Научная статья на тему 'SOME INFORMATION ABOUT A STRUCTURE OF PARTS OF THE CENTRAL NERVOUS SYSTEM'

SOME INFORMATION ABOUT A STRUCTURE OF PARTS OF THE CENTRAL NERVOUS SYSTEM Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
75
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Colloquium-journal
Ключевые слова
central nervous system / neocortex / layer / nerve cells / artificial intelligence / humanoid robot.

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Alexander Sergey Tomashuk

Today, the development of knowledge and the improvement of technologies in such a discipline as artificial intelligence (AI), in the field of technical sciences, is relevant. This is the third work, which, as before, describes the known information about the structure and principle of work of the central nervous system (CNS) of a living organism, such as human. The purpose of the general study is to improve the technology of AI, which is based on the structure and principle of work of the CNS of a living organism, for humanoid robots (HR). The purpose of this study is to form knowledge regarding the structure of the human brain (HB) parts. To achieve this purpose, a search and analysis of known information was carried out; also, graphic illustrations, that describe the connections between separate nerve cells of separate parts of the HB, were formed. Briefly, information is provided regarding the parts of the CNS in which the process of generating new cells occurs. In addition, the work describes the distribution of basic substances – mainly neurotransmitters, within the CNS; and also, according to known information, expressions for calculating the quantities of separate elements and components – nerve cells, mini-columns and oth., the CNS, have been derived for practical implementation in future works. In-depth knowledge of the structure of parts HB and the principle of work of the CNS will allow, for future work, to improve the technology of AI of HR.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «SOME INFORMATION ABOUT A STRUCTURE OF PARTS OF THE CENTRAL NERVOUS SYSTEM»

UDC 611.811; 004.81

Alexander Sergey Tomashuk DOI: 10.24412/2520-6990-2023-27186-44-72

SOME INFORMATION ABOUT A STRUCTURE OF PARTS OF THE CENTRAL NERVOUS

SYSTEM

Abstract.

Today, the development of knowledge and the improvement of technologies in such a discipline as artificial intelligence (AI), in the field of technical sciences, is relevant. This is the third work, which, as before, describes the known information about the structure and principle of work of the central nervous system (CNS) of a living organism, such as human. The purpose of the general study is to improve the technology of AI, which is based on the structure and principle of work of the CNS of a living organism, for humanoid robots (HR). The purpose of this study is to form knowledge regarding the structure of the human brain (HB) parts. To achieve this purpose, a search and analysis of known information was carried out; also, graphic illustrations, that describe the connections between separate nerve cells of separate parts of the HB, were formed. Briefly, information is provided regarding the parts of the CNS in which the process of generating new cells occurs. In addition, the work describes the distribution of basic substances - mainly neurotransmitters, within the CNS; and also, according to known information, expressions for calculating the quantities of separate elements and components - nerve cells, mini-columns and oth., the CNS, have been derived for practical implementation in future works. In-depth knowledge of the structure ofparts HB and the principle of work of the CNS will allow, for future work, to improve the technology of AI of HR.

Keywords: central nervous system, neocortex, layer, nerve cells, artificial intelligence, humanoid robot.

1. Introduction.

Today, there is a need to improve artificial intelligence (AI) technology.

A series of works [1, 2], including this one, provide a description of the structure and operation of the central nervous system (CNS) of a living organism such as a person. This information, along with information, that will be found later, will help in improving the AI model and developing software that will demonstrate the functioning of the CNS, in some approximation to the ideal.

Unfortunately, although there is quite a lot of information regarding the work of the CNS, it has not been fully studied. In this regard, the author of the manuscript has repeatedly proposed and will continue to propose a number of hypotheses, that need proof and cannot be accepted by specialists, who work in the field of medical science, without them, regarding the functioning of the CNS. In most cases, hypotheses, that were formed by the author on the basis of his own experience, which was obtained while studying information, that relates to the fields of technical and medical sciences, are specified in the text of the work, as those, that require proof.

This work, incompletely, provides information regarding the structure of parts of the brain (B) and connections between cells - those nerve (NC) and glial cells (GC), that are located inside one smallest component (such as, for example, mini-column or micro-column) of a separate part, and also, accordingly, those, that located are in the components of different plots of this separate part and components of different parts of the CNS.

2. General information regarding connections in the CNS.

2.1. General information regarding connections between plots of parts, in the CNS.

As stated above in the text, the anatomy and physiology of the CSN have not been fully studied. Because of this, there is a problem, that consists in the lack of information - for example, the permissible range of the number of cells - NC and GC, in separate layers of the smallest component of the part and each of the parts, is unknown; the types of cells and their exact location in some parts (for example, the nucleus of the hypothalamus) are unknown, however, the substances and receptors, that they possess, are known; and etc.

As previously - in work [1], in this work, to a greater extent, accent will be placed on the system of connections of cells from the ventral stream of visual information. In addition, using the case, the author should request the attention of readers to the scheme, which was, as an illustration, shown in work [1], where it is necessary to replace the link, which is designated as Brodmann area (BA) 28, which corresponds to the medial entorhinal cortex, with Brodmann area 34, which corresponds to the dorsal entorhinal cortex. From the works [3, 4], it is known, that there is a small number of connections between BA 28 and the perirhinal cortex - BA 35 and 36, compared to BA 34.

Table 1 provides information regarding the titles and their abbreviations, parts and plots of object of the CNS, as well as the location of a certain plot, relative to an imaginary point, which is defined as the center of the object.

Based on the known information, that was obtained from works [1, 2, 5-164], as well as, that which was proposed as a hypothesis, in the form of a table, a list of connections between areas (also, sub-parts) of the cortex of the hemispheres (HC) of the B (or, BHC), as well as, between the areas of the CH of the B and the parts of the B. By information, that was proposed as a hypothesis, and, that, obviously, needs to be verified, author mean such information, that in the works, that

«©©yLOlMUM-JOUTMaL» #27(186), 2023 / MEDICAL SCIENCES_45_

were found during the search process, was presented in information, that was obtained from the same works, less quantity ("in detail") and to this was defined as that describes, in more detail, the structure of separate plots which is "not fully represented." Table 2 presents the of some parts. result. Further, in the text, Figure 1, based on known

Table 1.

Titles, and their abbreviations, of the parts and plots of the CNS objects.

Name object Abbreviation

Left L

Right R

Superior S, s

Inferior I, i

Anterior A, a

Posterior P, p

Supra Su

Retro Re

Caudal c

Rostral r

Lateral L, l

Medial M, m

Dorsal D, d

Ventral V, v

Ipsilateral IpL

Contralateral CoL

Bilateral BiL

Magnocellular M (Ret)

Parvocellular P (Ret)

Koniocellular K (Ret)

Brodmann area BA

Bone marrow BoMa

Brainstem BrSt

Midbrain MiBr

Medulla oblongata MeOb

Metencephalon Mt

Frontal lobe FrLo

Occipital lobe OcLo

Parietal lobe PaLo

Temporal lobe TeLo

Superior frontal gyrus SuFrGy

Middle frontal gyrus MiFrGy

Orbitofrontal cortex OrFrCo

Prefrontal cortex PreFrCo

Dorsal lateral prefrontal cortex DLPreFrCo

Retrosplenial cortex ReSpCo

Cingulate cortex CiCo

Anterior cingulate cortex ACiCo

Medial temporal gyrus MeTeGy

Postcentral gyrus PostCeGy

Corpus callosium CoCa

Primary visual cortex V1

Secondary visual cortex V2

Association visual cortex V3, V3A, V3B, V4, V5, V6, V6A, V7 (v, d)

Lateral occipital areas LO-1, LO-2, LO-3

Ventral occipital area VO-1, VO-2

Anterior inferior temporal area AIT

Central inferior temporal area CIT

Posterior inferior temporal area PIT

Dorsal perirhinal cortex DPrC

Ventral perirhinal cortex VPrC

Entorhinal cortex ErC

Lateral entorhinal cortex LErC

Medial entorhinal cortex MErC

Hippocampus Hc

Hippocampus subiculum HcSub

Hippocampus cornu ammonis (1-3 (4)) Hc (CA1-CA3 (CA4))

Hippocampus dentate gyrus HcDG

Indusium griseum InGr

Claustrum Cl

Septal nuclei SeN

Lateral septal nucleus LSeN

Medial septal nucleus MSeN

Septum pellucidum SePe

Paraterminal gyrus PaTeG

Diagonal band of Brock BrDiBa

Ventral limb of the diagonal band nucleus of Brock BrDiBaNVLi

Horizontal limb of the diagonal band nucleus of Brock BrDiBaNHLi

Amygdala (nuclei) Am (mAm)

Amygdala basolateral nucleus AmBLN (AmPBLN)

Amygdala basomedial nucleus AmBMN

Amygdalo-piriform transition area Am-PiTrAr

Periamygdaloid area PerAm

Epithalamus EpiTh

Habenular nuclei HbN

Thalamus Th

Thalamus sensory association nuclei ThSAN

Thalamus lateral geniculate nucleus ThLGN (DLGN, VLGN)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Thalamus reticular nucleus ThRtN

Thalamus midline nuclei ThMdLnN

Thalamus reuniens nuclues ThReuN

Thalamus rhomboid nucleus ThRhN

Thalamus paraventricular nucleus ThPaVeN

Thalamus paratenial nucleus ThPaTeN

Thalamus intralaminar nuclei ThILN (ThPILN)

Thalamus pulvinar nuclei ThPulN

Thalamus inferior pulvinar nucleus ThIPulN

Thalamus lateral pulvinar nucleus ThLPulN

Thalamus lateral posterior nucleus ThLPN

Thalamus paracentral nucleus ThPaCN

Thalamus central lateral nucleus ThCLN

Thalamus central medial nucleus ThCMN

Thalamus parafascicular nucleus ThPaFsN

Thalamus lateral nuclei ThLN

Thalamus lateral dorsal nucleus ThLDN

Thalamus medial geniculate nucleus ThMGN (dMGN)

Thalamus interanteromedial nucleus ThIAMN

Thalamus anterior nuclei ThAN

Thalamus anterior medial nucleus ThAMN

Thalamus anterior ventral nucleus ThAVN

Thalamus anterior dorsal nucleus ThADN

Thalamus ventral anterior nucleus ThVAN

Thalamus ventral posteromedial nucleus ThVPMN

Hypothalamus Ht (dHt)

Hypothalamus ventromedial nucleus HtVMN

Hypothalamus posterior nucleus HtPN

Hypothalamus paraventricular nucleus HtPaVeN

Hypothalamus mammillary nucleus HtMaN (HtLMaN, HtMMaN)

Hypothalamus supramammillary nucleus HtSuMaN

Hypothalamus retromammillary nucleus HtReMaN

Hypothalamus premammillary nucleus HtPreMaN

Hypothalamus tuberal nucleus HtTuN

Hypothalamus tuberomammillary nucleus HtTuMaN

Hypothalamus preoptic nuclei HtPreOpN

Pineal gland (epiphysis) PnGl

Pituitary gland (hypophysis) PtGl

Anterior pituitary gland (adenohypophysis) APtGl

Posterior pituitary gland (adenohypophysis) PPtGl

Ventricular zone VeZo

Basal nuclei BaN

Meynert basal nucleus MeBaN

Corpus striatum CoSt (dCoSt, vCoSt)

Caudate nucleus CaN

Putamen Pu

Nucleus accumbens NAc

Olfactory tubercle OlTu

Globus Pallidus GlPa (lGlPa, mGlPa)

External part of globus pallidus ExGlPa

Internal part of globus pallidus InGlPa

Substancia nigra SuNi

Pars reticulata substancia nigra PaReSuNi

Pars compacta substancia nigra PaCoSuNi

Subthalamic nucleus SubThN

Corpora quadrigemina superior colliculus CoQuSuCo

Corpora quadrigemina inferior colliculus CoQuInCo

Parabigeminal nucleus PaBiN

Pretectal nuclei PreTcN

Pretectal nucleus of the optic tract NOT

Pretectal olivary (pretectal) nucleus OPN

Pretectal anterior (pretectal) nucleus APN

Pretectal posterior (pretectal) nucleus PPN

Trapezoid body (nuclei) TrBo

Olfactory bulb OlB

Anterior olfactory nucleus AOlN

Reticular formation ReFo

Raphe nuclei RaN

Caudal raphe nucleus cRaN

Dorsal raphe nucleus dRaN

Median raphe nucleus mRaN

Locus coeruleus LoCo

Mesopontine tegmentum MePoTg

Tegmental pedunculopontine nucleus TgPePoN

Tegmental laterodorsal nucleus TgLDN

Ventral tegmental area TgVAr

Periaqueductal gray PeGr

Periaqueductal gray supraoculomotor nucleus PeGrSOM

Red nucleus ReN

Postrema area PoAr

Inferior olivary complex IOlCo

Inferior olivary nucleus IOlN

Pons Po

Ventrolateral pons vlPo

Pontine reticular nucleus PoReN

Parabrachial nuclei PaBrN

Cerebellum Ce

Cerebellum nuclei CeN

Cerebellum dentate nucleus CeDeN

Cerebellum interposed nuclei CeInN

Cerebellum fastigial nucleus CeFaN

Cranial nerves CrNe

Vestibular nuclei VsN

Superior vestibular nucleus SVsN

Medial vestibular nucleus MVsN

Pararubral nucleus PaRbN

Retrorubral nucleus ReRbN

Mesencephalic nucleus (CrNe) MsN

Abducens nuclei AbN

Medullary nucleus MdN

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Retina Ret

Dorsal root ganglia DRoG

Zona Incerta Zoln

Accessory optical system AcOpSy

Accessory optical system lateral terminal nucleus AcOpSyLTrN

Table 2.

Projection of NC with each other between the BHC BA, and between the BHC BA and B parts.

BHC BA Afferents from the BHC BA Afferents from the B parts Efferents to the BHC BA Efferents to the B parts

BA 17 (V1d) BA 5; 7; 17 (V1v); 18 (V2d); 19 (V3d, V4d, V5); 36 Ce* (L) [13]; Am; Th (LGN, SAN); CoQuSuCo; Cl BA 4; 5; 7; 10; 17 (V1v); 18 (V2d); 19 (V3d, V4d, V5, V6); 27; 39 (L); 46 Ce* (L); Cl; Th (vLGN, dLGN, SAN, PulN, RtN); CoSt; CoQuSuCo

BA 17 (V1v) BA 4 (L); 5 (R); 7 (R); 17 (V1d); 18 (V2v); 19 (V3v, V4v); 20 (CIT, AIT); 36; 41; 42 Am; Th (dLGN, SAN); Cl BA 4 (L); 5 (R); 7 (R); 9 (R); 10 (R); 11; 17 (V1d); 18 (V2v) (R); 19 (V3v, V4v); 20 (CIT, AIT); 21 (21d); 27; 39 (L); 41; 42; 47 (R) Ce* (L); Cl; Th (dLGN, SAN, RtN);

BA 18 (V2d) BA 17 (V1d); 18 (V2v); 19 (V3d, V4d, V5) Ce*; CoQuSuCo; Am; Th (dLGN, RtN, SAN); Cl BA 5 (R); 7 (R); 8 (R); 17 (V1d); 18 (V2v); 19 (V3d, V3A, V4d, V5, V6, LO-1, LO-2, LO-3); 23 (L); 31 (R); 36; 37 Ce*; CoQuSuCo; Cl; Th (dLGN, RtN, PulN, SAN); CoSt

BA 18 (V2v) BA 17 (V1v); 18 (V2d); 19 (V3v, V4v); 22 (L); 37 Am; Th (dLGN, SAN); Cl BA 11; 17 (V1v); 18 (V2d); 19 (V3v, V4v, V8); 21; 22 (L); 27; 36; 37 (L); 44 (L); 45 (L); 47 HcSub; Cl; Th (dLGN, SAN, RtN); CoSt

BA 19 (V3d) BA 17 (V1d); 18 (V2d) (R); 19 (V3v, V3A, V4d, V5, LO-1, LO-2, LO-3) Ce*; Am; Th (LGN, SAN); CoQuSuCo; Cl BA 17 (V1d); 18 (V2d) (R); 19 (V3v, V3A, V3B, V4d, V5); 30 (L); 32 (L) Ce*; CoQuSuCo; Cl; Th (LGN, SAN, PulN)

BA 19 (V3v) BA 17 (V1v); 18 (V2v) (R); 19 (V3d, V4v); 20 (CIT, AIT); 37 Am; Th (LGN, SAN); Cl BA 11 (R); 17 (V1v); 18 (V2v) (R); 19 (V3d, V3A, V4v); 20 (CIT, AIT); 21; 30 (L); 32 (L); 37; 47 (R) Cl; Th (LGN, SAN, RtN)

BA 19 (V3A) BA 19 (V3d, V3B, V4, LO-1, LO-2, LO-3) Am; Th (LGN, SAN); Cl BA 19 (V3d, V3B, V4d, V5, LO-1, LO-2, LO-3 (R)); 27 (R); 30 (R); 37 (PIT) CoQuSuCo; Th (LGN, SAN, RtN)

BA 19 (V3B) BA 19 (V3d, V3A, LO-1, LO-2, LO-3) Am; Th (LGN, SAN); Cl BA 19 (V3A, V4d, V5, LO-1, LO-2, LO-3) CoQuSuCo; Th (LGN, SAN, RtN)

BA 19 (V4d) BA 17 (V1d); 18 (V2d); BA 19 (V3d, V3A, V3B, V4v, V5, V6, V6Ad, V6Av, V7, LO-1, LO-2, LO-3) Am; CoQuSuCo; Th (LGN, SAN); Cl BA 17 (V1d); 18 (V2d); 19 (V3d, V3A, V4v, V5, V6, V6Ad, V6Av, LO-1, LO-2, LO-3) CoQuSuCo; Th (LGN, SAN, RtN)

BA 19 (V4v) BA 17 (V1v); 18 (V2v); 19 (V3v, V4d, V8); 37 Am; Th (LGN, SAN); Cl BA 17 (V1v); 18 (V2v); 19 (V3v, V3A, V4d, V8, VO-1, VO-2); 37 Th (LGN, SAN, RtN)

BA 19 (V5(d)) BA 17 (V1d); 18 (V2d); 19 (V3d, V3A, V3B, V4d, V7, LO-1, LO-2, LO-3) Am; Th (LGN, IPulN, LPulN); CoQuSuCo; Cl BA 8; 17 (V1d); 18 (V2d); 19 (V3d, V4d, V6); 41; 42 (L) CoQuSuCo; Th (LGN, SAN, RtN)

BA 19 (V6(d)) BA 17 (V1d); 18 (V2d); 19 (V4d, V5, V7) Am; CoQuSuCo; Th (LGN, SAN); Cl BA 19 (V4d (L), V6Av, V6Ad, V7, LO-1, LO-2, LO-3 (R)); 27 (R); 37 CoQuSuCo; Th (LGN, SAN, RtN)

BA 19 (V6Ad) BA 19 (V4d, V6, V6Av) Am; CoQuSuCo; Th (LGN, SAN); Cl BA 19 (V4d, V6Av, LO-1, LO-2, LO-3); 37 CoQuSuCo; Th (LGN, SAN, RtN)

BA 19 (V6Av) BA 19 (V4d, V6, V6Ad) Am; CoQuSuCo; Th (LGN, SAN); Cl BA 19 (V4d, V6Ad, LO-1, LO-2, LO-3) CoQuSuCo; Th (LGN, SAN, RtN)

BA 19 (V7(d)) BA 19 (V6) Am; CoQuSuCo; Th (LGN, SAN); Cl BA 19 (V4d, V5, V6, LO-1, LO-2, LO-3); 27 (R); 30; 37 CoQuSuCo; Th (LGN, SAN, RtN)

BA 19 (V8(v)) BA 18 (V2v); 19 (V4v, VO-1, VO-2) Am; Th (LGN, SAN); Cl BA 19 (V4v, VO-1, VO-2) Th (LGN, SAN, RtN)

BA 19 (LO-1(d)) BA 18 (V2d); 19 (V3A, V3B, V4d, V6, V6Ad, V6Av, V7, LO-2, LO-3) Am; Th (LGN, SAN); Cl BA 19 (V3d, V3A, V3B, V4d, V5, LO-2, LO-3) Th (LGN, SAN, RtN)

BA 19 (LO-2(d)) BA 18 (V2d); 19 (V3A, V3B, V4d, V6, V6Ad, V6Av, V7, LO-1, LO-3) Am; Th (LGN, SAN); Cl BA 19 (V3d, V3A, V3B, V4d, V5, LO-1, LO-3) Th (LGN, SAN, RtN)

BA 19 (LO-3(d)) BA 18 (V2d); 19 (V3A, V3B, V4d, V6, V6Ad, V6Av, V7, LO-1, LO-2) Am; Th (LGN, SAN); Cl BA 19 (V3d, V3A, V3B, V4d, V5, LO-1, LO-2) Th (LGN, SAN, RtN)

BA 19 (VO-1(v)) BA 19 (V4v, V8, VO-2) Am; Th (LGN, SAN); Cl BA 19 (V8, VO-2); 37 Th (LGN, SAN, RtN)

BA 19 (VO-2(v)) BA 19 (V4v, V8, VO-1) Am; Th (LGN, SAN); Cl BA 19 (V8, VO-1); 37 Th (LGN, SAN, RtN)

BA 37 (PIT) BA 18 (V2d, V2v); 19 (V3v, V4v, VO-1, VO-2); 20 (CIT, AIT); 21; 22; 32; Am; Th (LGN, SAN); Cl BA 18 (V2v); 6; 7; 9 (L); 19 (V3v, V4v); 20 (CIT, AIT); 21; 22; 31; 32; 39; Th (LGN, SAN, RtN)

44; 45; 46 (L); 47 44; 45; 46 (L); 47

BA 20 (CIT) BA 17 (V1v); 19 (V3v); 37; Am; Th (LGN, SAN); Cl BA 11; 17 (V1v); 19 (V3v); 27; 36; 37 Th (LGN, SAN, RtN)

BA 20 (AIT) BA 17 (V1v); 19 (V3v); 37 Am; Th (LGN, SAN); Cl BA 11; 17 (V1v); 19 (V3v); 27; 36; 37 Am [14]; Th (LGN, SAN, RtN)

BA 21 BA 1-3; 5; 7; 13; 17 (V2v); 18 (V2v); 19 (V3v); 22; 31; 35; 36; 37; 38 (R); 41 Th; Cl BA 1-3; 4; 8; 9; 13; 22; 31; 36; 37; 38 (R); 39; 40; 44; 45; 46; 47 Pu; Th; Hc

BA 22 BA 1-3; 10; 13; 18 (V2v) (L); 21; 35; 36; 37; 41; 42; 52 Th; Cl BA 1-3; 6; 9; 10; 13; 18 (V2v) (L); 21; 30; 31; 35; 36; 37; 40; 44; 45; 46; 47; 52 Th

BA 36 (VPrC) BA 5; 7; 11; 12; 13; 14; 15; 16; 18 (V2); 20 (CIT, AIT); 21; 22; 23; 25; 34; 35; 39; 40; 41; 42; 48; 49; 51 GlPa; OlB; Am; RaN; Th (ReuN, RhN, pILN, dMGN, IAMN, AMN, AVN, VPMN); Ht (VMN, TuN, PN); Hc (Sub, CA1); Cl BA 11; 12; 13; 14; 15; 16; 17 (V1); 21; 22; 27; 28; 34; 35; 42; 48; 49 SuNi; CoSt (CaN); RaN; Am; Th (ReuN, VPMN); Hc

BA 35 (DPrC) BA 1-3; 4-10; 11; 12; 1316; 7; 22; 23; 27; 28; 34; 36; 39; 40; 41; 48; 49; 51 GlPa; OlB; Am; PerAm; Th (ReuN, RhN, IAMN, AVN, pILN, dMGN, BA 9; 10; 11; 12; 13-16; 21; 22; 27; 34; 36; 48; 49 SuNi; CoSt (CaN) RaN; Am; Am-Pi-TrAr; Th (ReuN, VPMN); Hc

VPMN); Ht (PN, VMN, TuN); Hc (Sub, CA1); Cl

BA 28 (MErC) BA 1-3; 5; 7; 9; 10; 11; 12; 23; 24; 25; 26; 27; 29; 30; 31; 32; 33; 34; 36; 39; 40; 44; 45; 46; 48; 49; 51 MSeN, Hc (Sub, CA1, CA3), Th (AN (AD, AM, AV), ReuN), TgVAr, Cl, Am, OlB BA 11; 12; 27; 34; 35; 48; 49; 51 Hc (Sub, CA1, CA2, CA3, DG); BaN; Am; OlB; TgVAr

BA 34 (LErC) BA 1-3; 5; 7; 11; 28; 35; 36; 39; 40; 49; 51 Cl; OlB; Am; TgVAr; Hc (Sub, CA1) BA 11; 12; 13-16; 28; 35; 36; 51 Hc (Sub, CA1, CA2, CA3, DG)

BA 27 (preSub) BA 18; 19; 20; 28; 29; 30; 35; 36; 49 Hc (Sub, CA1); Th (AN (AD, AV), LDN, ReuN); BrDiBa; Cl; LoCo; RaN; SePe BA 28; 29; 30; 35; 36 Cl; ThADN; HcSub; HtLMaN

BA 48 (postSub) BA 14; 26; 28; 29; 30; 35; 36 Hc (Sub, CA1); Th (VAN, ADN, LDN); Cl BA 26; 28; 29; 30; 35; 36 HcSub; Th (VAN, ADN, LDN)

BA 49 (paraSub) BA 28; 35; 36 Hc (Sub, CA1); Th (AN (ADN), ReuN); BrDiBa; Cl; LoCo; RaN BA 27; 28, 34; 35; 36 Hc (Sub, CA1, DG); Th (ADN, ReuN); HtMMaN; AmBLN

where * - as is known from the work [13], there is no "direct" connection between the NC of the BHC and the NC of the cerebellum; the link, through which the signal passes between the BHC and the cerebellum, is the thalamus; title of the plots, that are indirectly mentioned in the texts of works, the CNS parts, are marked in yellow; title of the plots, information about which, perhaps, or indirectly, was present in the text, but requires verification, the CNS parts, are marked in red.

2.2. General information regarding the structure of the CNS parts.

From the work [15], that the BHC, over its entire area, consists of hyper-columns, and those of mini-columns, in which there are several layers - in an amount from 1 to 6, cells - NC, GC and endothelial cells; at the same time, NCs interact with other NCs inside each of the layers, inside the mini-column, as well as, with those NCs, that are located outside of it. From the work [16], it is known, that, usually, the number of NCs, that are located inside the mini-columns of the associative areas of macaques BHC can be in the range of 60-100 units; and inside the mini-columns of striate (primary sensory) areas, the number of NKs can be approximately 2-3 times greater. In work [17], the term "microcolumn" is described, which is understood as such a column, that is part of a plot of the superior temporal cortex of humans and primates, and contains approximately 11 NCs. In the works [15, 18], information is provided regarding the number of NCs within each layer of the 6 layers of the mini-column of the primary visual area of primates BHC. Briefly, information regarding the structure of the BHC was given in [1, 2], and, in more detail, described in this work.

From the works [19, 20], information is known regarding the organization of most NCs inside the BHC mini-columns. These works describe the distinctive

features of the organization of cells in the primary sensory cortex from the associative sensory cortex.

In the works [21, 22], the structure of the parahip-pocampal cortex - the presence of 5-6 layers in the cortex of the presubiculum (BA 27), parasubiculum (BA 49), BA 28 and 34 BHC, is described. Based on known information, it can be assumed, that the postsubicular cortex (BA 48) may also consist of 6 layers. In the works [23-25], also, the presence of 6 layers in the en-torhinal cortex, is indicated.

On the contrary, in a number of other works [26, 27], information is provided, that contradicts the information, that was found, regarding the number of layers in plots of the BHC, which correspond to BA 27 and BA 49. In these works, the presence of 1-3 layers, is indicated.

For further work on the formation of a scheme of connections between the NCs of the CNS, an option was chosen, that describes 6 layers in the areas of the parahippocampal cortex of the B.

The hippocampus consists of 3 parts - the subicu-lum (Sub), the cornu ammonium, which in turn consists of areas CA1, CA2, CA3 (also, CA4 [28]), and the dentate gyrus (DG); Moreover, each part and region consists of a different number of layers - from 3 (or 1, if we take into account the presence of the CA4 region [28]) to 6.

Information regarding the number of layers for the remaining B parts is contained in [1].

2.3. Neurogenesis and cell migration.

The works [165-170] describe information regarding neurogenesis and cell migration within the CNS. For the following B parts, the following sources are given where the generation of future NC and GC occurs:

• For BHC, the sources are the lateral ventricles and basal ganglia (nuclei) [167]. Initially, future inter-neurons migrate on either side of the initial and terminal cortical layers; after which, they reach the required location [165]. Future projection NC begin their movement, which begins from the lower layers. Future radial glia migrate in the same direction;

• For the hypothalamus - there are arcuate and ventromedial, mediobasal nuclei of the hypothalamus [168];

• For the hippocampus, the source is the dentate gyrus of the hippocampus;

• For the cerebellum, the sources are the rhombic lip, where future granule cells are generated; the ventricular zone, where future Purkinje cells and interneu-rons are generated [170];

• For the cerebellar nuclei, the sources are the rhombic lip, the ventricular zone [170];

• For the olfactory bulb, the source is the subven-tricular zone (lateral ventricles) [171].

In addition, the possibility of generation of future NCs in nuclei (nerve ganglia) and tumors, where there is a large accumulation of NC and GC, both in the CNS and in the peripheral nervous system (PNS), cannot be excluded. For example, in work [172], neurogenesis is described, the source of which is the sensory ganglia that are located in the PNS. In addition, the work [173] provides information regarding neurogenesis, the source of which is cancer tumors, that were located in the prostate gland. This may lead to the assumption, that any of the nuclei and tumors are capable of generating new cells.

On the contrary, as described in some works, including in [174], there is an opinion, that in adulthood the organism, including such, as a person, in some parts - for example, the BHC, no new NC are added. However, the same work indicated, that, nevertheless, new

NC were added, as a response to a disease such as stroke.

The work [175] describes an effect, that expresses the relationship between a decrease in sleep duration and, as a response to this, a decrease in the number of future NC, which, initially, having the structure of stem cells, undergo mitosis within the hippocampus dentate gyrus. This effect can be achieved not by a spontaneous, one-time change in the sleep/wake pattern, but by changing this pattern over a longer period.

Also, in work [175], it is indicated that the organism's experience of stress, or a disease such as depression, also, leads to a decrease in proliferation and neurogenesis.

In work [176], it is indicated, that some activities of the organism can resume proliferation and neurogenesis, and some - can reduce it.

2.4. Distribution of substances within the CNS.

Table 3 provides information regarding substances - neurotransmitters and modulators, and individual parts (some plots of parts), as sources, of the CNS, in which these substances are generated and secreted. Information about the functions - the effect on the organism, of substances is contained in [1, 177].

Table 4 provides information regarding some basic parameters of substance receptors - neurotransmitters and neuromodulators, and their distribution in the CNS, as well as, in some objects (also, plots of the PNS parts) with which the NC of the CNS are connected.

Tables 3 and 4 provide information, primarily, regarding known neurotransmitters, found in the CNS. In addition to these substances, there are others - mainly neuropeptides, which perform the function of signal modulation; and which will not be discussed in this work.

Also, in addition, there are substances - particles (molecules) such as agonists and antagonists, the function of which is signal modulation - signal transmission according to standard conditions - the requirements of a specific receptor for a specific neurotransmitter, and blocking or changing its physical parameters, respectively. In this work, this is not considered; however, in the future, in work on the formation of a general model, it is envisaged.

52_MEDICAL SCIENCES / «COLLOMUM-JOUrMaL» #27(186), 2023

Table 3.

Divisions of the CNS, that generate and use specific substances.

Substance Object, in which substances is An object, into which substance is trans-

generated ferred

Glutamate Most parts [178] Most parts

GABA Most parts [179] Most parts

Aspartate IOlN [177] Ce, CeN [180]

Glycine BrSt, SpCo [181] BHC, MeOb, Hc, Am, BaN, SuNi, Po, SpCo [182]

dCoSt (CaN, Pu) [182] ExGlPa, InGlPa, PaReSuNi, PaCoSuNi [177]

Acetylcholine TgPePoN (MePoTg) [183] TgVAr (25%), SuNi, Po [183]; Th [183, 184]

TgLDN (MePoTg) TgVAr, Po [183]; Th [183, 184]

MeBaN [185] BHC [185]; ThRtN [184]; Am [186]

MSeN BHC, Hc [185]

BrDiBaNVLi Hc [186]

BrDiBaNHLi OlB [186]

Norepinephrine LoCo [187]; Po [188] FrLo, CiCo (limbic cortex), MiBr, Ce [187]; Ht, Th [188]

Dopamine PaCoSuNi [189] BaN (CoSt [182]) [187]

TgVAr NAc [187]; DLPreFrCo, BA 23, 24, 25, 31, 32, 33 [187]

Ht Ht (locally) [177]

Serotonin dRaN, mRaN [190] FrLo, CiCo (limbic system), BaN, Ht [187]

cRaN SpCo [190]

Histamine HtTuMaN [191] BHC, BrSt, Th, CoSt, HtPreOpN [192]

Table 4.

Some basic parameters of receptors for specific substances and their location in the CNS and in some ob__jerts, with which CNS NC are connected._

Substance Object, in Substance Type of Type An object, into which substance is

which sub- receptor signal of transferred

stances is generated transmission signal

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Glutamate Most parts NMDA I [20] + BHC [20]; almost, all CNS parts [193]

AMPA I + BHC (outer layer) [20, 194]; MiBr, LSeN, Hc, BaN, Am, Ce, Th [194]

kainate I + BHC [20]; almost, all CNS parts [195]

mGluRi M + BHC [20]; Ce, SuFrGy, MeTeGy, PostCeGy, OrFrCo, ErC, BA 9, 10, 17, 23, 46, mGlPa, lGlPa, Po, SVsN, CrNe II, CoSt (CaN, Pu, NAc), TgVAr, Am, Ht, Hc (CA1-CA3), PaReSuNi, PaCoSuNi ThLN, SubThN, IOlCo, SpCo (C1), skin, blood vessels (inner part), blood, stem cell [196]

mGluR2 M + CiCo, ACiCo, SuFrGy, MeTeGy, PostCeGy, PaLo, SVsN, CrNe V, CrNe X (i), ErC, BA 9, 10, 17, 23, 46, Po, TgVAr, lGlPa, SubThN, PaCoSuNi, CoSt (CaN, Pu, NAc), Am, Ce, Hc (CA1-CA3), Ht, PtGl, APtGl, SpCo (C1), Ret, BoMa, eyelids conjunctiva, nasal membrane olfactory segment, tongue upper surface, salivary gland, oral mucosa, nasal mucosa, skin, muscle,

adipose tissue, blood vessels (inner part), vein, blood [197]

mGluRs M + SuFrGy, MiFrGy, MeTeGy, Post-CeGy, FrLo (R), PaLo, OcLo, MeOb, CrNe II, CrNe X (i, d), SVsN, CiCo, ACiCo, OrFrCo, ErC, BA 9, 10, 17, 23, 46, Hc (CA1), SubThN, IOlCo, PaReSuNi, PaCoSuNi, TgVAr, mGlPa, lGlPa, CoSt (CaN, Pu, NAc), Am, Ce, PtGl, APtGl, Ht, ThLN, Ret, SpCo (C1), nasal mucosa, buccal mucosa, skin, blood vessels (inner part), blood [198]

mGluR4 M + FrLo (R), TeLo, SuFrGy, MiFrGy, CiCo, ACiCo, MiBr, CrNe X (d), BA 9, 10, 17, Hc (CA1-CA3), ThLN, Ce, SuNi, CoSt (CaN, Pu, NAc), Po, Ht, Am, APtGl, SpCo (C1), adipose tissue, nasal mucosa, oral mucosa, minor salivary gland, muscle, skin, blood [199]

mGluRs M + SuFrGy, MiFrGy, MeTeGy, Post-CeGy, CiCo, ACiCo, SVsN, CrNe X (i, d), OrFrCo, ErC, BA 9, 10, 17, 23, 46, HcCA1, mGlPa, lGlPa, TgVAr, PaReSuNi, PaCoSuNi, Ht, Am, CoSt (CaN, Pu, NAc), Po, ThLN, SubThN, IOlCo, Ce (R), PtGl, APtGl, SpCo (C1), nasal mucosa, blood vessels (inner part), artery, blood [200]

mGluR6 M + FrLo (R), SuFrGy, ACiCo, BA 9, 10, 17, SuNi, CoSt (CaN, Pu, NAc), Ce, Am, APtGl, Ht, Hc (CA1-CA3), SpCo (C1), Ret, eyeballs, nasal membrane olfactory segment, nasal mucosa, minor salivary gland, smooth muscle tissue, skin, lymphatic system [201]

mGluRv M + FrLo (R), SuFrGy, MeTeGy, Post-CeGy, CiCo, ACiCo, BrSt, Mt, SVsN, OrFrCo, ErC, BA 9, 10, 17, 23, 46, ThLN, SubThN, HcCA1, Am, Ht, SuNi, CoSt (CaN, Pu, NAc), PtGl, SpCo (C1), nasal membrane olfactory segment, oral mucosa, buccal mucosa, salivary gland, adipose tissue, smooth muscle tissue, skin, blood vessels (inner part), blood [202]

mGluRs M + FrLo (R), PaLo, SuFrGy, Post-CeGy, CiCo, ACiCo, MeOb, BrSt, Mt, CrNe X (i), CrNe II, SVsN, ErC, BA 9, 10, 17, 23, 46, HcCA1, Po, PaReSuNi, PaCoSuNi, ThLN, CoSt (CaN, Pu, NAc), Ce, Am, SuNi, Ht, APtGl, Ret, SpCo (C1), nasal membrane olfactory segment, nasal mucosa, buccal mucosa, adipose tissue, muscle, blood [203]

GABA Most parts GABAa I (and, BHC [20]; most parts [205]

+ [204])

GABAb M - BHC [20]; MiBr, Hc, Th, BaN, Ht, Ret [205]

GABAc I - CoQuSuCo, Ce, Hc, Ret [206]; AmLN [207]

Aspartate InOl [177] NMDA I [208] BHC [209]; Ce, CeN [180]; Hc [210]; Th [211]; PPtGl [212]; BrSt, rSpCo [213]

AMPA [210] Ht [212]

Kainite [214] Ht [212]

mGluR: [209] M Ht [209]

Glycine BrSt, SpCo [181]; CaN, Pu [182] a1 I [215] [181] BrSt [216, 217]; SpCo (C1) [216218]; PreFrCo, CiCo, ACiCo, Ht, SuNi, Ce, CoSt (Pu, NAc) [218]

a2 I BrSt (as a heteromeric receptor) [216]; SpCo (C1) [216, 219]; FrLo (R), SuFrGy, CiCo, ACiCo, ErC, BA 9, 10, 17, Ht, Am, Ce, CoSt (NAc, Pu, CaN), SuNi, Hc (CA1-CA3), PtGl, APtGl, olfactory lobe, blood [219]

a3 I Ht [220, 221]; SpCo (C1 (dorsal horn)) [181, 221]; BrSt (as a heteromeric receptor) [216]; BA 9, 10, 17, CiCo, ACiCo, FrLo (R), SuFrGy, Hc (CA1-CA3), Am, SuNi, PtGl, APtGl, CoSt (CaN, Pu, NAc), Ce, nasal membrane olfactory segment, blood [221]

ß I BrSt (as a heteromeric receptor) [216]; SpCo (C1) [216, 222]; OrFrCo, ErC, BA 9, 10, 17, 23, 46, ACiCo, MiFrGy, SuFrGy, MeT-eGy, FrLo, PostCeGy, Ce, SVsN, PaCoSuNi, PaReSuNi, Ht, Hc (CA1-CA3), CoSt (CaN, Pu, NAc), TgVAr, mGlPa, lGlPa, ThLN, Sub-ThN, CrNe V, CrNe X (i, d), APtGl, Ret, IOlCo, nasal mucosa (OlTu), minor salivary gland, blood vessels (aorta), blood [222]

Acetylcholine MeBaN [185, 223]; TgPe-PoN, TgLDN (MePoTg) [183, 185]; BrDiBaNVLi, BrDiBaNHLi [186] M1 M [20] + BHC [20, 224]; CoSt [225, 226]; BA 27, Hc (Sub, CA1) [227]

M2 M [228] BHC [20]; BA 27, Hc (Sub, CA1) [227]; SpCo [229]; Th [230]

M3 M + BHC [20]; CoSt [225]; Ht [229]

M4 - Hc, SuNi [224]; CoSt [225]; SpCo [229]; BHC, Th [231]

M5 Hc, SuNi [224]; TgVAr [229]; blood vessels (endothelial cell) [230]

N2 I [20] + BHC [20]; BaN [228]; HcSub [229]; LoCo [232]

Norepinephrine (noradrenaline) LoCo [164, 187]; Po [188] a1A [233] M [20] + [233, 234] BHC, Ce, Hc, blood vessels [233]; Th [235]; MiBr, Ht, HcDG, Am, CoSt (CaN, Pu, NAc), SpCo [236]

a1B M + BHC, BrSt, blood vessels [233]; Th [235]; MiBr, Ce, Hc, Am, dCoSt (CaN, Pu), SpCo [236]; Ht [237]

aiD M + BHC, aorta, coronary artery, platelet [233]; Th [235]; Hc (CA1-CA3) [233, 236]; OlB [236]

a2A M [20] [233, 234] BHC [20]; LoCo, BrSt, SpCo, platelet [233]; Th [235]; MiBr, Ht, Hc, Ce, SeN [238]

a2B M Blood vessels [233]; PreFrCo [236]; Th, Ce, Hc, olfactory system [238]

a2c M BHC, BaN, Ce, Hc [233]; MiBr, Th, Am, SuNi, TgVAr, DRoG, olfactory system [238]

ß1 M + [233, 234] GlPa, dCoSt (CaN, Pu), vCoSt [225]; BHC, BrSt, skeletal muscles [233]; Ht [239]; ReFo, VsN, TrB, AbN, MdN, AOlN, LSeN, ThRtN, vlPo, CeN, PnGl, oculomotor complex, SpCo [240]; Hc, MeBaN, Ce, blood vessels [241]

ß2 M [233, 234] GlPa, dCoSt (CaN, Pu), vCoSt [225]; BHC, skeletal muscles, blood vessels [233]; Ht [239]; BA 51, Hc, OlB, Ce [240]; PreFrCo, MeBaN, blood vessels [241]; FrLo, PaLo, OcLo, ReSpCo, MiBr, Th, Am, OlTu, MSeN [242]

Dopamine TgVAr [164]; Ht, SuNi [177] D1 M [20] + BHC [20]; Th, Ht, Hc, Ce, Am, vCoSt (NAc, OlTu), SuNi [243]

D2 M - Ht, SuNi, Am, TgVAr, vCoSt (NAc, OlTu) [243]

D3 M - Ce, PaCoSuNi, TgVAr, vCoSt (NAc, OlTu) [243]

D4 M - BHC, Hc, Am, CoSt [243]

D5 M + ErC, BA 10, 23, 24, 25, 31, 32, 33, Ht, HcDG, SuNi [243]

Serotonin RaN [177] 5-HT1A [244] M [245] - ErC, Hc, Am, SeN, Ht, RaN [244]

5-HTid a M - ErC, Hc, Am, SeN, Ht, RaN [244]

5-HTiad ß M - SuNi, CoQuSuCo [244]

5-HT1E M - FrLo, CaN, Am, GlPa [246]

5-HT1F M - BHC, CoSt, Hc, OlB [244]

5-HT2A M + BHC, Cl, vCoSt (NAc, OlTu) [244]

5-HT2B M + FrLo, dHt, mAm, Ce [247]

5-HT2C M + BHC, Ht, SeN, SuNi, GlPa, SpCo, choroid plexus [244]

5-HT3 I + [248] ErC, Hc, Am, NAc, SoTr, CrNe V, CrNe X (d), PoAr, SpCo [244]

5-HT4 M + Hc, CoSt, (OlTu), SuNi [244]; BaN, Am [249]

5-HT5A M - BHC, Hc, Th, Ht, HbN (EpiTh), Ce, SpCo [250]

5-HT6 M + BHC, NAc, Am [251]; Hc (CA1, CA3, DG), OlTu [252]

5-HT7 M + BHC, SeN, Th, Ht, Am, CoQuSuCo [244]

Histamine HtTuMaN [191] H1 [192] M + FrLo (R), SuFrGy, MeTeGy, Post-CeGy, CiCo, ACiCo, MiBr, Mt, OrFrCo, ErC, BA 9, 10, 17, 23, 46, Hc (CA1-CA3), Ht, Ce, Am, CoSt (NAc, CaN, Pu), SuNi, APtGl, VeZo (embryo), SpCo (C1), eyelids conjunctiva, coronary artery, nasal

mucosa olfactory segment, nasopharyngeal epithelium, oral cavity, oral epithelium, gingival (gum) epithelium, minor salivary gland, choroid plexus epithelium, subcutaneous adipose tissue, smooth muscle tissue, skeletal muscles, vein, blood [253]

H2 M + SuFrGy, PostCeGy, ACiCo, Mt, ErC, BA 9, 10, 17, 23, 46, Ht, Hc (CA1-CA3), Ce (R), Am, CoSt (Pu, CaN, NAc), SuNi, APtGl, Ret, VeZo (embryo), SpCo (C1), nasal mucosa, nasal membrane olfactory segment, oral mucosa, minor salivary gland, stem cell, BoMa cell, eyelids conjunctiva, skeletal muscles, smooth muscle tissue, subcutaneous adipose tissue, skin, coronary artery, blood [254]

Нз M FrLo (R), SuFrGy, PostCeGy, ACiCo, MiBr, BrSt, Mt, OrFrCo, ErC, BA 9, 10, 17, 23, 46, Ht, Hc (CA1-CA3), Ce, TgVAr, CoSt (CaN, Pu, NAc), lGlPa, PaCoSuNi, Am, Po, PtGl, APtGl, ThLN, Sub-ThN, SVsN, SpCo (C1), cameratype eye, eyelids conjunctiva, CrNe X (inferior), gum, subcutaneous adipose tissue, skin, vein, blood [255]

where I - ionotropic type of signal transmission; M - metabotropic.

3. Detailed information regarding connections in the CNS.

3.1. Calculation of the quantities of elements in the CNS parts.

For the practical implementation of the general model, according to some general, known information, the numbers of separate elements - neurons, interneu-rons and GC, were calculated for each of the layers of the mini-column of a separate plot of some BHC part.

The arithmetic average value of the number of NCs, that is contained in a mini-column, was calculated using the following formulas

N

_ yn

= L 1 = 0

Nm„

and

N

_ vn

= L i=0

Nm„

(1)

(2)

where NM . and NM - the arithmetic average

Mmin Mmax °

values of the minimum and maximum, respectively, quantities of NC, that is contained in the mini-column; NM . and NM - the minimum and maximum, re-

Mmin Mmax '

spectively, quantities, from a certain known range, of NC in the mini-column; i - iteration number; n -known ranges number;

NMa_=(NMmax+NMmax)/2, (3)

where NMq - the arithmetic average value, which can be used only for information purposes, the number of NC, that is contained in the mini-column;

_ NMvi = NMkMvi, (4)

where NMV1 - the arithmetic average value of the number of NCs, that is contained in a mini-column, of such a primary sensory area, as the visual - V1; NM -the number of NCs, that is contained in a mini-column. Depending on the requirements, NM, also, take the values NM . , NM , NM or oth.; kM,,~ a coefficient,

Mmin> Mmax' Mq 7 MV1 '

that has a known tolerance of values - (2 ... 3), according to works [15, 16], which expresses the relationship between the values of the quantities of NC, that is contained in the mini-column, which, in the first case, belong to plots of the areas, which perform the function of subsequent information processing, and, in the second, primary information processing, which is performed, in this case, in area V1.

For calculations, information was taken from works [15, 16, 256, 257]. The result was the following

values: NM

N

= 80, N

= 105, NM„ = 92.5 and

MV1

= (185 ...277.5) « 231 units; in this case, in expression (4), the value NM was taken as the value NMg.

The number of separate elements for each of the layers of a separate mini-column of a certain plot of a certain BHC area was calculated in relation to the separate values, which are given in [15].

So, for example, an expression, that describes obtaining the value of the total number of interneurons from the total number of NCs, that are located inside

n

n

one mini-column, which is located in a separate plot of a separate area of the BHC, can have the following form

(5)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

N,

MV1,

NMV1kiNV1,

where kINv1 - a coefficient, that shows the difference in the ratio of the numbers of interneurons to NC for the required area of a particular plot of the B; where

ft

INvi

= 0.2, according to works [15, 258].

The expression, that describes obtaining the value of the number of all GCs, that are contained in the mini-column of the BHC gray matter area plot, has the following form

Gmvigm where kr.

NMvikGcViCM,

(6)

- a coefficient, that shows the relationship between the values of the quantities of GC and NC, that is contained in one plot of gray matter

area; and, ft,

GCVi

1.2, which follows from [259].

In addition, according to the results of [260], the

values of the parameters NM and k,

iCCV1,

can be dif-

ferent in some different plots, that belong to the same area (for example, V1).

Using the following expressions, one can determine the values of the quantities of GCs of each type -oligodendrocytes, astrocytes and microglia, in the gray matter of the some area.

Gr

G,

MV1,

kr.

JAMv

GMV1GMkGcA

and

Gf, which k,

G

1GM

MV1-

kr.

••V1GM

ocOV1GM, -ocAV1CM and ft.

(7)

(8) (9)

ft

GCM,

V1GM

- a co-

efficients, that describe the differences in the quantities of each type of GC in the overall composition, for a plot of the BHC gray matter area..

Also, the expressions, that are applicable for calculating the values of the quantities of separate elements, that are found in the white matter, which does not contain NC, of one plot of a separate area, have the following form

GmV1WM & NMv1kGCV1CM(kWMV1

-1), (10)

and, respectively,

G,

°M

V1WM

JAM.

V1WM

JMM.

V1WM

GMV1WMkCCov '' GMV1WMkccAv '' GMV1WMkGCM

and

V1WM

(11) (12) (13)

where kWMvi - that describes the difference - as a ratio, the value of the sum of two quantities of GC - in gray and white matter, compared to GC - in gray mat-

ter; k,

GC0

V1WM

ft

gca

V1WM

and k,

GCM.

V1WM

- a coeffi-

"MV1r,

GMV1GMkEGM and

(14)

■JMV1V

GMV1WMkEwM,

where kEGM and kEwM

(15)

- a coefficients, which show the differences between the values of the numbers of endothelial cells and GC - in the gray and white matter, respectively; in this case, according to work [259],

ft

EGM

30/70 & 0.43 and k

eGM

10/90 & 0.11.

Due to the lack of required information, in some calculations, some known values were used for separate parameters, such as

GCOv GCav

& ft,

LGM NeCOQM

& ftr.

GC0 GCA

NeCoaM

GCM,

V1GM

ft,

GCM.

0.75, 0.2 and » 0.05,

where the abbreviation "NeCo" means "neocortex", and the values for each of the parameters are obtained from the works [259, 261]; and

* kr.

1WM

GCq

CNSWM

ft

WM "CNSWM

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

& ft

GCMV1WM ~ GCmCNSwm

0.67,

s 0.23 and - 0.1,

where, for each of the parameters, the values are obtained from [259]; moreover, approximately,, 2, according to [259].

ftWMV1 & ftWM

The calculation results are as follows: N,

MV1,

46, GMv^

1V'V1GM

55.4, GK

277, G,

°M

V1GM

208, G.

'AM.

V1GM

JMMv

14, G,

MV1u

277, G,

oM

185, G,

'Am,

V1WM

64, G,

MM.

V1WM

28, E,

MV1,

V1WM

119

cients, that describe the differences in the quantities of each type of GC in the overall composition, for a plot of the BHC white matter area.

According to work [259], expressions, that allow one to obtain the numbers of endothelial cells - in the gray and white matter, of the CNS, have the following form

and EM,„ * 30 units, which are contained in a mini-

column of some part of V1 area (gray and white matter) of the BHC.

To calculate the number of mini-columns, that is contained in V1 area (as well as any other area), you can use the following expression.

QmVI * Nv1/NmVI , (16)

where QMv^ - is the number of mini-columns, that are in V1 area; NV1 - the number of all NCs, that are in V1 area.

To calculate the number of hyper-columns in V1 area (as well as any other area), can use the following expression.

Qhv1 * QmvJQmHvi , (17)

where QHvi - is the number of hyper-columns, which is located in V1 area; Qmh - is the arithmetic average value, from the permissible range, of the number of mini-columns, that contained in one hyper-column, - in V1 area.

From works [16, 262], the values NV1 = 140 • 106 and Qmh * 70 were taken for calculations. The result was the following values: QMvi * 610 • 103 mini-columns and Qhv1 * 8.7 • 103 hyper-columns; in this case, in expression (16), the value of NMvi was equal to NMyi * 231 units.

3.2. Scheme of cell connections in the CNS.

GM

GM

GM

GM

GM

GM

WM

WM

Figure 1 shows the structure of separate plots of some parts of the CNS, as well as a scheme of the connections of NC, that are located within their structure. Illustrations of plots of the BHC areas, also, provide information regarding the number of separate elements -neurons, interneurons and GC, for each of the layers of the mini-column.

Figures 1 and 2, that follow in the text, do not show all the information, but only, what is known. In addition, the number of connections in synapses between cells does not allow them to be illustrated. Also, the figure does not show the full information about location of the GCs, that have close contact with each of the NCs, also including those, that are axon sheath (myelinated axon) cells; and blood vessels, which are, also.

in close contact and communicate with GCs to exchange information. Extracellular fluid, as an element, is not shown in the figure.

In the future, for practical implementation, conditions will be accepted, under which connections between the dendrites and body of one cell and the axon collaterals of other cells will be established, if they are within one layer or sub-layer of the mini-column; and will be established, but with some degree of probability, if they are located in some larger area - for example, within 2-3 layers or sub-layers, which depends on the types of cells - for example, pyramidal or granular type.

^fc Cone cell (L type) o .1

^ Cone cell (M type) ^^ Pyramidal cell

^^ Cone cell (S type) Granular cell

^^ Rod cell Multipolar cell

Horizontal cell f^ Martinotti cell

^^ Muller cell (glial O Axo-axonic (GA&A)

Astrocyte cell (glia) HIPP (SABA)

Bipolar ("On" type) cell Mossy (Glut.)

Bipolar ("Off type) cell ^^ Lugaro (<5A8A/Glyc.)

^^ Bipolar cell Purfcinje (GABA)

(f^j) Amacrine cell Golgi (GABA/Glyc.)

Ganglion (parvocelluFar type) cell stellate (GABA/Glut.)

Q Ganglion (magnocellular type] cell Unipolar brush (Glut )

Ganglion (konioceiiuiar "On" type) cell ^^ Unknown (pre-motor)

Ganglion (koniocellular "Off" type) cell Q Unknown type of iwun

o

I

I

1 Dendrites; process (glis)

Figure 1. Scheme of connections between NCs, that contained in the structure of gray matter in areas of some

parts of the CNS,

a

where a is the designation of separate elements of the system and their title; b-n - schemes, that describe the structure of plots of some BHC areas: b - BA 17 (V1d), c - BA 17 (V1v), d - BA 18 (V2d), e - BA 18 (V2v), f- BA 19 (V3d), g - BA 19 (V3v), h - BA 35 (DPrC), i - BA 36 (VPrC), j - BA 34 (LErC), k - BA 28 (MErC), l - BA 49 (ParaSub), m - BA 48 (PostSub), n - BA 27 (PreSub); o-s - schemes, that describe the structure of plots of hippocampus areas: o - HcSub, p - HcCA1, q - HcCA2, r - HcCA3, s - HcDG; t-x - schemes, that describe the structure ofplots of areas of some other parts of the CNS: t - Ret, u - CoQuSuCo, v - ThDLGN, w - ThVLGN, x - Ce;

also, in relation to the titles ofplots of the CNS parts, that highlighted in different colors: the titles of areas (parts), that are mentioned, indirectly or directly, in works and/or connection with which may be carried out from another layer or type of cell, this plot, are highlighted in yellow; the titles of areas (parts), with which there may be a connection, but information regarding this needs to be verified, are highlighted in red.

Figure 1. Scheme of connections between NCs, that contained in the structure of gray matter in areas of some

parts of the CNS (continue).

Figure 1. Scheme of connections between NCs, that contained in the structure of gray matter in areas of some

parts of the CNS (continue).

n o

Figure 1. Scheme of connections between NCs, that contained in the structure of gray matter in areas of some

parts of the CNS (continue).

s " ï I S R I

3 9 i -a î s

or y a 1

9 o?

i • 0 •

• < > 1 ► • t t •

°T o • I o—•

• *

BA 35, 36, LaCo

1

o • »1

o oi° o

o o e o°

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

t u

Figure 1. Scheme of connections between NCs, that contained in the structure of gray matter in areas of some

parts of the CNS (continue).

<7

r

s

«coyyomum-jmtmal» mm / medical sciences

63

Figure 1. Scheme of connections between NCs, that contained in the structure of gray matter in areas of some

parts of the CNS (continue).

3.4. Design pattern! for connections between

cells within the BHC area.

Figure 2 shows a scheme, which described the design pattern for connections between cells within the

some BHC areas. Most of the information to form this is taken from [20]. This pattern can be used to form a general AI model.

Figure 2. Scheme of the design pattern for cell connections within an some neocortex area, where the title of the part, whose location information should be checked, is highlighted in yellow.

x

4. Conclusions. well-known information was provided regarding the

Some of the known information regarding the structures of some parts of the CNS. anatomy of the human B has been analyzed. Detailed,

The main problem in developing a model, that describes the anatomy and physiology of a living organism, AI, is the lack of information. Unfortunately, today, it is not possible to eliminate this problem; but, with the introduction of third-party hypotheses, that are aimed at eliminating it, it will lead to: the formation of a model, that will differ from the ideal one, but with a principle of operation similar to the original; to new hypotheses and experiments, which may make it possible to obtain the required result in the future.

In future works, attempts will be made to form a general model, that is based on known information and hypotheses, AI and software development, that describes a given model or part of a model.

Unfortunately, today, most computer technology is not capable of fully ensuring the operation of such an AI model. Therefore, the prototype of this model must be designed taking into account the scarcity of computer resources; at the same time, the volume, that will describe only a separate small part of the model, information will be less, than the required (ideal) volume; which is a consequence of the fact, that the possibilities, regarding of work, of such a model will be smaller.

Information resources list

1. Tomashuk A. S. Information for Forming a Model of Artificial Intelligence, Which Describes the Work of the Human Central Nervous System / A. S. Tomashuk // Colloquium-journal. - 2022. - Vol. 17. -Is. 140. - 30-45 pp.

2. Tomashuk A. S. Structure and Functions of the Cortic Areas of the Human Brain / A. S. Tomashuk // Colloquium-journal. - 2022. - Vol. 20. - Is. 143. - 3345 pp.

3. Kealy J. The Rat Perirhinal Cortex: A Review of Anatomy, Physiology, Plasticity, and Function / J. Kealy, S. Commins // Progress in Neurobiology. -2011. - Vol. 93. - Is. 4. - 522-548.

4. Sethumadhavan N. The Perirhinal Cortex Engages in Area and Layer-Specific Encoding of Item Dimensions / N. Sethumadhavan, C. Strauch, T.-H. Ho-ang et al. // Frontiers in Behavioral Neuroscience. -2022. - Vol. 15. - 744669.

5. Eickhoff S. B. Organizational Principles of Human Visual Cortex Revealed by Receptor Mapping / S. B. Eickhoff, C. Rottschy, M. Kujovic et al. // Cerebral Cortex. - 2008. - Vol. 18. - Is. 11. - 2637-2645 pp.

6. Sasaki Y. Symmetry Activates Extrastriate Visual Cortex in Human and Nonhuman Primates / Y. Sasaki, W. Vanduffel, T. Knutsen et al. // Proceedings of the National Academy of Science of the United States of America (PNAS). - 2005. - Vol. 102. - Is. 8. - 31593163 pp.

7. Song C. Reciprocal Anatomical Relationship between Primary Sensory and Prefrontal Cortices in the Human Brain / C. Song, D. S. Schwarzkopf, R. Kanai et al. // The Journal of Neuroscience. - 2011. - Vol. 31. - Is. 26. - 9472-9480 pp.

8. Takemura H. A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex / H. Takemura, A. Rokem, J. Winawer et al. // Cerebral Cortex. - 2016. - Vol. 26. - No. 5. - 2205-2214 pp.

9. Jitsuishi T. White Matter Displot and Structural Connectivity of the Human Vertical Occipital Fasciculus to Link Vision-Associated Brain Cortex / T. Jitsuishi, S. Hirono, T. Yamamoto et al. // Scientific Reports. - 2020. - Vol. 10. - 820.

10. Lyon D. C. Evidence from V1 Connections for Both Dorsal and Ventral Subdivisions of V3 in Three Species of New World Monkeys / D. C. Lyon and J. H. Kaas // The Journal of Comparative Neurology. - 2002.

- Vol. 449. - Is. 3. - 281-297 pp.

11. Posterior Inferotemporal Cortex Cells Use Multiple Input Pathways for Shape Encoding / C. R. Ponce, S. G. Lomber and M. S.Livingstone // The Journal of Neuroscience. - 2017. - Vol. 37. - Is. 19. - 50195034 pp.

12. The Network of Brodmann's Area 22 in Lex-ico-semantic Processing: A Pooling-data Connectivity Study / B. Bernal, A. Ardila and M. Rosselli // AIMS Neuroscience. - 2016. - Vol. 3. - Is. 3. - 306-316 pp.

13. Buckner R. L. The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neu-roimaging / R. L. Buckner // Neuron. - 2013. - Vol. 80.

- Is. 3. - 807-815 pp.

14. Parsana A. J. Temporal Lobe and Object Recognition / A. J. Parsana and T. Brown // Encyclopedia of Behavior Neuroscience. - 2010. - 375-382 pp.

15. Mountcastle V. B. The Columnar Organization of the Neocortex / V. B. Mountcastle // Brain. -1997. - Vol. 120. - Pt. 4. - 701-722 pp.

16. Disruption in the Inhibitory Architecture of the Cell Minicolumn: Implications for Autism / M. F. Casanova, D. Buxhoeveden and J. Gomez // Neurosci-entist. - 2003. - Vol. 9. - Is. 6. - 496-507 pp.

17. Jones E. G. Microcolumns in the Cerebral Cortex / E. G. Jones // Proceedings of the National Academy of Science of the United States of America (PNAS). - 2000. - Vol. 97. - No. 10. - 5021.

18. Vanni S. Anatomy and Physiology of Macaque Visual Cortical Areas V1, V2, and V5/MT: Bases for Biologically Realistic Models / S. Vanni, H. Hokkanen, F. Werner et al. // Cerebral Cortex. - 2020.

- Vol. 30. - Is. 6. - 3483-3517 pp.

19. Thomson A. M. Neocortical Layer 6, a Review / A. M. Thomson // Frontiers in Neuroanatomy. - 2010.

- Vol. 4. - 13.

20. Palomero-Gallagher N. Cortical Layers: Cyto-, Myelo-, Receptor- and Synaptic Architecture in Human Cortical Areas / N. Palomero-Gallagher and K. Zilles // Neuroimage. - 2019. - Vol. 197. - 716-741 pp.

21. Simonnet J. Cellular Components and Circuitry of the Presubiculum and its Functional Role in the Head Direction System / J. Simonnet and D. Fricker // Cell and Tissue Research. - 2018. - Vol. 373. - 541556 pp.

22. Insausti R. The Human Periallocortex: Layer Pattern in Presubiculum, Parasubiculum and Entorhinal Cortex. A Review / R. Insausti, M. Muñoz-López, A. M. Insausti et al. // Frontiers in Neuroanatomy. - 2017.

- Vol. 11. - 84.

23. Domínguez-Álvaro M. 3D Ultrastructural Study of Synapses in the Human Entorhinal Cortex / M. Domínguez-Álvaro, M. Montero-Crespo, L. Blazquez-

«coyyomum-jmtmal» #2vmix 2023 / medical sciences

65

Llorca et al. // Cerebral Cortex. - 2021. - Vol. 31. - Is. 1. - 410-425 pp.

24. Behuet S. A High-Resolution Model of the Human Entorhinal Cortex in the 'BigBrain' - Use Case for Machine Learning and 3D Analyses / S. Behuet, S. Bludau, O. Kedo et al. // 4th International Workshop on Brain-Inspired Computing, BrainComp 2019. Brain-Inspired Computing. - 2019. - 3-21 pp.

25. Ben-Simon Y. A Direct Excitatory Projection From Entorhinal Layer 6b Neurons to the Hippocampus Contributes to Spatial Coding and Memory / Y. Ben-Simon, K. Kaefer, P. Velicky et al. // Nature Communications. - 2022. - Vol. 13. - 4826.

26. Insausti R. Chapter 24 - Hippocampal Formation / R. Insausti and D. G. Amaral // The Human Nervous System (Third Edition). - 2012. - 896-942 pp.

27. Passecker J. Influences of Photic Stress on Postsubicular Head-Directional Processing / J. Passecker, N. Islam, V. Hok et al. // European Journal of

Neuroscience. - 2018. - Vol. 47. - Is. 8. - 1003-1012 pp.

28. Palomero-Gallagher N. Multimodal Mapping and Analysis of the Cyto- and Receptorarchitecture of the Human Hippocampus / N. Palomero-Gallagher, O. Kedo, H. Mohlberg et al. // Brain Structure and Function. - 2020. - Vol. 225. - 881-907 pp.

29. Subcortical Connections of Visual Areas MST and FST in Macaques / D. Boussaoud, R. Desimone and L. G. Ungerleider // Visual Neuroscience. - 2009.

- Is. 3-4. - 291-302 pp.

30. Hebart M. N. What Visual Information is Processed in the Human Dorsal Stream? / M. N. Hebart and G. Hesselmann // The Journal of Neuroscience. - 2012.

- Vol 32. - Is. 24. - 8107-8109 pp.

31. Furman M. Visual Network / M. Furman; ed. by C. L. Faingold and Blumenfeld // Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics. - Academic press, 2014. - 247-259 pp.

32. Goddard E. Color Responcsiveness Argues Against a Dorsal Component of Human V4 / E. Goddard, D. J. Mannion, J. S. McDonald et al. // Journal of Vision. - 2011. - Vol. 11. - Is. 4. - 3.

33. The Human Cortical Areas V6 and V6A / S. Pitzalis, P. Fattori and C. Galletti // Visual Neuroscience. - 2015. - Vol. 32. - E007.

34. Posterior Inferotemporal Cortex Cells Use Multiple Visual Pathways to Complement Fine and Coarse Discriminations / C. R. Ponce, S. G. Lomber and M. S. Livingstone // The Journal of Neuroscience.

- 2017. - Vol. 37. - Is. 19. - 5019-5034 pp.

35. Orban G. A. Three-Dimensional Shape: Cortical Mechanisms of Shape Extraction / G. A. Orban // The Senses: A Comprehensive Reference. - Academic press, 2008. - Vol. 2. - 245-274 pp.

36. Wikipedia. Entorinal'naya kora [Electronic resource]. - 2020. - URL: https://ru.wikipe-dia.org/wiki^mopHHa^bHaa_Kopa (last access date: 18.07.23)

37. Kealy J. The Rat Perirhinal Cortex: A Review of Anatomy, Physiologym Plasticity, and Function / J. Kealy and S. Commins // Progress in Neurobiology. -2011. - Vol. 93. - Is. 4. - 522-548 pp.

38. Wikipedia. Primary motor cortex [Electronic resource]. - 2023. - URL: https:// en.wikipe-dia.org/wiki/Primary_motor_cortex (last date access: 18.07.23)

39. Wikipedia. Brodmann area 43 [Electronic resource]. - 2023. - URL: https:// en.wikipe-dia.org/wiki/Brodmann_area_43 (last date access: 18.07.23)

40. De Araujo I. E. The Gustatory Cortex and Multisensory Integration / I. E. de Araujo and S. A. Simon // International Journal of Obesity. - 2009. - Vol. 33. - 34-43 pp.

41. Evolution of the Modern Human Brain / A. Beaudet, A. Du and B. Wood // Progress in Brain Research. - 2019. - Vol. 250. - 219-250 pp.

42. Cao N. Inhibitory and Facilitattory Connections from Dorsolateral Prefrontal to Primary Motor Cortex in Healthy Humans at Rest-An rTMS Study / N. Cao, Y. Pi, K. Liu et al. // Neuroscience Letters. - 2018.

- Vol. 687. - 82-87 pp.

43. The Role of Brodmann Area 47 in Acute Stroke Patients with Language Impairment / J. Molitoris, M. Seay, J. Crinion et al. // Clinical Aphasiology Conference (2010 ; 40th ; Isle of Palms, SC ; May 2327, 2010). - 2010.

44. Gogolla N. The Insular Cortex / N. Gogolla // Current Biology. - 2017. - Vol. 27. - Is. 12. - R580-R586 pp.

45. Doty R. L. Olfaction / R. L. Doty ; ed. by V. S. Ramachandran // Encyclopedia of the Human Brain. 1st Edition. - Academic press, 2002.

46. Saper C. B. Central Autonomic System / C. B. Saper and R. L. Stornetta // The Rat Nervous System

(Fourth Edition). - Academic press, 2015. - 629-673 pp.

47. Simonnet J. Cellular Components and Circuitry of the Presubiculum and Its Functional Role in the Head Direction System / J. Simonnet and D. Fricker // Cell and Tissue Research. - 2018. - Vol. 373. - 541556 pp.

48. Witter M. P. The Entorhinal Cortex of the Monkey: VI. Organization of Projections from the Hippocampus, Subiculum, Presubiculum, and Parasubicu-lum / M. P. Witter and D. G. Amaral // The Journal of Comparative Neurology. - 2021. - Vol. 529. - Is.4. -828-852 pp.

49. Vogt B. A. Cytology of Human Caudomedial Cingulate, Retrosplenial, and Caudal Parahippocampal Cortices / B. A. Vogt, L. J. Vogt, D. P. Perl et al. // The Journal of Comparative Neurology. - 2001. - Vol. 438.

- Is. 3. - 353-376 pp.

50. Iannilli E. Gustatory Pethway in Humans: A Review of Models of Taste Perception and Their Potential Laterization / E. Iannilli and V. Gudziol // Journal of Neuroscience Research. - 2019. - Vol. 97. - Is. 3. - 230-240 pp.

51. Yamamoto K. Genetic Tracing of the Gustatory Neural Pathway Originating from Pkd1l3-express-ing Type III Taste Cells in Circumvallate and Foliate Papillae / K. Yamamoto, Y. Ishimaru, M. Ohmoto et al. // Journal of Neurochemistry. - 2011. - Vol. 119. - Is. 3. - 497-506 pp.

52. The Organization and Evolution of Dorsal Stream Multisensory Motor Pathways in Primates / J. H. Kaas, O. A. Gharbawie and I. Stepniewska // Frontiers in Neuroanatomy. - 2011. - Vol .5. - 34.

53. Ojima H. Terminal Morphology and Distribution of Corticothalamic Fibers Originating from Layer 5 and 6 of Cat Primary Auditory Cortex / H. Ojima // Cerebral Cortex. - 1994. - Vol. 4. - Is. 6. - 646-663 pp.

54. Connections Between the Pulvinar Complex and Cytochrome Oxidase-Defined Compartments in Visual Area V2 of Macaque Monkey / J. B. Levitt, T. Yoshika and J. S. Lund // Experimental Brain Research.

- 1995. - Vol. 104. - Is. 3. - 419-430 pp.

55. Sobol' V. I. Biologiya : ucheb. dlya 8 kl. ob-shcheobrazovat. ucheb. zavedeniy s obucheniyem na

rus. yaz. / V. I. Sobol'. - K.-P. : "Abetka", 2016. - 288 p.

56. Hashmi A. G. Discovering Cortical Algorithms / A. G. Hashimi and M. H. Lipasti // International Joint Conference on Computational Intelligence.

- 2018.

57. Herculano-Houzel S. The Human Brain in Numbers: A Linearly Scaled-Up Primate Brain / S. Herculano-Houzel // Frontiers in Human Neuroscience. - 2009. - Vol 3. - 31.

58. Wikipedia. Cortical column [Electronic resource]. - 2023. - URL: https:// en.wikipe-dia.org/wiki/Cortical_column (last date access: 18.07.23)

59. Tsoi S. Y. Telencephalic Outputs from the Medial Entorhinal Cortex are Copied Directly to the Hippocampus / S. Y. Tsoi, M. Öncül, E. Svahn et al. // eLife. - 2022. - Vol. 11. - e73162.

60. Beed P. Layer 3 Pyramidal Cells in the Medial Entorhinal Cortex Orchestrate Up-Down States and Entrain the Deep Layers Differentially / P. Beed, R. de Filippo, C. Holman et al. // Cell Reports. - 2020. - Vol. 33. - Is. 10. - 108470.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

61. BrainSeq: Neurogenomics to Drive Novel Target Discovery for Neurophychiatric Disorders / BrainSeq: A Human Brain Genomics Consortium // Neuron. - 2015. - Vol. 88. - Is. 6. - 1078-1083 pp.

62. Witter M. P. Architecture of the Entorhinal Cortex A Review of Entorhinal Anatomy in Rodents with Some Comparative Notes / M. P. Witter, T. P. Doan, B. Jacobsen et al. // Frontiers on System Neuroscience. - 2017. - Vol. 11. - 46.

63. Differential Excitability and Voltage-Dependent Ca2+ Signaling in Two Types of Medial Entorhinal Cortex Layer V Neurons / A. V. Egorov, U. Heinemann and W. Müller // European Journal of Neuroscience. -2002. - Vol. 16. - Is. 7. - 1305-1312 pp.

64. The Role of Parvalbumin Interneurons in Neurotransmitter Balance and Neurological Disease / L. Nahar, B. M. Delacroix and H. W. Nam // Frontiers in Psychiatry. - 2021. - Vol. 12. - 679960.

65. Hamid H. Networks in Mood and Anxiety Disorders / H. Hamid // Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics. - Academic press, 2014. - 327334 pp.

66. Hippocampal Formation / N. L. M. Cappaert, N. M. Van Strien and M. P. Witter // The Rat Nervous

System (Fourth Edition). - Academic press, 2015. -511-573 pp.

67. Witter M. P. Hippocampal Formation / M. P. Witter and D. G. Amaral; ed. by G. Paxinos // The Rat Nervous System (Third Edition). - 2004. - 635-704 pp.

68. Room P. Efferent Connections of the Prelim-bic (Area 32) and the Infralimbic (Area 25) Cortices: An Anterograde Tracing Study in the Cat / P. Room, F. T. Russchen, H. J. Groenewegen et al. // The Journal of Comparative Neurology. - 1985. - Vol. 242. - Is. 1. -40-55 pp.

69. Hayashi S. Mutation of Complex Synaptic Connections of Layer 5 Cortical Axons in the Posterior Thalamic Nucleus Requires SNAP25 / S. Hayashi, A. Hoerder-Suabedissen, E. Kiyokage et al. // Cerebral Cortex. - 2021. - Vol. 31. - Is. 5. - 2625-2638 pp.

70. Lopez-Virgen V. Motor Cortex Projections to Red Nucleus and Pons have Distinct Functional Roles in the Mouse / V. Lopez-Virgen, M. Macias, P. Rodriguez-Moreno et al. // bioRxiv. - 2022.

71. Slomianka L. Hippocampal Pyramidal Cells: The Reemergence of Cortical Lamination / L. Slomianka, I. Amrein, I. Knuesel et al. // Brain Structure and Function. - 2011. - Vol. 216. - 310-317 pp.

72. Lee A-R. Dorsal and Ventral Hippocampus Differentiate in Functional Pathways and Differentially Associate with Neurological Diseas-Related Genes during Postnatal Development / A-R. Lee, J.-H. Kim, E. Cho et al. // Frontiers in Molecular Neuroscience. -2017. - Vol. 2010. - 331.

73. Lee S. L. Interdependence between Dorsal and Ventral Hippocampus during Spatial Navigation / S. L. Lee, D. Lew, V. Wickenheisser et al. // Brain and Behavior. - 2019. - Vol. 9. - Is. 10. - e01410.

74. Tang L. Differential Functional Connectivity in Anterior and Posterior Hippocampus Supporting the Development of Memory Formation / L. Tang, P. J. Pruitt, Q. Yu et al. // Frontiers in Human Neuroscience.

- 2020. - Vol. 14. - 204.

75. Chauhan P. The Anatomy of the Hippocampus / P. Chauhan, K. Jethwa, A. Rathawa et al. // Cerebral Ischemia. - 2021. - 17-30 pp.

76. Wikipedia. Mossy fiber (hippocampus) [Electronic resource]. - 2022. - URL: https:// en.wikipe-dia.org/wiki/Mossy_fiber_(hippocampus) (last date access: 18.07.23)

77. Sun Y. Local and Long-Range Circuit Connections to Hilar Mossy Cells in the Dentate Gyrus / Y. Sun, S. F. Grieco, T. C. Holmes et al. // eNeuro. - 2017.

- Vol. 4. - Is. 2. - ENEUR0.0097-17.2017.

78. Cenquizca L. A. Spatial Organization of Di-rectHippocampal Field CA1 Axonal Projections to the Rest of the Cerebral Cortex / L. A. Cenquizca and L. W. Swanson // Brain Research Reviews. - 2007. - Vol. 56. - Is. 1. - 1-26 pp.

79. Lin X. Noncanonical Projections to the Hippocampal CA3 Regulate Spatial Learning and Memory by Modulating the Feedforward Hippocampal Trisynaptic Pathway / X. Lin, M. Amalraj, C. Blanton et al. // PLoS Biology. - 2021. - Vol. 19. - Is. 12. - e3001127.

80. Rediscovering Area CA2: Unique Properties and Functions / S. M. Dudek, G. M. Alexander and S.

«шушмум-шугмау» 2©23 / medical sciences

67

Farris // Nature Reviews Neuroscience. - 2016. - Vol. 17. - 89-102 pp.

81. Kohara K. Cell Type-Specific Genetic and Optogenetic Tools Reveal Hippocampal CA2 Circuits / K. Kohara, M. Pignatelli, A. J. Rivest et al. // Nature Neuroscience. - 2013. - Vol. 17. - 269-279 pp.

82. Fröhlich F. Microcircuits of the Hippocampus / F. Fröhlich // Network Neuroscience. - Academic press, 2016. - 97-109 pp.

83. Aggleton J. P. The Subiculum: The Heart of the Extended Hippocampal System / J. P. Aggleton and K. Christiansen // Progress in Brain Research. - 2015. - Vol. 219. - 65-82 pp.

84. Burwell R. Anatomy of the Hippocampus and the Declarative Memory System / R. Burwell and K. L. Agster ; J. H. Byrne // Learning and Memory: A Comprehensive Reference. - 2008. - Vol. 3. - 47-66 pp.

85. Usrey W. M. Visual Functions of the Thalamus / W. M. Usrey and H. J. Alitto // Annual Reviews of Vision Science. - 2015. - Vol. 1. - 351-371 pp.

86. Fama R. Thalamic Structures and Associated Cognitive Functions: Relations with Age and Aging / R. Fama and E. V. Sullivan // Neuroscience and Biobe-havioral Reviews. - 2015. - Vol. 54. - 29-37 pp.

87. Torrico T. J. Neuroanatomy, Thalamus / T. J. Torrico and S. Munakomi // StatPearls [Internet]. -Treasure Island (FL) : StatPearls Publishing, 2023.

88. Saalmann Y. B. The Cognitive Thalamus / Y. B. Saalmann and S. Kastner // Frontiers in System Neuroscience. - 2015. - Vol. 9. - 39.

89. Functional Roles of the Thalamus for Language Capacities / F. Klostermann, L. K. Krugel and F. Ehlen // Frontiers on System Neuroscience. - 2013. -Vol. 7. - 32.

90. Apical Function in Neocortical Pyramidal Cells: A Common Pathway by Which General Anesthetics Can Affect Mental State / W. A. Phillips, T. Bachmann and J. F. Storm // Frontiers in Neural Circuits. - 2018. - Vol. 12. - 50.

91. Cox C. L. Complex Regulation of Dendritic Transmitter Release from Thalamic Interneurons / C. L. Cox // Current Opinion in Neurobiology. - 2014. - Vol. 29. - 126-132 pp.

92. Salay L. D. Divergent Outputs of the Ventral Lateral Geniculate Nucleus Mediate Visually Evoked Defensive Behaviors / L. D. Salay and A. D. Huberman // Cell Reports. - 2021. - Vol. 37. - Is. 1. - 109792.

93. Not a One-Trick Pony: Diverse Connectivity and Functions of the Rodent Lateral Geniculate Complex / A. Monavarfeshani, U. Sabbagh and M. A. Fox // Visual Neuroscience. - 2017. - Vol. 34. - E012.

94. Nassi J. J. Parallel Processing Strategies of the Primate Visual System / J. J. Nassi and E. M. Callaway // Nature Reviews Neuroscience. - 2009. - Vol. 10. -360-372 pp.

95. Wikipedia. Pulvinar Nuclei [Electronic resource]. - 2023. - URL: https://en.wikipe-dia.org/wiki/Pulvinar_nuclei (last date access: 18.07.23)

96. Wikipedia. Medial Pulvinar Nuclei [Electronic resource]. - 2023. - URL: https://en.wikipe-dia.org/wiki/Medial_pulvinar_nucleus (last date access: 18.07.23)

97. Wikipedia. Lateral Pulvinar Nuclei [Electronic resource]. - 2020. - URL: https://en.wikipe-dia.org/wiki/Lateral_pulvinar_nucleus (last date access: 18.07.23)

98. Shipp S. Pulvinar Structure, Circuitry & Function in Primates / S. Shipp // Reference Module in Biomedical Sciences. - Elsevier, 2015.

99. Horn A. K. E. The Anatomy and Physiology of the Ocular Motor System / A. K. E. Horn and R. J. Leight // Handbook of Clinical Neurology. - 2011. -Vol. 102. - 21-69 pp.

100. Mai J. K. Thalamus / J. K. Mai and F. Forutan // The Human Nervous System (Third Edition). - Academic press, 2012. - 618-677 pp.

101. Wikipedia. Anterior Nuclei of Thalamus [Electronic resource]. - 2022. - URL: https://en.wik-ipedia.org/wiki/Anterior_nuclei_of_thalamus (last date access: 18.07.23)

102. Jenison R. L. Auditory System / R. L. Jenison // International Encyclopedia of the Social & Behavioral Sciences. - 2001. - 946-952 pp.

103. Wikipedia. Mammillary Body [Electronic resource]. - 2022. - URL: https://en.wikipe-dia.org/wiki/Mammillary_body (last date access: 18.07.23)

104. Chapter 1: Hypothalamus: Structural Organization [Electronic resource]. - 2020. - URL: https://nba.uth.tmc.edu/neuroscience/rn/s4/chap-ter01.html (last access date: 18.07.23)

105. Murphy T. Inhibitory Interneurons in the Ventromedial Nucleus of the Hypothalamus / J. T. Murphy and L. P. Renaud // Brain Research. - 1968. -Vol. 9. - Is. 2. - 385-389 pp.

106. Kim D. W. The Cellular and Molecular Landspace of Hypothalamic Pattering and Differentiation from Embryonic to Late Postnatal Development / D. W. Kim, P. W. Washington, Z. Q. Wang et al. // Nature Communications. - 2020. - Vol. 11. - 4360.

107. Buckner R. L. The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neu-roimaging / R. L. Buckner // Neuron. - Vol. 80. - Is. 3. - 807-815 pp.

108. Lawrenson C. The Mystery of the Cerebellum: Clues from Experimental and Clinical Observations / C. Lawrenson, M. Bares, A. Kamondi et al. // Cerebellum & Ataxias. - 2018. - Vol. 5. - 8.

109. New Roles for the Cerebellum in Health and Disease / S. L. Reeber, T. S. Otis and R. V. Sillitoe // Frontiers in Systems Neuroscience. - 2013. - Vol. 7. -83.

110. Ward D. R. Golgi Cell Mediated Inhibition in the Cerebellar Granule Cell Layer / D. R. Ward. - 2012.

111. Purves D. Neuroscience. 2nd edition / D. Purves, G. J. Augustine, D. Fitzpatrick et al. - Sanderland (MA) : Sinauer Associates, 2001.

112. Thalamic Interactions of Cerebellum and Basal Ganglia / A. Hintzen, E. A. Pelzer and M. Tittge-meyer // Brain Structure and Function. - 2018. - Vol. 223. - 569-587 pp.

113. Schmahmann J. D. Anatomic Organization of the Basilar Pontine Projections from Prefrontal Cortices in Rheses Monkey / J. D. Schmahmann and D. N.

Pandya // Journal of Neuroscience. - 1997. - Vol. 17. -Is. 1. - 438-458 pp.

114. Clark R. E. Procedural Learning: Classical Conditioning / R. E. Clark and R. F. Thompson // Encyclopedia of Neuroscience. - Academic press, 2009. -1097-1105 pp.

115. May P. J. Superior Colliculus / P. J. May // Encyclopedia of the Neurological Sciences (Second Edition). - 2014. - 351-354 pp.

116. The Superior Colliculus: Cell Types, Connectivity, and Behavior / X. Liu, H. Huang, T. P. Snutch et al. // Neuroscience Bulletin. - 2022. - Vol. 38. - 1519-1540 pp.

117. Superior Colliculus Projections to Midline and Intralaminar Thalamic Nuclei of the Rat / K. E. Krout, A. D. Loewy, G. W. Westby et al. // Journal of Comparative Neurology. - 2001. - Vol. 431. - Is. 2. -198-216 pp.

118. Wikipedia. Setchatka [Electronic resource].

- 2023. - URL: https:// ru.wikipe-dia.org/wiki/CeTHaTKa (last access date: 19.07.23)

119. Wikipedia. Ganglionarnaya kletka [Electronic resource]. - 2022. - URL: https://ru.wikipe-dia.org/wiki/TaHranoHapHaa_K^eTKa (last access date: 19.07.23)

120. Wikipedia. Kletka Gol'dzhi [Electronic resource]. - 2023. - URL: https://ru.wikipe-dia.org/wiki/K^eTKa_ro^bg®H (last access date: 19.07.23)

121. Litvina E. An Evolving View of Retinogenic-ulate Transmission / E. Litvina and C. Chen // Visual Neuroscience. - 2017. - Vol. 34. - E013.

122. Raven M. A. Afferent Control of Horizontal Cell Morphology Revealed by Genetic Respecification of Rods and Cones / M. A. Raven, E. C. T. Oh, A. Swaroop et al. // The Journal of Neuroscience. - 2007.

- Vol. 27. - Is. 13. - 3540-3547 pp.

123. Lennie P. The Physiology of Color Vision / P. Lennie ; ed. by S. K. Shevell // The Science of Color

(Second Edition). - Elsevier Science, 2003. - 217-246 pp.

124. Wilson M. Amacrine Cells / M. Wilson and D. I. Vaney // The Senses: A Comprehensive Reference. - Academic press, 2008. - Vol. 1. - 361-367 pp.

125. Wikipedia. Amakrinovyye kletki [Electronic resource]. - 2021. - URL: https:// ru.wikipe-dia.org/wiki/AMaKpHHOBHe_KneTKH (last access date: 19.07.23)

126. DiNuzzo M. Brain Networks Underluing Eye's Pupil Dynamics / M. DiNuzzo, D. Mascali, M. Moraschi et al. // Frontiers in Neuroscience. - 2019. -Vol. 13. - 965.

127. Costa V. D. More than Meets the Eye: The Relationship between Pupil Size and Locus Coeruleus Activity / V. D. Costa and P. H. Rudebeck // Neuron. -2016. - Vol. 89. - Is. 1. - 8-10 pp.

128. Pfeffer T. Coupling of Pupil- and Neuronal Population Dynamics Reveals Diverse Influences of Arousal on Cortical Processing / T. Pfeffer, C. Keitel, D. S. Kluger et al. // eLife. - 2022. - Vol. 11. - e71890.

129. Binda P. Renewed Attention on the Pupil Light Reflex / P. Binda and P. D. Gamlin // Trends in Neurosciences. - 2017. - Vol. 40. - Is. 8. - 455-457 pp.

130. Gonzalez R. C. Digital Image Processing. Third Edition / R. C. Gonzalez and R. E. Woods. - Upper Saddle River, NJ : Pearson Prentice Hall, 2008. -954 p.

131. Wikipedia. Retikulyarnaya formatsiya [Electronic resource]. - 2022. - URL: https://ru.wikipe-dia.org/wiki/Ретикулярная_формация (last access date: 19.07.23)

132. Wikipedia. Midbrain Reticular Formation [Electronic resource]. - 2023. - URL: https://en.wik-ipedia. org/wiki/Midbrain_reticular_formation (last date access: 19.07.23)

133. Chapter 11 - The Zona Incerta System: Involvement in Attention and Movement / S. Chometton, M. Barbier and P.-Y. Risold // Handbook

of Clinical Neurology. - 2021. - Vol. 180. - 173-184 pp.

134. Lance J. W. Muscle Tone and Movement / J. W. Lance and J. G. McLeod // A Physiological Approach to Clinical Neurology (Third Edition). - 1981.

- 101-127 pp.

135. Chung M. S. Function of the Brain / M. S. Chung and B. S. Chung // Visually Memorable Neuroanatomy for Beginners. - Academic press, 2020. - 123153 pp.

136. Brain, Spinal Cord, and Cranial Nerves / B. Cozzi, S. Huggenberger and H. Oelschläger // Anatomy of Dolphins. - Academic press, 2017. - 197-304 pp.

137. Wikipedia. Nucleus Accumbens [Electronic resource]. - 2023. - URL: https://en.wikipe-dia.org/wiki/Nucleus_accumbens (last date access: 19.07.23)

138. Salgado S. The Nucleus Accumbens: A Comprehensive Review / S. Salgado and M. G. Kaplitt // Stereotactic and Functional Neurosurgery. - 2015. -Vol. 93. - Is. 2. - 75-93 pp.

139. Zhang W.-H. Amygdala Circuit Substrates for Stress Adaptation and Adversity / W.-H. Zhang, J.Y. Zhang, A. Holmes and B.-X. Pan // Biological Psychiatry. - 2021. - Vol. 89. - Is. 9. - 847-856 pp.

140. Yang Y. From Structure to Behavior in Ba-solateral Amygdala-Hippocampus Circuits / Y. Yang and J.-Z. Wang // Frontiers in Neural Circuits. - 2017.

- Vol. 11. - 86.

141. Wikipedia. Peramidal cell [Electronic resource]. - 2023. - URL: https://en.wikipe-dia.org/wiki/Pyramidal_cell (last date access: 19.07.23)

142. Cui H. Activity in the Parabigeminal Nucleus During Eye Movements Directed at Moving and Stationary Targets / H. Cui and J. G. Malpeli // Journal of Neurophysiology. - 2003. - Vol. 83. - Is. 6. - 31283142 pp.

143. Intrinsic Excitability of Cholinergic Neurons in the Rat Parabigeminal Nucleus / C. A. Goddard, E. I. Knudsen and J. R. Huguenard // Journal of Neurophysiology. - 2007. - Vol. 98. - Is. 6. - 3486-3493 pp.

144. Sefton A. J. Relation of the Parabigeminal Nucleus to the Superior Colliculus and Dorsal Lateral Geniculate Nucleus in the Hooded Rat / A. J. Sefton and P. R. Martin // Experimental Brain Research. -1984. - Vol. 56. - 144-148 pp.

145. Wikipedia. Naruzhnaya kapsula [Electronic resource]. - 2022. - URL: https://ru.wikipe-dia.org/wiki/Наружная_капсула (last access date: 19.07.23)

146. Wikipedia. Vnutrennyaya kapsula [Electronic resource]. - 2023. - URL: https://ru.wikipe-dia.org/wiki/Внутренняя_капсула (last access date: 19.07.23)

147. Wikipedia. Kraynyaya kapsula [Electronic resource]. - 2023. - URL: https://ru.wikipe-dia.org/wiki/Крайняя_капсула (last access date: 19.07.23)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

148. Druga R. The Structure and Connections of the Claustrum / R. Druga // The Claustrum. Structural, Functional, and Clinical Neuroscience. - Academic press, 2014. - 29-84 pp.

149. Wikipedia. Pedunculopontine nucleus [Electronic resource]. - 2022. - URL: https://en.wikipe-dia.org/wiki/Pedunculopontine_nucleus (last date access: 19.07.23)

150. Wikipedia. Yadra shva [Electronic resource]. - 2017. - URL: https://ru.wikipe-dia.org/wiki/Ядра_шва (last access date: 19.07.23)

151. Martinez-Banaclocha M. Astroglial Isopo-tentiality and Calcium-Associated Biomagnetic Field Effects on Cortical Neuronal Coupling / M. Martinez-Banaclocha // Cells. - 2020. - Vol. 9. - Is 2. - 439.

152. Mohan H. Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex / H. Mohan, M. B. Verhoog, K. K. Doreswamy et al. // Cerebral Cortex. - 2015. -Vol. 25. - Is. 12. - 4839-4853 pp.

153. Muzio M. R. Histology, Axon / M. R. Muzio and M. Cascella // StatPearls [Internet]. - Treasure Island (FL): StatPearls Publishing, 2023.

154. Wikipedia. Putamen [Electronic resource]. -2023. - URL: https://en.wikipedia.org/wiki/Putamen (last date access: 19.07.23)

155. Wikipedia. Pokryshka mozga [Electronic resource]. - 2013. - URL: https://ru.wikipe-dia.org/wiki/Покрышка_мозra (last access date: 19.07.23)

156. Wikipedia. Pokryshka prodolgovatogo mozga [Electronic resource]. - 2020. - URL: https://ru.wikipe-

dia.org/wiki/Покрышка_продолroватоro_мозra (last access date: 19.07.23)

157. Wikipedia. Ventral'naya oblast' pokryshki [Electronic resource]. - 2023. - URL: https://ru.wik-ipedia.org/wiki/Вентральная_область_покрышки (last access date: 19.07.23)

158. Wikipedia. Nigrostriarnyy put' [Electronic resource]. - 2018. - URL: https://ru.wikipe-dia.org/wiki/Нигростриарный_путь (last access date: 19.07.23)

159. Wikipedia. Tuberoinfundibulyarnyy put' [Electronic resource]. - 2022. - URL: https://ru.wik-ipedia. org/wiki/Тубероинфундибулярный_путь (last access date: 19.07.23)

160. Wikipedia. Shishkovidnoye telo [Electronic resource]. - 2022. - URL: https://ru.wikipe-dia.org/wiki/Шишковидное_тело (last access date: 19.07.23)

161. Berson D. M. Retinal Ganglion Cell Types and Their Central Projections / D. M. Berson // The Senses: A Comprehensive Reference. - Academic press, 2008. - Vol. 1. - 491-519 pp.

162. Johns P. Functional Neuroanatomy / P. Johns // Clinical Neuroscience. - Churchill Livingstone, 2014. - 27-47 pp.

163. Wikipedia. Stellate cell [Electronic resource]. - 2023. - URL: https://en.wikipe-dia.org/wiki/Stellate_cell (last date access: 19.07.23)

164. Dynamics of Neocortical Networks: Connectivity Beyond the Canonical Microcircuit / H. J. Luh-mann // Pflügers Archiv - European Journal of Physiology. - 2023.

165. Cooper J. A. Mechanisms of Cell Migration in the Nervous System / J. A. Cooper // Journal of Cell Biology. - 2013. - Vol. 202. - Is. 5. - 725-734 pp.

166. Neocortical Neurogenesis: Morphogenetic Gradients and Beyond / V. S. Caviness Jr., R. S. Nowakowski and P. G. Bhide // Trends in Neurosciences. - 2009. - Vol. 32. - Is. 8. - 443-450 pp.

167. Kalusa M. Developmental Differences in Neocortex Neurogenesis and Maturation Between the Al-tricial Dwarf Rabbit and Precocial Guinea Pig / M. Kalusa, M. D. Heinrich, C. Sauerland et al. // Frontiers in Neuroanatomy. - 2021. - Vol. 15. - 678385.

168. Chapter 8 - Neurogenesis in the Adult Hypothalamus: A Distinct Form of Structural Plasticity Involved in Metabolic and Circadian Regulation, with Potential Relevance for Human Pathophysiology / A. Sharif, C. P. Fitzsimons and P. J. Lucassen // Handbook

of Clinical Neurology. - 2021. - Vol. 179. - 125-140 pp.

169. Consalez G. G. Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum / G. G. Consalez, D. Goldowitz, F. Casoni et al. // Frontiers in Neural Circuits. - 2020. - Vol. 14. -611841.

170. Willett R. T. Cerebellar Nuclei Neurons Dictate Cortical Growth Through Developmental Scaling of Presynaptic Purkinje Cells / R. T. Willett, A. Wojcin-ski, N. S. Bayin et al. // BioRxiv. - 2018. - 38 p.

171. Shepherd G. M. New Perspectives on Olfactory Processing and Human Smell / G. M. Shepherd; ed. by A Menini // The Neurobiology of Olfaction. -Boca Raton (FL) : CRC Press/Taylor & Francis, 2010.

172. Neurogenesis in the Adult Peripheral Nervous System / K. Czaja, M. Fornaro and S. Geuna // Neural Regeneration Research. - 2012. - Vol. 7. - Is. 14. -1047-1054 pp.

173. Ayala G. E. Cancer-Related Axonogenesis and Neurogenesis in Prostate Cancer / G. E. Ayala, H. Dai, M. Powell et al. // Clinical Cancer Research. -2008. - Vol. 14. - Is. 23. - 7593-7603 p.

174. Bhardwaj R. D. Neocortical Neurogenesis in Humans is Restricted to Development / R. D. Bhardwaj, M. A. Curtis, K. L. Spalding et al. // Proceedings of the National Academy of Sciences of the United States of America. - 2006. - Vol. 103. - Is. 33. -12564-12568 pp.

175. Meerlo P. New Neurons in the Adult Brain: the Role of Sleep and Consequences of Sleep Loss / P. Meerlo, R. E. Mistlberger, B. L. Jacobs et al. // Sleep

Medicine Reviews. - 2009. - Vol. 13. - Is. 3. - 187194 pp.

176. Neurogenesis of Corticospinal Motor Neurons Extending Spinal Projections in Adult Mice / J. Chen, S. S. P. Magavi and J.D. Macklis // Proceedings of the National Academy of Sciences of the United States of America. - 2004. - Vol. 101. - Is. 46. -16357-16362 pp.

177. Dorogina O. I. Neyrofiziologiya : ucheb. posobiye / O. I. Dorogina. - Yekaterenburg : Izd-vo Ural. un-ta, 2019. - 100 p.

178. Wikipedia. Glutamate (neurotransmitter) [Electronic resource]. - 2023. - URL: en.wikipe-dia.org/wiki/Glutamate_(neurotransmitter) (last access date: 02.09.23)

179. Jewett B. E. Physiology, GABA / B. E. Jewett and S. Sharma // StatPearls [Internet]. - Treasure Island (FL): StatPearls Publishing, 2023.

180. Aspartate: Possible Neurotransmitter in Cerebellar Climbing Fibers / L. Wiklund, G. Toggenburger and M. Cuenod // Science. - 1982. - Vol. 216. - Is. 4541. - 18-80 pp.

181. Zeilhofer H. U. 5.27 - Glycine Receptors / H. U. Zeilhofer ; ed. by R. H. Masland, T. D. Albright, P. Dallos et al. // The Senses: A Comprehensive Reference. - Academic Press, 2008. - Vol. 5. - 381-385 pp.

182. Baer K. Localization of Glycine Receptors in the Human Forebrain, Brainstem, and Cervical Spinal Cord: An Immunohistochemical Review / K. Baer, H. J. Waldvogel, R. L. M. Faull et al. // Frontiers in Molecular Neuroscience. - 2009. - Vol. 2. - 25.

183. Maskos U. The Cholinergic Mesopontine Tegmentum is a Relatively Neglected Nicotinic Master Modulator of the Dopaminergic System: Relevence to Drugs of Abuse and Pathology / U. Maskos // British Journal of Pharmacology. - 2008. - Vol. 153. - S. 1. -438-445 pp.

184. Cholinergic Nucleus Basalis Neurons May Influence the Cortex via the Thalamus / A. I. Levey, A. E. Hallanger and B. H. Wainer // Neuroscience Letters. - 1987. - Vol. 74. - Is. 1. - 7-13 pp.

185. Sam C. Physiology, Acetylcholine / C. Sam and B. Bordoni // StatPearls [Internet]. - Treasure Island (FL) : StatPearls Publishing, 2023.

186. Chapter 12 - Nucleus Basalis of Meynert Degeneration Predicts Cognitive Impairment in Parkinson's Disease / H. Wilson, E. R. de Natale and M. Politis // Handbook of Clinical Neurology. - 2021. -Vol. 179. - 189-205 pp.

187. CMI Brain Research. Neyrotransmittery i neyromodulyatory [Electronic resource]. - 2020. -URL: cmi.to/HeHpoTpaHCMHTrepbi-H-HenpoMogynHTopbi (last access date: 13.09.23)

188. Aldred E. M. Chapter 31 - The Nevous System / E. M. Aldred and C. Buck // Pharmacology. -Churching Livingstone, 2009. - 235-246 pp.

189. Wikipedia. Reticular formation [Electronic resource]. - 2023. - URL: en.wikipedia.org/wiki/Retic-ular_formation (last access date: 27.07.23)

190. The Expanded Biology of Serotonin / M. Berger, J. A. Gray and B. L. Roth // Annual Review of Medicine. - 2009. - Vol. 60. - 355-366 pp.

191. Carthy E. Histamine, Neuroinflammation and Neurodevelopment: A Review / E. Carthy and T. Eilender // Frontiers in Neuroscience. - 2021. - Vol. 15. - 680214.

192. Scammell T. E. Histamine: Neural Circuits and New Medications / T. E. Scammell, A. C. Jackson, N. P. Franks et al. // Sleep. - Vol. 42. - Is. 1. - zsy183.

193. Jewett B. E. Physiology, NMDA Receptor / B. E. Jewett and B. Thapa // StatPearls [Internet]. -Treasure Island (FL) : StatPearls Publishing, 2023.

194. Yadav R. AMPA Receptors: Molecular Biology and Pharmacology / R. Yadav, S. M. Dravid, H. Yuan et al. // The Curated Reference Collection in Neuroscience and Biohavioral Physiology. - Elsevier, 2017.

195. Kainate Receptors: From Synaptic Activity to Disease / J. V. Negrete-Díaz, R. Falcón-Moya and A. Rodriguez-Moreno // The FEBS Journal. - 2022. - Vol. 289. - Is. 17. - 5074-5088 pp.

196. Bgee. Gene : GRM1 - ENSG00000152822 -Homo sapiens (human) [Electronic resource]. - URL: bgee.org/gene/ENSG00000152822 (last access date: 02.09.23)

197. Bgee. Gene : GRM2 - ENSG00000164082 -Homo sapiens (human) [Electronic resource]. - URL: bgee.org/gene/ENSG00000164082 (last access date: 02.09.23)

198. Bgee. Gene : GRM3 - ENSG00000198822

- Homo sapiens (human) [Electronic resource]. - URL: bgee.org/gene/ENSG00000198822 (last access date: 02.09.23)

199. Bgee. Gene : GRM4 - ENSG00000124493 -Homo sapiens (human) [Electronic resource]. - URL: bgee.org/gene/ENSG00000124493 (last access date: 02.09.23)

200. Bgee. Gene : GRM5 - ENSG00000168959 -Homo sapiens (human) [Electronic resource]. - URL: bgee.org/gene/ENSG00000168959 (last access date: 02.09.23)

201. Bgee. Gene : GRM6 - ENSG00000113262 -Homo sapiens (human) [Electronic resource]. - URL: bgee.org/gene/ENSG00000113262 (last access date: 02.09.23)

202. Bgee. Gene : GRM7 - ENSG00000196277 -Homo sapiens (human) [Electronic resource]. - URL: bgee.org/gene/ENSG00000196277 (last access date: 02.09.23)

203. Bgee. Gene : GRM8 - ENSG00000179603 -Homo sapiens (human) [Electronic resource]. - URL: bgee.org/gene/ENSG00000179603 (last access date: 02.09.23)

204. Haam J. GABA is Excitatory in Adult Vaso-pressinergic Neuroendocrine Cells / J. Haam, I. R. Popescu, L. A. Morton et al. // Journal of Neuroscience.

- 2012. - Vol. 32. - Is. 2. - 572-582 pp.

205. GABA Receptor / M. J. Allen, S. Sabir and S. Sharma // StatPearls [Internet]. - Treasure Island (FL) : StatPearls Publishing, 2023.

206. GABAC Receptors [Electronic resource]. -2023. - URL: https://www.sigmaal-drich.com/UA/en/technical-documents/technical-article/protein-biology/protein-expression/gabac-re-ceptors (last access date: 13.09.23)

207. GABAc Receptors in the Lateral Amygdala: A Possible Novel Target for the Treatment of Fear and Anxiety Disorders? / C. Cunha, M.-H. Monfils and J. E. LeDoux // Frontiers in Behavioral Neuroscience. -2010. - Vol. 4. - 6.

208. Wikipedia. Aspartic acid [Electronic resource]. - 2023. - URL: en.wikipedia.org/wiki/Aspar-tic_acid (last access date: 02.09.23)

209. Tsumoto T. Excitatory Amino Acid Transmitters and Their Receptors in Neural Circuits of the Cerebral Neocortex / T. Tsumoto // Neuroscience Research. - Elsevier, 1990. - Vol. 9. - Is. 2. - 79-102 pp.

210. D-Aspartate Consumption Selectively Promotes Intermediate-Term Spatial Memory and the Expression of Hippocampal NMDA Receptor Subunits / G. Zachar, R. Kemecsei, S. M. Papp et al. // Scientific Reports. - 2021. - Vol. 11. - 6166.

211. 5. Physiological Studies of Transmitter Function in the Thalamus [Electronic resource]. - URL: ucl.ac.uk/~smgxt01/pnb/5.htm (last access date: 13.09.23)

212. Pampillo M. Differential Effects of Glutamate Agonists and D-Aspartate on Oxytocin Release from Hypothalamus and Posterior Pituitary of Male Rats / M. Pampillo, M. del C. Díaz, B. H. Duvilanski et al. // Endocrine. - 2001. - Vol. 15. - 309-315 pp.

213. Aspartate-Containing Neurons of the Brainstem and Rostral Spinal Cord of the Sea Lamprey Petromyzon Marinus: Distribution and Comparison with y-Aminobutyric Acid / V. Villar-Cerviño, B. Fer-nández-López, M. C. Rodicio et al. // The Journal of Comparative Neurology. - 2014. - Vol. 522. - Is. 6. -1209-1231 pp.

214. Salt T. E. Mediation of Thalamic Sensory Input by Both NMDA Receptors and Non-NMDA Receptors / T. E. Salt // Nature. - 1986. - Vol. 322. - Is. 6076. - 263-265 pp.

215. Wikipedia. Glycine receptor [Electronic resource]. - 2023. - URL: en.wikipedia.org/wiki/Gly-cine_receptor (last access date: 02.09.23)

216. Benarroch E. E. Chapter 2 - Signaling Molecules of the CNS as Targets of Autoimmunity / E. E. Benarroch // Handbook of Clinical Neurology. - Elsevier, 2016. - Vol. 133. - 17-38 pp.

217. San Martin V. P. Glycine Receptor Subtypes and Their Roles in Nociception and Chronic Pain / V. P. San Martin, A. Sazo, E. Utreras et al. // Frontiers in Molecular Neuroscience. - 2022. - Vol. 15. - 848642.

218. Bgee. Gene : GLRA1 - ENSG00000145888

- Homo sapiens (human) [Electronic resource]. - 2023.

- URL: bgee.org/gene/ENSG00000145888 (last access date: 13.09.23)

219. Bgee. Gene : GLRA2 - ENSG00000101958

- Homo sapiens (human) [Electronic resource]. - 2023.

- URL: bgee.org/gene/ENSG00000101958 (last access date: 13.09.23)

220. Lynagh T. Glycine Receptors / T. Lynagh and B. Laube // Encyclopedia of Biological Chemistry.

- Elsevier, 2013. - 419-424 pp.

221. Bgee. Gene : GLRA3 - ENSG00000145451

- Homo sapiens (human) [Electronic resource]. - 2023.

- URL: bgee.org/gene/ENSG00000145451 (last access date: 13.09.23)

222. Bgee. Gene : GLRB - ENSG00000109738 -Homo sapiens (human) [Electronic resource]. - 2023.

- URL: bgee.org/gene/ENSG00000109738 (last access date: 13.09.23)

223. Wikipedia. Acetylcholine [Electronic resource]. - 2023. - URL: en.wikipedia.org/wiki/Acetyl-choline (last access date: 27.07.23)

224. Carlson A. B. Physiology, Cholinergic Receptors / A. B. Carlson and G. P. Kraus // StatPearls [Internet]. - Treasure Island (FL) : StatPearls Publishing, 2023.

225. Graybiel A. M. Chapter III - Chemical Architecture of the Basal Ganglia / A. M. Graybiel and J. B. Penney // Handbook of Chemical Neuroanatomy. -Elsevier, 1999. - Vol. 15. - 227-284 pp.

226. Chapter 4 - Neurotransmitter Receptors in the Basal Ganglia / P. C. Emson, H. J. Waldvogel and R. L. M. Faull ; ed. by H. Steiner and K. Y. Tseng // Handbook of Behavioral Neuroscience. - Elsevier, 2010. - Vol. 20. - 75-96 pp.

227. Kobayashi Y. Chapter IV - Chemical Neuroanatomy of the Hippocampal Formation and the Perirhinal and Parahippocampal Cortices / Y. Kobayashi and D. G. Amaral ; ed. by F. E. Bloom, A. Björ-klund and T. Hökfelt // Handbook of Chemical Neuroanatomy. - Elsevier, 1999. - Vol. 15. - 285-401 pp.

228. Wikipedia. Muskarinovyy atsetilkholinovyy retseptor [Electronic resource]. - 2022. - URL: ru.wik-ipe-

dia.org/wiki/Мускариновый_ацетилхолиновый_рец ептор (last access date: 13.09.23)

229. Nathanson N. M. Muscarinic Acetylcholine Receptors / N. M. Nathanson // Reference Module in Biomedical Sciences. - Elsevier, 2018.

230. Warren N. M. Muscarinic Receptors in the Thalamus in Progressive Supranuclear Palsy and Other Neurodegenerative Disorders / N. M. Warren, M. A. Piggot, A. J. Lees et al. // Journal of Neuropathology and Experimental Neurology. - 2007. - Vol. 66. - Is. 5. - 399-404 pp.

231. Enz A. M4 Muscarinic Acetylcholine Receptor / A. Enz // xPharm: The Comprehensive Pharmacology Reference. - Elsevier, 2007. - 1-4 pp.

232. Alterations in the Cholinergic System of Brain Stem Neurons in a Mouse Model of Rett Syndrome / M. F. Oginsky, N. Cui, W. Zhong et al. // American Journal of Physiology. Cell Physiology. -2014. - Vol. 307. - Is. 6. - 508-520 pp.

233. Negres S. New Potential Beta-3 Adrenergic Agonists with Beta-Phenylethylamine Structure, Synthesized for the Treatment of Dyslipidemia and Obesity / S. Negres, C. Chirita, A. L. Arsene et al. // Adiposity

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

- Epidemiology and Treatment Modalities. - 2017.

234. Wikipedia. Adrenoretseptory [Electronic resource]. - 2023. - URL: ru.wikipe-dia.org/wiki/Адренорецепторы (last access date: 02.09.23)

235. Pérez-Santos I. Distribution of the Naradren-aline Innervation and Adrenoceptors in the Macaque Monkey Thalamus / I. Pérez-Santos, N. Palomero-Gal-lagher, K. Zilles et al. // Cerebral Cortex. - 2021. - Vol. 31. - Is. 9. - 4115-4139 pp.

236. Perez D. M. ^-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition / D. M. Perez // Frontiers in Pharmacology. - 2020. - Vol. 11. - 581098.

237. Kow L.-M. Genetic and Epigenetic Mechanisms in Neural and Hormonal Controls over Female Reproductive Behaviors / L.-M. Kow, A. W. Lee, C. Klinge et al. // Hormones, Brain and Behavior. - 2017.

- 55-82 pp. 6

238. Wikipedia. Alpha-2 adrenergic receptor [Electronic resource]. - 2023. - URL: en.wikipe-dia.org/wiki/Alpha-2_adrenergic_receptor (last access date: 02.09.23)

239. Little K. Y. ß-Adrenergic Receptor Binding in Human and Rat Hypothalamus / K. Y. Little, G. E. Duncan, G. R. Breese et al. // Biological Psychiatry. -1992. - Vol. 32. - Is. 6. - 512-522 pp.

240. Cellular Localization of Messenger RNA for Beta-1 and Beta-2 Adrenergic Receptors in Rat Brain: An in Situ Hybridization Study / A. P. Nicholas, V. A. Pieribone and T. Hökfelt // Neuroscience. - 1993. -Vol. 56. - Is.4. - 1023-1039 pp.

241. vinh quoc Luang K. The Role of Beta-Adrenergic Receptor Blockersin Alzheimer's Disease: Potential Genetic and Cellular Signaling Mechanisms / K. vinh quoc Luang and L. T. H. Nguyen // American Journal of Alzheimer's Disease and Other Dementias. -2013. - Vol. 28. - Is. 5. - 427-439 pp.

242. Asanuma M. Distribution of the Beta-2 Adrenergic Receptor Messenger RNA in the Rat Brain by in Situ Hybridization Histochemistry: Effects of Chronic Reserpine Treatment / M. Asanuma, N. Og-awa, K. Mizukawa et al. // Neurochemical Research. -1991. - Vol. 16. - 1253-1256 pp.

243. Wikipedia. Dofaminovyy retseptor [Electronic resource]. - 2023. - URL: ru.wikipe-dia.org/wiki/Дофаминовый_рецептор (last access date: 02.09.23)

244. Flazer A. Serotonin Receptors / A. Flazer, J. G. Hensler ; ed. by G. L. Siegel, B. W. Arganoff, R. W. Albers et al. // Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. - Philadelphia : Lippincott-Raven, 1999.

245. Wikipedia. Serotonin [Electronic resource].

- 2023. - URL: ru.wikipedia.org/wiki/Серотонин (last access date: 02.09.23)

246. Blackburn T. P. Serotonin (5-Hydroxytrypta-mine; 5-HT): Receptors / T. P. Blackburn ; ed. by L. R. Squire // Encyclopedia of Neuroscience. - Academic Press, 2009. - 701-714 pp.

247. Beyeler A. Multiple Facets of Serotonergic Modulation / A. Beyeler, A. Ju, A. Chagraoui, L. Cu-velle et al. // Progress in Brain Research. - 2021. - Vol. 261. - 3-39 pp.

248. Wikipedia. 5-HT receptor [Electronic resource]. - 2023. - URL: en.wikipedia.org/wiki/5-HT_receptor (last access date: 02.09.23)

249. Chapter 38 - Revisiting the Behavioral Genetics of Serotonin: Relevance to Anxiety and Depression / O. F. O'Leary, M. G. Codagnone and J. F. Cryan // Handbook of Behavioral Neuroscience. - Elsevier, 2020. - Vol. 31. - 665-709 pp.

250. O'Leary O. F. Chapter 4.13 - The Behavioral Genetics of Serotonin: Relevance to Anxiety and Depression / O. F. O'Leary and J. F. Cryan ; ed. by C. P. Müller and B. L. Jacobs // Handbook of Behavioral

Neuroscience. - Elsevier, 2010. - Vol. 21. - 749-789 pp.

251. Hensler J. G. Chapter 15 - Serotonin / J. G. Hensler ; ed. by S. T. Brady, G. J. Siegel, R. W. Albers et al. // Basic Neurochemistry (Eight Edition). -Academic Press, 2012. - 300-322 pp.

252. Blackburn T. P. Serotonin (5-Hydroxytryptamine; 5-HT): Receptors / T. P. Blackburn ; ed. by L. R. Squire // Encyclopedia of Neuroscience. - Academic Press, 2009. - 701-714 pp.

253. Bgee. Gene : HRH1 - ENSG00000196639 -Homo sapiens (human) [Electronic resource]. - URL: bgee.org/gene/ENSG00000196639 (last access date: 02.09.23)

254. Bgee. Gene : HRH2 - ENSG00000113749 -Homo sapiens (human) [Electronic resource]. - URL: bgee.org/gene/ENSG00000113749 (last access date: 02.09.23)

255. Bgee. Gene : HRH3 - ENSG00000101180 -Homo sapiens (human) [Electronic resource]. - URL: bgee.org/gene/ENSG00000101180 (last access date: 02.09.23)

256. Wikipedia. Cortical minicolumn [Electronic resource]. - 2023. - URL: en.wikipedia.org/wiki/Cortical_minicolumn (last access date: 07.09.23)

257. Johansson C. Towards Cortex Sized Artificial Neural Systems / C. Johansson and A. Lansner // Neural Networks. - 2007. - Vol 20. - Is. 1. - 48-61 pp.

258. Arber C. Cortical Interneurons from Human Pluripotent Stem Cells: Prospects for Neurological and Psychiatric Disease / C. Arber and M. Li // Frontiers in Cellular Neuroscience. - 2013. - Vol. 7. - 10.

259. The Search for True Numbers of Neurons and Glial Cells in the Human Brain: A Review of 150 Years of Cell Counting / C. S. von Bartheld, J. Bahney and S. Herculano-Houzel // Journal of Comparative

Neurology. - 2017. - Vol. 524. - Is. 18. - 3865-3895 pp.

260. Ribeiro P. F. M. The Human Cerebral Cortex is NeitherOne Nor Many: Neuronal Distribution Reveals Two Quantitatively Different Zones in the Gray Matter, Three in the White Matter, and Explains Local Variations in Cortical Folding / P. F. M. Ribeiro, L. Ventura-Antunes, M. Gabi et al. // Frontiers in Neuroanatomy. - 2013. - Vol. 7. - 28.

261. Verkhratsky A. Glial Physiology and Pathophysiology. / A. Verkhratsky and A. Butt. - John Wiley & Sons, Ltd, 2013. - 527 p.

262. Leuba G. Changes in Volume, Surface Estiminate, Three-Dimensional Shape and Total Number of Neurons of the Human Primary Visual Cortex from Midgestation Until Old Age / G. Leuba and R. Kraftsik // Anatomy and Embryology. - 1994. -Vol. 190. - Is. 4. - 351-366 pp.

i Надоели баннеры? Вы всегда можете отключить рекламу.