Научная статья на тему 'SIMULATION OF ETHYLENE OXIDE PRODUCTION FROM ETHYLENE CHOLORHYDRIN'

SIMULATION OF ETHYLENE OXIDE PRODUCTION FROM ETHYLENE CHOLORHYDRIN Текст научной статьи по специальности «Химические технологии»

CC BY
191
43
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
SIMULATION / MUNICIPAL SOLID / GASIFICATION / FIXED BED REACTOR / PYROLYSIS / GIBBS ENERGY / RGIBBS MODEL / GASIFIER

Аннотация научной статьи по химическим технологиям, автор научной работы — Abd Allah Elrafie Ahmed, Kasif Abdel Elhameed M.O., Mohamed Yasir Awad Alla, Mahmoud Ayat Abdel Elkhalig H.

This research has been performed in the Ethylene Oxide production process. It is a flammable and colorless gas at temperatures above 11 °C. It is an important commodity chemical for the production of solvents, antifreeze, textiles, detergents, adhesives, polyurethane foam, and pharmaceuticals. Small amounts of Ethylene Oxide [EO] are used in manufacturing fumigants and sterilants for spices and cosmetics, as well as hospital sterilization for surgical equipment. Modern Ethylene oxide [EO] productions employ either air or oxygen (O2)to oxidize ethylene (C2H4) with a silver catalyst on an alumina oxide carrier[Ag/Al2O3]catalyst packed in a fixed-bed reactor (plug-flow reactor)but the oxygen-base reaction process is more desirable here we used oxygen. Mainly two reactions occur, partial oxidation of ethylene to ethylene oxide and total oxidation of ethylene to carbon dioxide and water. The design models of the process in this research based on a three-part system. They are: the reaction system, absorption system and Ethylene Oxide [EO] purification system. The largest cost in production of ethylene oxide is ethylene therefore, it’s important to optimize the selectivity towards ethylene oxide and thus reduce the consumption of Ethylene. The aim of this work is to create a simulation model of the Ethylene Oxide production process from Ethylene using Aspen Hysys V9. Also to knowing the optimum operational conditions (temperature -pressure -flow rate) for the oxidation reactions of Ethylene. The simulation was running three times with various operational conditions to make a good result. The conclusion was that during operational time the activation energy increased for both reactions which have to be compensated with increasing reactor temperature. At the same time the selectivity for producing Ethylene Oxide decreases, i.e. more carbon dioxide and water are formed. The simulation models yield Ethylene Oxide with purity of 99.2%.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «SIMULATION OF ETHYLENE OXIDE PRODUCTION FROM ETHYLENE CHOLORHYDRIN»

O

>< CJQ & g

OUT R - Master Comp Molar Flow (C20xide) (kgmole/h) С ï S

0

1

r-t-

o"

у

W

•I

nT а а

Eü о

FT

0 у

M

1

сь

я

ig

oq' §

H а*

а сь

H а

I

щ

I

0 M

1

пГ g

О

><

& cd

\ \ Ï

\ \

4 \

\

OUTR - Master Comp Molar Flow (C20xlde) (kgmole/h)

§ § jj g S i i I i i i I i i i

CD О "ñ м

>П S

g сю

О hl 2 О

m

X

Ш.

¡=5

сл §*

S

С

<8'

н

сг

о

о

О

о

Я р

сл

С/2

ё-о

с л

9 ^

й.

СЬ а

о л

О

ц.

5-'

л

3 »

л

8

з о

сь -s

о с. с

а

о' s

Û3

Л R

3 Р*

2" о*

я ^

Г 3 £

сл

о " О

к»

£1 g

CD К»

О

Г Г

« в.

ё 3

О)

>-*

р о

? &

3 о

8* w

q &

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

з ^

ё g4

ft» а

сл CD

H ?f

О

<—к

о' а

сг

ст> ?

л л а

M

H sr

л

И

H

л

3 -s

л

-5

S s

S

О 3

И

O

>< oq

£ б л з

^ w o ■ o. H

о л

a

O

X oq

S

OUT R - Master Comp Molar Flow (C20xlde) (kgmole/h)

ct>

0 у

M

1

п> а а

\ \ i

\

\ у

\ \

\ \ V

\ \

л \ \

¡31 oq' а

и

I

пГ а л

О й.

ct>

0

1

r-t-

о"

а

QernHux&TWMT/Proceedmgs of VSUET, T84, № 1, 2022L

The Effect of Pressure on Ethylene Oxide production: Figure (6) shows the pressure has negative effect the flow rate of product decreases with pressure increases. The reaction between Oxygen and Ethylene occurs under a pressure of approximately 2000 kPa and a temperature of approximately 250 °C.

Figure 5. The effect of Temperature on Ethylene partial oxidation

Conclusions

The oxidation process was simulated by the aspen (Hysys) software version.9 and it gave good results for operating condition. One of the most important results obtained from this work is that, it is very important to make analysis for the process operating condition. From this results, it can be seen that the optimum temperature to yield high amount of Ethylene Oxide is 200° C. But It has been proven that, the process was favored at a pressure of approximately 2000 kPa and a temperature of approximately 250 °C over a silver catalyst on an alumina oxide carrier. The results of simulation show that, high amount of Carbon dioxide and water contained at 250 °C. The selectivity towards Ethylene Oxide was decreasing over time and this is a result from deactivation of the catalyst. When this deactivation takes place, more Ethylene is more oxidized form Carbon dioxide and water. The simulation models yield Ethylene Oxide with purity of 99.2 %.

Recommendations

1. Using Aspen HYSYS program to develop any process will be very helpful, because it is very accurate and very helpful in equipment design and selection of the optimum operating conditions.

2. Detail studies must be taken for accurate selection of operation conditions and equipment specifications.

3. The simulation models need further and more study.

4. The simulation models need to add the C02 section [C02 absorption, C02 desorption] in order to: maintain an acceptable C02 concentration in the circulated reactor gas, avoid catalyst deactivation and improved selectivity towards Ethylene Oxide production.

5. The stream from the bottom of the second distillation column can be send to the glycol section because it contains Ethylene Oxide

SOOO 7100 74CO 3flOO ?non KMC laoo MOO 1AOO ssoo ^non 1 .

™= -— and water.

Figure 7. The effect of Pressure on ethylene oxide production

References

1. Bayat M., Hamidi M., Dehghani Z., Rahimpour M.R. Dynamic optimal de sign of an industrial ethylene oxide (EO) reactor viadifferential evolution algorithm. Journal of Natural Gas Science and Engineering. 2013. no. 12. pp. 56-64.

2. Perzon H.A Simulation Model of a reactor for Ethylene Oxide production. 2015.

3. Kursawe D.C.A. Partial Oxidation of Ethene to Ethylene Oxide in Microchannel Reactors. 2009.

4. Trupti Ambar, Tyagee Chavan, Manali Kavale, Walke S.M. Simulation of Process Equipment by using Hysys. International Journal of Engineering Research and Applications (IJERA). 2012. pp. 41-42.

5. Yusuff A.S., Adeyi A.A., Oseh J.O. Ethylene oxide Selectivity Enhancement from Oxidation of Ethylene on Silver Catalyst By Mathematical Modeling. International Journal of Scientific & Engineering Research. 2015. vol. 6. no. 6. pp. 1626-1642.

Figure 6. The effect of Temperature on Ethylene total oxidation

-

-

-

-

\

- \

&emHUK&FyMT/<Proceedings of VSUET, T84, № 1, 2022

6. Leow W.R., Lum Y., Ozden A., Wang Y. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science. 2020. vol. 368. no. 6496. P. 1228-1233. doi: 10.1126/science.aaz8459

7. Bononi M., Quaglia G., Tateo F. Identification of ethylene oxide in herbs, spices and other dried vegetables imported into Italy. Food Additives & Contaminants: Part A. 2014. vol. 31. no. 2. pp. 271-275. doi: 10.1080/19440049.2013.872808

8. Marsh G.M., Keeton K.A., Riordan A.S., Best E.A. et al. Ethylene oxide and risk of lympho-hematopoietic cancer and breast cancer: a systematic literature review and meta-analysis. International Archives of Occupational and Environmental Health. 2019. vol. 92. no. 7. pp. 919-939. doi: 10.1007/s00420-019-01438-z

9. Zhang D., Hang P., Liu G. Recycle optimization of an ethylene oxide production process based on the integration of heat exchanger network and reactor. Journal of Cleaner Production. 2020. vol. 275. pp. 122773. doi: 10.1016/j.jclepro.2020.122773

10. Perzon H. A Simulation Model of a reactor for Ethylene Oxide production. 2015.

11. Schonfeldt N. Surface active ethylene oxide adducts. Elsevier, 2013.

12. Shintani H. Ethylene oxide gas sterilization of medical devices. Biocontrol science. 2017. vol. 22. no. 1. pp. 1-16. doi: 10.4265/bio.22.1

13. Sreejith L.S., Sasi R. Residual Ethylene Oxide in Medical Devices: Effects and Estimation Methods, an Overview. Trends in Biomaterials & Artificial Organs. 2020. vol. 34. no. 1.

14. Nawaz Z. Heterogeneous Reactor modeling of an industrial multitubular packed-Bed ethylene oxide reactor. Chemical Engineering & Technology. 2016. vol. 39. no. 10. pp. 1845-1857. doi: 10.1002/ceat.201500603

15. Bandehali S., Moghadassi A., Parvizian F., Hosseini S.M. et al. Advances in high carbon dioxide separation performance of poly (ethylene oxide)-based membranes. Journal of Energy Chemistry. 2020. vol. 46. pp. 30-52. doi: 10.1016/j.jechem.2019.10.019

16. Zeng G., Zhang Q., Wang X., Wu K.H. Association between blood ethylene oxide levels and the risk of cardiovascular diseases in the general population. Environmental Science and Pollution Research. 2021. vol. 28. no. 45. pp. 64921-64928.

17. Bessaire T., Stroheker T., Eriksen B., Mujahid C. et al. Analysis of ethylene oxide in ice creams manufactured with contaminated carob bean gum (E410). Food Additives & Contaminants: Part A. 2021. vol. 38. no. 12. pp. 2116-2127. doi: 10.1080/19440049.2021.1970242

18. Danner A.K., Leibig D., Vogt L.M., Frey H. Monomer-activated copolymerization of ethylene oxide and epichlo-rohydrin: In situ kinetics evidences tapered block copolymer formation. Chinese Journal of Polymer Science. 2019. vol. 37. no. 9. pp. 912-918. doi: 10.1007/s10118-019-2296-y

19. Wei X., Chen L., Chaves B.D., Ponder M.A. et al. Modeling the effect of temperature and relative humidity on the ethylene oxide fumigation of Salmonella and Enterococcus faecium in whole black peppercorn. LWT. 2021. vol. 140. pp. 110742. doi: 10.1016/j.lwt.2020.110742

20. Pandya B.M., Shah B.H. Efficient use of Ethylene Oxide in Vinyl Sulphone Industry. International Journal of Engineering Research. 2013. vol. 2. no. 2. pp. 62-65.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Information about authors

Elrafie A. A. Allah Dr. Associate Professor, Department of Chemical Engineering, Faculty of Engineering & Technical Studies, University of El Imam El Mahdi, Kosti, P. O. box 209 Sudan, rafieah@gmail.com

A. Elhameed M.O. Kasif Dr. Assocciate Professor, Department of Food Processing Engineering, Faculty of Engineering and Technical Studies, University of El Imam El Mahdi, Kosti, P. O. box 209 Sudan, elkashify@hotmail.com Yasir A. Mohamed Dr., Professor, Department of Chemical Engineering, Faculty of Engineering, University of El Imam El Mahdi, Kosti, P. O. box 209 Sudan, yasir13000@yahoo.com

Ayat A. Elkhalig H. Mahmoud Lecturer, Department of Chemical Engineering, Faculty of Engineering & Technical Studies, University of El Imam El Mahdi, Kosti, P. O. box 209 Sudan, ayatabdo29019@gmail.com

Contribution

Elrafie A. A. Allah corrected the manuscript, improved the results discussion and put in the format required by the Journal before filing in editing and is responsible for plagiarism editing.

A. Elhameed M.O. Kasif proposed a scheme of the experiments and organized production trials, corrected the manuscript, improved the results discussion and put in the format required by the Journal before filing in editing and is responsible for plagiarism Yasir A. Mohamed corrected the manuscript, improved the results discussion and put in the format required by the Journal before filing in.

Ayat A. Elkhalig H. Mahmoud review of the literature on the investigated problem, conducted the experiments, performed the characterizations and measurements, and wrote the manuscript

Conflict of interest

The authors declare no conflict of interest.

RECEIVED 12.20.2021 ACCEPTED 2.24.2022

ВестнщФГУИШ/Proceedings of VSUET DOI: http://doi.org/1Q.2Q914/2310-12Q2-2Q22-1-226-231

ISSN 2226-910X E-ISSN 2310-1202 Оригинальная статья/Research article_

УДК 360

Open Access Available online at vestnik-vsuet.ru

Кинетические аспекты бромирования пластификатора _фталатного типа_

Раиса Н. Плотникова 1 yy@vsuet.ru ® 0000-0001-9559-4443

1 Воронежский государственный университет инженерных технологий, пр-т Революции, 19, г. Воронеж, 394036, Россия Аннотация. Рассмотрены основные характеристики сложной системы непредельный пластификатор-бром с использованием основных «рабочих компонентов» - изомеров 2-этилгексил-2-этилгексенфталата. Принято во внимание, что сложноэфирный пластификатор фталатного типа является полярным соединением с дипольным моментом на уровне диоктилфталата, входящего в его состав. Показано, что в процессе бромирования молекулярный бром вступает в физическое взаимодействие со всеми компонентами пластификатора. Дозированное введение брома в систему при высоких скоростях перемешивания приводит к образованию гомогенной термодинамически устойчивой системы, так как параметры растворимости компонентов практически одинаковы. С использованием модельной смеси бром-диоктилфталат-дибутилфталат показано, что смешение брома с пластификаторами в любых исследованных соотношениях не приводит к появлению границы «бром в пластификаторе» или «пластификатор в броме». Тем самым установлена неограниченная растворимость брома в пластификаторе при условиях его бромирования. С использованием метода УФ-спектроскопии на модельных смесях уксусная кислота-бром-вода; уксусная кислота-бром-гексан доказано, что в реальной системе непредельный пластификатор-бром бромирование наиболее вероятно осуществляется только молекулярным бромом без образования димеров брома. Показан механизм бромирования непредельных фталатов, входящих в состав пластификатора. Предложена система кинетических уравнений в безразмерных переменных. Выявлено, что характер теоретических кривых существенно зависит от скорости введения брома при неизменном механизме реакции. Отмечено изменение лимитирующих стадий процесса бромирования в зависимости от скорости введения брома в систему.

Ключевые слова: кинетика бромирования, фталатные пластификаторы, УФ-спектроскопия, молекулярный бром, кинетическая модель

Kinetic aspects of bromination of a phthalate-type plasticizer

Raisa N. Plotnikova 1 yy@vsuet.ru Ф 0000-0001-9559-4443

1 Voronezh State University of Engineering Technologies, Revolution Av., 19 Voronezh, 394036, Russia_

Abstract. The main characteristics of a complex system of unsaturated plasticizer-bromine using the main "working components" - isomers of 2-ethylhexyl-2-ethylhexene phthalate are considered. It is taken into account that the phthalate-type ester plasticizer is a polar compound with a dipole moment at the level of dioctyl phthalate included in its composition. It has been shown that in the process of bromination, molecular bromine enters into physical interaction with all components of the plasticizer. Dosed introduction of bromine into the system at high stirring speeds leads to the formation of a homogeneous thermodynamically stable system, since the solubility parameters of the components are practically the same. Using a model mixture of bromine-dioctyl phthalate-dibutyl phthalate, it was shown that mixing bromine with plasticizers in any investigated ratios does not lead to the appearance of the boundary "bromine in a plasticizer" or "plasticizer in bromine". This established the unlimited solubility of bromine in the plasticizer under the conditions of its bromination. Using the method of UV spectroscopy on model mixtures of acetic acid-bromine-water; acetic acid-bromine-hexane, it was proved that in a real system, unsaturated plasticizer-bromine, bromination is most likely carried out only with molecular bromine without the formation of bromine dimers. The mechanism of bromination of unsaturated phthalates included in the plasticizer is shown. A system of kinetic equations in dimensionless variables is proposed. It was found that the nature of the theoretical curves significantly depends on the rate of introduction of bromine with a constant reaction mechanism. A change in the limiting stages of the bromination process was noted depending on the rate of bromine introduction into the system.

Keywords: bromination kinetics, phthalate plasticizers, UV spectroscopy, molecular bromine, kinetic model

Введение

Исследование скорости реакций в зависимости от различных факторов представляет собой не только теоретический, но и практический интерес. От кинетических особенностей зависит как производительность применяемой аппаратуры, обеспечивающий необходимое количество продукции, так и характеристики данного оборудования. Подобное исследование позволяет выявить методы подавления нежелательных процессов и интенсификации целевых реакций [1-5].

Для построения кинетической модели необходимо знать характеристики реакционной

Для цитирования Плотникова Р.Н. Кинетические аспекты бромирования пластификатора фталатного типа // Вестник ВГУИТ. 2022. Т. 84. № 1. С. 226-231. doi: 10.20914/2310-1202-2022-1-226-231

среды, установить механизм протекания процесса, наличие промежуточных продуктов и термодинамику процесса. Для многокомпонентных систем, созданных на основе отходов производства, определение подобных характеристик затруднено.

Исследуемый объект - сложная многокомпонентная система, предоставленная непредельным пластификатором, при кинетическом исследовании, порождает большие трудности для химического и математического описания [6]. Поэтому сложная система в рассматриваемом случае [7] смоделирована «рабочими компонентами» - изомерами 2-этилгексил-2-этилгексен-

For citation

Plotnikova R.N. Kinetic aspects of bromination of a phthalate-type plasticizer. Vestnik VGUIT [Proceedings of VSUET]. 2022. vol. 84. no. 1. pp. 226-231. (in Russian). doi:10.20914/2310-1202-2022-1-226-231

© 2022, Плотникова Р.Н. / Plotnikova R.N.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License

i Надоели баннеры? Вы всегда можете отключить рекламу.