пространственной аксиальной ЭМС ТТ с параллельными ОП при / = 50Гц повышается относительно электромагнитно эквивалентной планарной ЭМС с увеличением плотности тока обмоток.

4. Основной геометрической УП, определяющей энергетическую эффективность планарной и пространственной аксиальной ЭМС является отношение ам диаметров расчетных окружностей магнитопровода.

5. Величины экстремальных значений отношения диаметров расчетных окружностей амэ зависят от конкретных соотношений ЭМН.

СПИСОК ЛИТЕРАТУРЫ

1. Ставинский А.А. Генезис структур и предпосылки усовершенствования трансформаторов и реакторов преобразованием контуров электромагнитных систем (электродинамическая устойчивость и системы со стыковыми магнито-проводами) // Електротехніка і електромеханіка. - 2011. -№5. - С. 43-47.

2. Расчет трансформаторов и дросселей малой мощности. Изд. 2-е, перераб. и доп. / И.И. Белопольский, Е.И. Каретникова, Л.Г. Пикалова. - М.: Энергия, 1973. - 400 с.

3. Тихомиров П.М. Расчет трансформаторов: Учебное пособие для вузов. - 5-е издание. Перераб. и доп. - М.: Энер-гоатомиздат, 1986. - 528 с.

4. Шидловський А.К., Федоренко Г.М. Макроекономічні тренди в електроенергетиці України 1990-2000 р. // Технічна електродинаміка. - 2002. - № 5. - С. 3-12.

5. Магнитопроводы силових трансформаторов (технология и оборудование) / А.И. Майорец, Г.И. Пшеничный, Я.З. Чечелюки др. - М.: Энергия, 1973. - 272 с.

6. Ставинский А.А. Генезис структур и предпосылки усовершенствования трансформаторов и реакторов преобразованием контуров электромагнитных систем (системы с шихтованными и витыми магнитопроводами) // Електротехніка і електромеханіка. - 2011. - № 6. - С. 33-38.

7. Авдеева Е.А. Сравнительный анализ планарной и пространственной аксиальной трёхфазных электромагнитных систем с параллельными образующими поверхностями стержней и обмоточных окон (массостоимостные показатели) // Електротехніка і електромеханіка. - 2012. - № 4. - С. 15-20.

8. Ставинский Р.А. Нетрадиционные технические решения, постановка задачи и метод структурной оптимизации индукционных статических устройств // Вісник КДУ. - Кременчук: КДУ, 2010. - Вин. 4 / 2010 (63), ч. 2 - С. 91-94.

9. Ставинский А.А., Плахтырь О.О., Ставинский Р.А. Зависимости потерь трехфазных пространственных трансформаторов с параллельными стенками обмоточных окон от геометрических соотношений активной части // BicHHK Cxi-дно-укр. нац. ун-ту iM. В. Даля. - 2003. - № 4. - С. 95-100.

10. Справочник по электротехническим материалам / Под ред. Ю.В. Корицкого, В.В. Пасынкова, Б.М. Тареева. - Т.3 -3-е изд., перераб. - Л.: Энергоатомиздат, 1988. - 728 с.

Bibliography (transliterated): 1. Stavinskij A.A. Genezis struktur i predposylki usovershenstvovaniya transformatorov i reaktorov preobrazovaniem konturov ' elektromagnitnyh sistem

('elektrodinamicheskaya ustojchivost' i sistemy so stykovymi magnitoprovodami) // Elektrotehnika i elektromehanika. - 2011. - №5. -

5. 43-47. 2. Raschet transformatorov i drosselej maloj moschnosti. Izd. 2-e, pererab. i dop. / I.I. Belopol'skij, E.I. Karetnikova, L.G. Pikalova. -M.: 'Energiya, 1973. - 400 s. 3. Tihomirov P.M. Raschet transformatorov: Uchebnoe posobie dlya vuzov. - 5-e izdanie. Pererab. i dop. - M.: 'Energoatomizdat, 1986. - 528 s. 4. Shidlovs'kij A.K., Fedorenko G.M. Makroekonomichni trendi v elektroenergetici Ukraini 1990-2000 r. // Tehnichna elektrodinamika. - 2002. - № 5. - S. 3-12. 5. Magnitoprovody silovih transformatorov (tehnologiya i oborudovanie) / A.I. Majorec, G.I. Pshenichnyj, Ya.Z. Chechelyuk i dr. - M.: 'Energiya, 1973. - 272 s.

6. Stavinskij A. A. Genezis struktur i predposylki usovershenstvovaniya transformatorov i reaktorov preobrazovaniem konturov 'elektromagnit-nyh sistem (sistemy s shihtovannymi i vitymi magnitoprovodami) // Elektrotehnika i elektromehanika. - 2011. - № 6. - S. 33-38. 7. Avdeeva E.A. Sravnitel'nyj analiz planarnoj i prostranstvennoj aksial'noj trehfaznyh 'elektromagnitnyh sistem s parallel'nymi obrazuyuschimi poverhnostyami sterzhnej i obmotochnyh okon (massostoimostnye po-kazateli) // Elektrotehnika i elektromehanika. - 2012. - № 4. - S. 15-20. 8. Stavinskij R.A. Netradicionnye tehnicheskie resheniya, postanovka zadachi i metod strukturnoj optimizacii indukcionnyh staticheskih us-trojstv // Visnik KDU. - Kremenchuk: KDU, 2010. - Vip. 4 / 2010 (63), ch. 2 - S. 91-94. 9. Stavinskij A.A., Plahtyr' O.O., Stavinskij R.A. Zav-isimosti poter' trehfaznyh prostranstvennyh transformatorov s paral-lel'nymi stenkami obmotochnyh okon ot geometricheskih sootnoshenij aktivnoj chasti // Visnik Shidno-ukr. nac. un-tu im. V. Dalya. - 2003. -№ 4. - S. 95-100. 10. Spravochnik po 'elektrotehnicheskim materialam / Pod red. Yu.V. Korickogo, V.V. Pasynkova, B.M. Tareeva. - T.3 - 3-e izd., pererab. - L.: 'Energoatomizdat, 1988. - 728 s.

Поступила 11.02.2012

Авдеева Елена Андреевна

Национальный университет кораблестроения

имени адмирала Макарова

51025, Николаев, пр. Героев Сталинграда, 9

тел. (0512) 366636, e-mail: [email protected]

Avdeeva E.A.

Comparative analysis of planar and spatial three-phase electromagnetic systems with parallel forming surfaces of cores and coil windows (watt loss).

Analytical dependences for optimum geometrical relationship determination with a transformer minimal watt loss criterion are obtained. A comparative analysis of energy efficiency for planar and spatial axial three-phase electromagnetic systems with rectangular and sector forming contours of the cores and coil windows is made.

Key words - planar and spatial electromagnetic system, rectangular and sector forming contours, minimum watt loss, optimization.

i Надоели баннеры? Вы всегда можете отключить рекламу.