Научная статья на тему 'Динамика агрегата машины с фрезерным механизмом разборщика бунтов хлопка'

Динамика агрегата машины с фрезерным механизмом разборщика бунтов хлопка Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
22
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
разборщик бунтов хлопка / фреза / колосник / машинный агрегат / упругая втулка / технологическое сопротивление / прочность / момент инерции / угловая скорость / покрытие / производительность / эффективность очистки. / cotton bundle disassembler / milling machine / peg / machine aggregate / flexible bushing / technological resistance / rigidity / moment of inertia / angular speed / coverage / productivity / cleaning efficiency

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — М.Т. Ходжиев, А. Джураев, А.К. Ашуров

В статье рассматривается вопрос динамики агрегата машины, которая включает в себя разборщик бунтов хлопка, с учетом механической характеристики электрического двигателя, технологического сопротивления и момента сил трения. Определен закон движения фрезы. Показана зависимость коэффициента вращательного момента резиновой втулки, установленной на фрезерных головках, от вибрационного значения угловых скоростей вращающегося приводного барабана, угловой скорости приводного ротора и крутящего момента. По результатам анализа графиков связи были рекомендованы оптимальные значения параметров.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Dynamics of the machine aggregate with a milling mechanism of the cotton bundle disassembler

The article covers the dynamics of the machine aggregate with a milling mechanism of the cotton bundle disassembler, taking into account the mechanical characteristics of the electric drive, technological resistance and torque of friction forces. The law of motion of the milling machine is defined. The dependence of the torque coefficient of the rubber bushing mounted on the milling heads on the vibrational value of the angular velocities of the rotating drive drum, the angular velocity of the drive rotor and torque is shown. Optimal values of the parameters according to the analysis of the connection graphs were recommended.

Текст научной работы на тему «Динамика агрегата машины с фрезерным механизмом разборщика бунтов хлопка»

Современные инновации, системы и технологии // Modern Innovations, Systems and Technologies

2022; 2(3) eISSN: 2782-2818 https://www.oajmist.com

УДК 677.021 EDN: CEWPBD

DOI: https://doi.org/10.47813/2782-2818-2022-2-3-0201-0210

Динамика агрегата машины с фрезерным механизмом разборщика бунтов хлопка

М.Т. Ходжиев1, А. Джураев2, А.К. Ашуров3

1 Гулистанский государственный университет, Гулистан, Узбекистан 2Ташкентский институт текстильной и легкой промышленности, Ташкент,

Узбекистан

3Бухарский инженерно-технологический институт, Бухара, Узбекистан

Аннотация. В статье рассматривается вопрос динамики агрегата машины, которая включает в себя разборщик бунтов хлопка, с учетом механической характеристики электрического двигателя, технологического сопротивления и момента сил трения. Определен закон движения фрезы. Показана зависимость коэффициента вращательного момента резиновой втулки, установленной на фрезерных головках, от вибрационного значения угловых скоростей вращающегося приводного барабана, угловой скорости приводного ротора и крутящего момента. По результатам анализа графиков связи были рекомендованы оптимальные значения параметров.

Ключевые слова: разборщик бунтов хлопка, фреза, колосник, машинный агрегат, упругая втулка, технологическое сопротивление, прочность, момент инерции, угловая скорость, покрытие, производительность, эффективность очистки.

Для цитирования: Ходжиев, М.Т., Джураев, A., & Ашуров, А.К. (2022). Динамика агрегата машины с фрезерным механизмом разборщика бунтов хлопка. Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies, 2(3), 0201-0210. https://doi.org/10.47813/2782-2818-2022-2-3-0201-0210

Dynamics of the machine aggregate with a milling mechanism of the cotton bundle disassembler

M.T. Xodjiev1, A. Djuraev2, A.K. Ashurov3

1Gulistan State University, Gulistan, Uzbekistan 2Tashkent Institute of Textile and Light Industry, Tashkent, Uzbekistan 3Bukhara Engineering Technological Institute, Bukhara, Uzbekistan

Abstract. The article covers the dynamics of the machine aggregate with a milling mechanism of the cotton bundle disassembler, taking into account the mechanical characteristics of the electric drive,

© M.T. Xodjiev, A. Djuraev, A.K. Ashurov, 2022

0201

technological resistance and torque of friction forces. The law of motion of the milling machine is defined. The dependence of the torque coefficient of the rubber bushing mounted on the milling heads on the vibrational value of the angular velocities of the rotating drive drum, the angular velocity of the drive rotor and torque is shown. Optimal values of the parameters according to the analysis of the connection graphs were recommended.

Keywords: cotton bundle disassembler, milling machine, peg, machine aggregate, flexible bushing, technological resistance, rigidity, moment of inertia, angular speed, coverage, productivity, cleaning efficiency.

For citation: Xodjiev, M., Djuraev, A., & Ashurov, A. (2022). Dynamics of the machine aggregate with a milling mechanism of the cotton bundle disassembler. Modern Innovations, Systems and Technologies, 2(3), 0201-0210. https://doi.org/10.47813/2782-2818-2022-2-3-0201-0210

INTRODUCTION

As we know, the main working body of the cotton bundle disassembler machine is a peg or milling drum, which has a number of design solutions [1, 2]. Nevertheless, the separation of the cotton pieces from the bundle was mainly done from the top down. In this case, the cotton pieces are not well hung with pegs, the incidence of spillage is high. Therefore, a method of separating the cotton pieces from the bottom up was recommended. In this case, the cotton pieces are separated in one plane without spilling and passed through a tube in the air stream [3].

The advantage of the recommended milling drum is that it is made of composite, mounted on the milling cutter shaft by means of flexible rubber bushings. In this case, the rotational motion of the milling drum is due to the deformation of the rubber bushing [4]. Because of these rotational movements, the milling drum intensively separates the cotton pieces from the peg, shaking it. This means that along with the increase in productivity, the efficiency of partial cleaning will also increase.

CALCULATION SCHEME AND MATHEMATICAL MODEL OF THE MACHINE

AGGREGATE

The milling drum receives motion through an electric drive, a transmission shaft, a conical gear reducer. The calculation scheme is shown in Fig. 1. In the scheme, the milling drum was considered as one whole without being divided into two. However, the rubber bushing was taken into account.

Современные инновации, системы и технологии // Modern Innovations, Systems and Technologies

2022; 2(3) https://www.oajmist.com

Jkv , <P\ Jvb, J&2 ,

Figure 1. Calculation scheme of the machine aggregate.

In order to obtain the mathematical model of a cotton bundle disassembler machine aggregate, we calculate using Lagrange's second-order equation [5,6].

(1)

where T, n are the kinetic and potential energies of the system, O is the dissipative function of the relay, Q(qt) are the external forces; qi is generalized coordinate. System kinetic and potential energies are [6,7]:

dAdqJ dqi dq, d4i =

11 • 1

2

2

П = ~С{(Р2 - ЩзФз)

(2)

where (p1, <p2, are the angular apeeds of the electric drive shaft, the gearbox output shaft and the drum shaft and the milling headset, respectively, C is the coefficient of rotation of the rubber bushing; U23 is transmission ratio. The dissipative function of the relay is [8]:

<b=-b(<p2-U23<P3)2 (3)

where 6 is the dissipation coefficient of rotation of the rubber bushing.

Correspondingly, we create a mathematical model representing the motion of a three-mass machine aggregate by determining the additions of the Lagrange equation for each generalized coordinate [8,9]:

ш

0-Ф1

S1

к

Mn +

1

2MK 3 2шгМ,

■Мд

}кю<р! = МК

сшН

УюфМюф

м,

fric

1рфФ2 = Мюф - С(ф2 - ^23^3) - КФ2 - U23Ф3) 1фгФз = U23 * С(<Р2 - U23V2) + и2зЬ(ф2 - и23Ф3) - + M0Skœt+ôJ^) (4)

where Mx, M0, SM-l are constant and variable random components of technological resistance; Mmq, is driving torque interacting between the drive and reducer output shaft, Mfric is the moment of resistance of frictional forces.

NUMERICAL SOLUTION OF THE PROBLEM AND ANALYSIS OF RESULTS

The solution of the system of differential equations (4) representing the motion of the machine aggregate, including the milling drum drive of the cotton bundle disassembler, was carried out using the Runge-Kutta program [5,10], considering the following initial calculated values of parameters

/кю = 1,52 kgm2

/фг = 1,69 kgm2

/юф = 5,25 kgm2 ию р = 6,83 kgm2

ф1 = 157 s

-1

-1

Mfric = 8,17 N

M0 = (2,1 - 2,5) N С = (450 - 500) Nm/rad

пю = 1500 rpm

M1 = (20 - 25) N

5M1 = (0,1 - 0,12) M1 6 = (6,2 - 7,5) Nms/md

Based on the solution of the problem, the laws of motion of the working bodies of the machine unit were determined. Fig. 2 shows the laws of variation of the angular speed of the rotor of the electric drive rotor and the torque in it, as well as the torque on the output shaft of the reducer.

The analysis of the obtained laws shows that the average start-up time of the machine unit is (0.2^0.25) s, while the stopping period is (0.18^0.2) s. The difference in this is mainly explained by the fact that the moments of resistance forces accelerate the stopping. Considering that the technological resistance was in the process of breaking the cotton gin, it was found that the average value of 0jwas around 153 s-1, the loading value was around Mro = (31^35) Nm, and the loading of M$r was around (68^75) Nm.

Figure 3 shows the laws of variation of angular speeds and torques on the shafts

MM M$r of the drive and milling headset.

Because result of processing the obtained laws of motion and loads, graphs of the interrelationships of machine unit parameters were constructed. In particular, Figure 4 shows

graphs related to the technological resistance of the milling drum, the oscillation coverage of the angular speeds of the drive rotor and the changes in the torque. When analyzing the graphs, the angular speed oscillation coverage of the electric drive shaft when the moment of resistance from the raw cotton obtained increases from 0.4210 N to 3.810 N is 2.1810 s-1 to 5.210 s-1 increases the angular speed coverage of the milling headset from 1.5110 s-1 to 3.610 s-1. Correspondingly, as the torque values on the electric drive increase from 0.04 • 102 Nm to 0.12102 Nm, the load on the milling headset increases from 0.09 102 Nm to 0.32 102 Nm in a nonlinear connection (Fig. 4, 4-graph). It is known that the speed of the milling cutter is much higher than the rotational motion, which allows intensive separation of cotton from the mill.

Figure 2. Laws describing the output to stable motion, stable motion period and stopping processes of the machine aggregate, including the mechanism of the milling drum of the

cotton bundle disassembler.

Figure 3. The laws of change of angular speeds and torques of the drive and milling headset.

Figure 4. Graphs of technological resistance dependence of changes in the vibration coverage of angular speeds and torque moments of the spinning mill drum and the drive rotor.

Fig. 5 shows the dependence of the rotational torque coefficient of the rubber bushing mounted on the milling heads on the vibrating coverage of the angular velocities of the rotary drive drum, the angular speed of the drive rotor, and the torque. When the average torque coefficient of the rubber bushing on the milling drum increases from 1.0102 Nm/rad to 6.00102 Nm/rad, the oscillation coverage of the angular speed of the milling headset is 2.6110 s-1 to

0.6410 s-1. If it decreases in a nonlinear pattern up to 1, it can be seen that the values of decrease in a nonlinear pattern from 4.410 s-1 to 1.5810 s-1 (Fig. 5, graph 1). It should be noted that if the torque on the drive shaft increases from 0.052 102 Nm to 0.18102 Nm, the torque on the milling headset increases from 0.12102 Nm to 0.33102 Nm in a non-linear connection.

It is recommended that the rubber bushing average rotational coefficient of rotation be less than (4.0^5.0) Nm/rad to ensure that the speed vibration coverage (0.6^1.6) is in the range of 10 s-1.

1-Д<р x =f(C) 3-МЮ=?(С)

2-Д<р з =f(C) 4M=f(C)

Figure 5. Graphs of the dependence of the coefficient of rotation of the rubber bushing on which the milling heads are mounted on the rotating torque, the vibration coverage of the angular speeds of the drive rotor and the torque moments of the milling cutter.

It should be noted that by increasing the weight of the rotating mass or the moment of inertia, it is possible to make its rotation smooth [10-12]. Fig. 6 shows graphs of the vibration coverage of the angular speeds of the spinning mill drum and the drive rotor depending on the change in their moment of inertia. When the moment of inertia of the cutter headset increases from 1.210 m2 to 5.010 m2, when the coverage of the rotational oscillation speed of its angular speed is MHmK= 5.0 Nm, the values of A03 decreases from 1.5210 s-1 to 0.2610 s-1, while MHmK=9.0 Nm, the angular speed coverage of the milling headset decreases in a nonlinear pattern from 2.2510 s-1 to 0.6110 s-1. Correspondingly, the values of on the electric drive shaft decrease in a nonlinear pattern from 4.610 s-1 to 2.2810 s-1 (Fig. 6, graph 1, 2). However,

an excessive moment of inertia increases the loading torque and increases the power consumption. Therefore, the recommended values are: Jm < (2.0 — 2.5)kgm2; J§T < (2.4 — 3.5) kgm2.

1.2-A^1=f(JKm) 3,4-A<p.1=J

1.3-Mfric=5.0 Nm; в=4.5 Nms/rad

2.4-Mfric=9.0 Nm; в=7.0 Nms/rad

Figure 6. Graphs of the dependence of the vibration coverage of the angular speeds of the spinning mill drum and the drive rotor on the change in their moments of inertia.

THE RESULTS OF THE PROPOSED TEST OF THE CONSTRUCTION OF THE DRUM WITH A MILLING CUTTER, FLEXIBLE SHOCK ABSORBER OF THE RECOMMENDED COTTON BUNDLE DISASSEMBLER

Analysis of the comparative test results shows that when using the recommended cotton bundle disassembler milling drum, the productivity can be increased by 1.9 t/h compared to the existing working body. Cotton cleaning has also improved. At the same time, it was found that for every 10 kg of raw cotton (up to 4^5) the number of pieces with up to 24% more fiber than the existing design, i.e. improved cotton cleaning. As a result, it was found that the cleaning efficiency of cotton increased by 5.9%. It was also noted that due to the use of a rubber shock absorber in the proposed design, the damage to the seeds because of the soft impact was reduced by 0.08^0.09% after the UXK unit. The efficiency of cleaning cotton after the cleaning unit

was found to be 88.0% when using the recommended construction, and 79.5% when using the series construction. This means that the use of the recommended working drum in the cotton bundle disassembler machine leads to high efficiency.

Table 1. Comparative test results.

No. Name of the parameters In existing cotton bundle disassembler In proposed cotton bundle disassembler

1. Initial contamination of cotton, 3.4 3.4

%

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2. Cotton moisture, % 8.5 8.5

3. Productivity, t / h 10.5 12.4

4. Efficiency of cotton cleaning, % 7.9 13.8

5. Efficiency of cotton cleaning 79.5 88.0

after UXK aggregate, %

6. Seed damage, % 1.4 1.32

7. Degree of shredding of cotton

(percentage of pieces of up to 85 61

5 fibrous seeds in 10 kg of raw

cotton), %

CONCLUSIONS

The efficient design of a milling drum of the cotton bundle disassembler is recommended. Based on the theoretical research, the laws of motion and loads of the drive and milling headset were determined, and the optimal parameters were recommended. Based on the test results, recommendations for implementation are given.

REFERENCES

[1] Miroshnichenko G.I. Fundamentals of designing machines for the primary processing of cotton. Moscow: Mashinostroyenie, 1972.

[2] Zikriyoev Y. et al. Primary processing of cotton. Tashkent, 2002.

[3] Working body of the cotton bundle disassembler, 30.07.2020. No. IAP 06267.

[4] Working body of the cotton bundle disassembler, 12.11.2021. No. IAP 06635.

[5] Djuraev A. et al. Theory of mechanisms and machines. T.: Ukituvchi, 2001. 596 p.

[6] Mansurova, M.A. Influence of parameters of elastic elements on vibrations of a lever with a sewing machine, Scientific and technical journal of FerPI, 2016, 20(1), 41-45.

[7] Rajabov, O.I., Kurbonov F.A., Abrorov A.S., Gafurova M.Z. Selection of the circumferential speed of the spiked cylinders of raw from small trash, Journal of Physics: Conference Series, 2021, 1889(4), 042056.

[8] Maksudov.R., Djurayev A., Shuxratov Sh. Improvement of the design and justification of the parameters of the cleaning zone of fibrous material from large, Research in Engineering and Technology (IJNET), 2018, 11(12), 951-963.

[9] Djurayev A. Dynamics of working mechanisms of cotton-processing machines. T.: Fan, 1987. 168 p.

[10] Djurayev A., Sayitqulov S.O. Research on improving the working bodies of the machine for cleaning cotton from waste, EPRA International Journal of Research and Development, 2021, 6(3), 1-5.

[11] Sailov R.A., Veliev F.A. Determination of the drying rate in the components of raw cotton in the layers of the bundle over time, Almanac of modern science and education, 2011, 12(55), 58-61.

[12] Abbazov I. et al. Effective Cleaning of cotton waste produced at cotton cleaning factories, American Journal ASCIT Communications, 2018, 5(2), 22-28.

ИНФОРМАЦИЯ ОБ АВТОРАХ / INFORMATION ABOUT THE AUTHORS

Ходжиев Мухсин Таджиевич, ректор Гулистанского государственного университета, д.т.н., профессор, Гулистан, Узбекистан

Джураев Анвар Джураевич, профессор, Ташкентский институт текстильной и легкой промышленности, Ташкент, Узбекистан

Ашуров Асроржон Комилович, докторант, Бухарский инженерно-технологический институт, Бухара, Узбекистан

Xodjiev Mukhsin T., Rector of Gulistan State University, Doctor of Technical Sciences, Professor, Gulistan, Uzbekistan

Djuraev Anvar Ju., Professor, Tashkent Institute of Textile and Light Industry, Tashkent, Uzbekistan

Ashurov Asrorzhon K., doctoral student, Bukhara Institute of Engineering and Technology, Bukhara, Uzbekistan

Статья поступила в редакцию 20.06.2022; одобрена после рецензирования 11.07.2022; принята

к публикации 12.07.2022.

The article was submitted 20.06.2022; approved after reviewing 11.07.2022; accepted for publication

12.07.2022.

i Надоели баннеры? Вы всегда можете отключить рекламу.