Научная статья на тему 'SHAMOL TURBINASI ROTORI ORQALI ISHLAB CHIQARILGAN ENERGIYA'

SHAMOL TURBINASI ROTORI ORQALI ISHLAB CHIQARILGAN ENERGIYA Текст научной статьи по специальности «Механика и машиностроение»

CC BY
3
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Шамол агрегати / ротор / момент / бурчакли тезлик / радиус / оптимал режм / қаршилик моменти / бажарилган иш. / Wind turbine / rotor / torque / angular velocity / radius / optimum mode / resistance torque / work done.

Аннотация научной статьи по механике и машиностроению, автор научной работы — Деҳқонов Улуғбек Ғофурович, Нажмиддинов Инсомиддин Билолдинович

Мақолада шамол босимининг ротор ёрдамида бажарган ишининг тенгламасини аниқлаш ва уни ҳисоблаш масаласи қўйилган ва унга ечим топилган. Шамол тезлиги, ротор радиуси ва қаршилик моментининг ўзаро нисбатида ҳосил бўлувчи ротор ўзлаштирган энергия қийматини аниқлаш бўйича якуний хулосалар берилган.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ENERGY PRODUCED BY WIND TURBINE ROTOR

In the article, the problem of determining and calculating the equation of the work done by the wind pressure with the help of the rotor was discussed and a solution was found for it. The final conclusions are given on the determination of the energy value absorbed by the rotor resulting from the mutual ratio of wind speed, rotor radius and resistance moment.

Текст научной работы на тему «SHAMOL TURBINASI ROTORI ORQALI ISHLAB CHIQARILGAN ENERGIYA»

УДК 621.538

SHAMOL TURBINASI ROTORI ORQALI ISHLAB CHIQARILGAN ENERGIYA

Дехдонов Улугбек Гофурович

НамМКИ доценти, тел.: +998 93 242 48 51, эл. манзил: znaniyasila7@yandex.ru

Нажмиддинов Инсомиддин Билолдинович НамМКИ катта укитувчиси, тел.: +998934035062, najmiddinov 1962@jmail. co m

Аннотация: Мадолада шамол босимининг ротор ёрдамида бажарган ишининг тенгламасини анидлаш ва уни хисоблаш масаласи дуйилган ва унга ечим топилган. Шамол тезлиги, ротор радиуси ва даршилик моментининг узаро нисбатида хосил булувчи ротор узлаштирган энергия дийматини анидлаш буйича якуний хулосалар берилган.

Аннотации: В статье поставлена задача определения и расчета уравнения работы, совершаемой давлением ветра с помощью ротора, и найдено ее решение. Сделаны окончательные выводы по определению величины поглощаемой ротором энергии, которая генерируется в обратном соотношении скорости ветра, радиуса ротора и момента сопротивления.

Annotation: In the article, the problem of determining and calculating the equation of the work done by the wind pressure with the help of the rotor was discussed and a solution was found for it. The final conclusions are given on the determination of the energy value absorbed by the rotor resulting from the mutual ratio of wind speed, rotor radius and resistance moment.

Калит сузлар: Шамол агрегати, ротор, момент, бурчакли тезлик, радиус, оптимал режм, даршилик моменти, бажарилган иш.

Ключевые слова: Ветродвигатель, ротор, крутящий момент, угловая скорость, радиус, оптимальный режим, момент сопротивления, совершаемая работа.

Keywords: Wind turbine, rotor, torque, angular velocity, radius, optimum mode, resistance torque, work done.

We present the equation of the driving torque of the rotor:

M1=24 ' ph ' 2 • (1-k2> SinV8' ^ £ • (1-k3> Si"V3 И ' 2 • Si"V (1-k< > >

M2= — • p• h-t2 • (6 • u2 • (Sin2(9+0)-Sin29)-Sin39) • Sinfa+e)-8 • и-и • t • (Sin3 (ф+0)+ 24

о

з^и2t • (Sin^+ebSinV Sin2(ф+e)) (i)

Here, M1 is the driving torque when the rotor is in one active vane operating state, and M2 is the driving torque in one partially active state.

We also calculate the cost of the work done according to two conditions:

А = [ М • ^ф Condition 1

Г (2)

A =1 (M + MV dф Condition 2

The intervals of turning angle satisfying the conditions are estimated according to Table 1.

1. The work done by the first wing driving torque:

A1 = i M1 • dф= i 24 • p^h t • (6^u2(1-k2>SinV8 • ии • (1-k3>

Here, using the equation (1) given in Appendix 1 with the values h, u, k, и constant, we

write (3) as A^-^-p-C-h- £ (6-u2(i-k2)-A3-8-u-Q-£ -(i-k3)-A4+3-ra2-£2 -(i-k4)- A5)+Ci (4) follows:

Sin4^ +3-ra2- £ -SinV(1-k4))-d9 (3)

In this case, we accept the sum of C3, C4, C5 as C1.

2. The work done by the second wing driving torque:

A2= [ M2-d^= f — -C-h- £2 -[6-u2-(Sin2(9+e)-Sin29)-8-u-ra- £ • (Sin3(^+0)-j J 24

Sin3^)- Sin(9+0)+3-ra2- £ -(Sin4(9+0)-Sin49)-Sin2(9+ 6)]-d^ (5)

With a short modification, we write (5) as follows:

^ I 1 r^ _ 1- f2

A2= j — -C-p-h-£2 •[6-u2-(Sin2(9+e)-Sin29)-8-u-ra- £ -(Sin6(9+e)-SinV Cos0

24

2

Sin39-Cos^-Sine)+3-ra2- £ -(Sin6(9+e)-SinV Cos2e-2-SinV Cos^- Cose-Sine-Sin4^-Cos29-Sin2e)]-d9 (6)

If we find the last equation (6) by finding equation (4),

-C-p-h- i [6-u2-(A6-A3)-8-u-ra- £ -(A7-A4-Cos0-A9-Sin0)+3-ra2- £ -(A8-A5-Cos20-2-Aio-Cos0-Sin0-AiiSin20)]+C2 (7)

we will have.

We determine the constant coefficients Si, S2 formed in equations (4) and (7): Using the initial conditions ^=^0=0 and A=Ao=0 when ra=ra0=0, we find that Si=0 and the coefficient S2, n=3 in C2=0,0563-u; n=4 in C2=0; n=5 in C2=0,0382-u n=6 in

C2=0,0563-u (8) we find that accepts the values.

We determine the constant coefficients Ci, C2 formed in equations (4) and (7): Using the initial conditions ra=ra0=0 and A=A0=0 when ^=^0=0, we find that Ci=0 and the coefficient C2 takes the values

n=3 in C2=0,0563-u; n=4 in C2=0; n=5 in C2=0,0382-u n=6 in C2=0,0563-u (8)

So, we have the general expression of the work done by the driving torque of the rotor in the following final form:

\A = A Condition 1

IA = A + A + C Condition 2 (9)

Figure 1. Regarding the description of the work performed by the rotor under wind

pressure

Here, C=C2, A1 is the work done by the active wing, and A2 is the work done by the partially active wing. Intervals satisfying the conditions are obtained according to Table 1

Graphs showing the value of the work done by the driving torque calculated according to equation (9) are presented in Fig.

CONCLUSIONS

1. The value of the work done increases proportionally to the value of the wind speed.

2. An increase in the number of wings almost does not increase the value of the work performed.

3. The increase in the diameter of the rotor blades is directly proportional to the value of

work.

REFERENCE

1. Gafurovich, D. U., & Sotivoldievich, Z. M. (2021). The use of non-conventional power sources is a requirement of the period. Academicia Globe, 2(07), 121-126.

2. Gafurovich, D. U. (2021). Analysis of the Solution and Results of the Differential Equation of Wind Aggregate Motion. Design Engineering, 5618-5627.

3. Ulugbek, D., & Yodgorjon, T. (2021). Rotors Of Wind Aggregates and Their

Construction Problems. International Journal of Progressive Sciences and Technologies, 27(1), 148-154.

4. Gafurovich, D. U. (2021). Analysis of the Solution and Results of the Differential Equation of Wind Aggregate Motion. Design Engineering, 5618-5627.

5. Dehkanov, U. G., Makhmudov, Z. S., & Azamov, Q. S. (2022). General Equation of the Moment of a Concave Wing. Web of Scholars: Multidimensional Research Journal, 1(6), 7074.

6. Махмудов, З. С., & Дехканов, У. Г. (2021). Повышение благосостояния народа-основная цель государства. Электронный инновационный вестник, (3), 12-14

7. Ulugbek, D., Yodgor, T., Utkirbek, O., & Kodirjon, A. (2022). Determining the optimal angular velocity of a vertical axis rotor wind unit. Jundishapur Journal of Microbiology Research Article Published online, 3298-3304.

8. Dehkanov, U. G., Makhmudov, Z. S., & Azamov, Q. S. (2022). Practical Equation of Torque for a Concave Wing Rotor Drive. Web of Scholars: Multidimensional Research Journal, 1(6), 230-234.

9. Dehkanov, U. G., Makhmudov, Z. S., & Azamov, Q. S. (2022). Practical Equation of Torque for a Concave Wing Rotor Drive. Web of Scholars: Multidimensional Research Journal, 1(6), 230-234.

10. Dehkanov, U. G., Makhmudov, Z. S., & Azamov, Q. S. (2022). General Equation of the Moment of a Concave Wing. Web of Scholars: Multidimensional Research Journal, 1(6), 7074.

11. Gafurovich, D. U. (2021). Analysis of the Solution and Results of the Differential Equation of Wind Aggregate Motion. Design Engineering, 5618-5627.

12. Dehkanov, U. G., Makhmudov, Z. S., & Azamov, Q. S. (2022). General Equation of the Moment of a Concave Wing. Web of Scholars: Multidimensional Research Journal, 1(6), 7074.

13. Дехконов, у. F., & Исабоев, Ш. М. (2022). Шамол агрегати фойдали каршилик моментининг зарурий киймати. Barqarorlik va yetakchi tadqiqotlar onlayn ilmiy jurnalI, 216222.

14. Дехконов, У. F., Нажмиддинов, И. Б., & Уришев, У. F. (2022). Ротор ишчи данотларини анидлаш. Barqarorlik va yetakchi tadqiqotlar onlayn ilmiy _ jurnalI, 199-204.

15. Дехконов, У. F., Исабоев, Ш. М., & Уришев, У. F. (2022). Ротор моментининг характеристикаси. Barqarorlik va yetakchi tadqiqotlar onlayn ilmiy jurnali, 205-215.

16. Дехконов, У. F., Нажмиддинов, И. Б., & Уришев, У. F. (2022). Ротор ишчи данотларини анидлаш. Barqarorlik va yetakchi tadqiqotlar onlayn ilmiy _ jurnali, 199-204.

17. Gafurovich, D. U. Analysis of the solution and results of the differential of equation of wind aggregate motion. Design Engineering, 5618-5627.

18. Жураев, А., & Дехконов, У. F. Шамол курилмасининг харакатлантирувчи моменти ва кувватининг хисоби, Механика муаммолари. Тошкент, №.

19. Ulugbek, D., & Yodgorjon, T. (2021). Rotors Of Wind Aggregates and Their Construction Problems, International Journal of Progressive Sciences and Technologies (IJPSAT).

20. Gafurovich, D. U. (2021). Analysis of the Solution and Results of the Differential Equation of Wind Aggregate Motion. Design Engineering, 5618-5627.

21. Dehkanov, U. G., Makhmudov, Z. S., & Azamov, Q. S. (2022). Practical Equation of Torque for a Concave Wing Rotor Drive. Web of Scholars: Multidimensional Research Journal, 1(6), 230-234.

22. Dehkanov, U. G., Makhmudov, Z. S., & Azamov, Q. S. General Equation of the Moment of a Concave Wing. Web of Scholars: Multidimensional Research Journal (MRJ),

Volume: 01 Issue: 06 2022 ISNN:(2751-7543), 70-74.

23. Gafurovich, D. U. (2022). Practical equation of torque for a concave wing rotor drive. Journal of Pharmaceutical Negative Results, 7613-7617.

24. U Dekhkonov, I Najmiddinov, I Sharofiddin, K Azamov (2022). Новая конструкция ротора ветрового агрегата с вертикальной осью вращения. Journal of Northeastern university 25 (04)

25. Дехконов, У. F., & Акбаров, А. И. (2021). Инерция моменти кийматини баркарорлаштирувчи фактор. механика ва технология илмий журнали, (4), 22.

26. Дехконов, у. F., & Тиллабоев, Ё. К. (2021). Вертикал укли ротор канотларининг ишчи холатлари. механика ва технология илмий журнали, (3), 40.

27. Дехконов, У. F., Нажмиддинов, И. Б., & Рахимов, А. М. (2021). Шамол агрегатининг баркарорлигини таъминлаш масаласи. Механика ва технология илмий журнали, (1), 26.

28. Дехконов, У. F., Нажмиддинов, И. Б., & Уришев, У. F. (2022). Ротор ишчи данотларини аниклаш. Barqarorlik va yetakchi tadqiqotlar onlayn ilmiy jurnalI, 199-204.

i Надоели баннеры? Вы всегда можете отключить рекламу.