Наука та прогрес транспорту. Вюник Дншропетровського нащонального унiверситету залiзничного транспорту, 2018, № 4 (76)
UDC 629.463.027.23-027.45
O. G. REIDEMEISTER1, O. A. SHYKUNOV2*
'Dep. «Cars and Car Facilities», Dnipropetrovsk National University named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 04, e-mail [email protected], ORCID 0000-0001-7490-7180 2*Dep. «Cars and Car Facilities», Dnipropetrovsk National University named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 04, e-mail [email protected], ORCID 0000-0002-8256-2634
SENSITIVITY OF STRESSES TO THE FORCES ACTING ON THE CAST PARTS OF FREIGHT-CAR BOGIE
Purpose. To determine the effect of the force components acting in the axle box and the central spring suspension on the stresses occurring in the side frame of the three-piece bogie. Methodology. To assess the effect of the forces acting on the side frame on the stresses in it, we developed a finite element model of the side frame. After that, we carried out an assessment of its stress-strain state under loading conditions corresponding to the I and III design modes. According to the results obtained, we determined the stress concentration points in the construction, which are selected as check ones for further studies. Also, as checkpoints we took the points corresponding to the sensor locations when estimating the stresses in the side frame during the tests. At the next stage, we applied unit loads in sequence at the interaction points of the side frame with the boxes and the central spring group. To obtain a more accurate result, the unit forces were balanced by the corresponding forces and moments of inertia. With each loading variant, tensors of stresses arising from the action of unit loads were obtained at checkpoints. On the basis of the stress tensors obtained, we determined the corresponding equivalent stresses - the sensitivity coefficients. Findings. The paper determines the stress sensitivity coefficients in the three-piece bogie side frame to external loads acting on the side frame from the side of axle box and central spring group. Based on the results of the assessment of the coefficients obtained, we determined the forces having the greatest influence on individual sections of the side frame. We estimated the possibility of using the obtained results in optimizing the parameters of the bogie spring suspension to increase the strength and durability of the side frame. Originality. For the first time, the effect of individual components of the forces acting on the side frame on the stresses in it has been estimated. Practical value. The obtained result can be used in the design and optimization of three-piece bogies, to improve the side frame durability. The stress tensors obtained can be used to estimate the effect of complex loading on the side frame strength and durability.
Key words: strength; side frame; three-piece bogie; durability; freight car
Introduction
The absence in the three-piece bogies of freight cars of devices preventing from falling onto the track its main supporting elements such as the bolster and the side frame sharply raise the reliability requirements imposed on these elements. However, a fairly large part of the freight train derailment at the current moment is caused precisely by defects in the cast parts of the bogies, namely, the side frame fractures.
The railway enterprises have been facing the problem of mass fracture of side frames since 2006 [3, 5, 16] and two main directions can be identified as the main possible causes.
The first one is low quality of casting. Work in this direction revealed two possible causes - hidden defects in casting [6] and non-compliance with
the established steel viscosity requirements KCV (-60°C) [2]. To solve these problems, the works are in progress to improve the casting technology -regulating the metal cooling by updating the moulding flasks or the design of the side frame itself. Besides, monitoring more strictly the quality of metal and casting methods by destructive and non-destructive controls.
The second possible cause of mass fractures is structural. In 2001, there was a transition from the I-section of the arch bar on the supra-box area to the box-like section [14]. It was suggested that the I-section of the side frame extension acted as an elastically deforming quencher of torque, which occurs during critical loosening of side frames relative to each other and the corresponding angular displacements of the set of wheels in the pedestal jaw opening. In other words, the I-section design was less rigid in the horizontal plane and had
Наука та прогрес транспорту. Вюник Дншропетровського нащонального унiверситету залiзничного транспорту, 2018, № 4 (76)
a slightly loaded position - the I-section pedestal, which had a compensating effect of the bending moments of the set of wheels, and in abnormal operation modes, all defects in the side frame operation were visible. The solution to this problem is related to the development of methods for strengthening the side frame structure on the basis of calculations and tests to determine its strength [7, 13, 15, 17, 23], reliability, as well as the dynamic characteristics of the car as a whole [4, 8, 9, 16, 19, 21, 22].
Possible solutions are attempts to create welded structures of side frames [1, 11]. This solution, although it will eliminate the problems of casting, however raises many questions related to the reliability of welded joints.
To increase the reliability of the bogie cast parts, it is also possible to consider the possibility, at the design stage, of the influence of the spring suspension parameters on the stresses arising in the parts.
Purpose
To determine the effect of the force components acting in the axle box and the central spring suspension on the stresses occurring in the side frame of the three-piece bogie.
Methodology
The sensitivity of the indicator c to the value Pj ( j - index that separates the considered quantity from the set of values p, which c depends on) means the ratio of the change in the indicator Ac to the change in the argument AP.,
kf = Ac / Ap (1)
In the case of a linear dependence of the exponent on all arguments, this definition is unambiguous in the sense that the sensitivity value k(a) does
not depend on the fact at which values of the arguments the indicator c was calculated, as well as on the selected increment AP.. In the general case it is necessary somehow to characterize the totality of the values k(a) in a compact form. It is common
to use the Morris method for this purpose [20], which consists in the fact that the sensitivity values
are calculated at random points in the domain of definition with specially chosen increments of arguments (to reduce the amount of calculations), and then the mathematical expectation E[kp] and
the E[ k(a)] mean-square deviation of the sensitivities o[kf]] are analysed. Fulfilment of condition
|E[kf >]| < 2a[kf >] (2)
indicates a substantially nonlinear character of the dependence.
Since the dependence of the stress tensor components on the loads is linear, and the change in the parameters of the running parts causes a relatively small change in the loads, the nonline-arities (in determining the equivalent stresses and the number of cycles before the appearance of fracture) can hardly be regarded as essential, which eliminates the need to apply more sophisticated methods of sensitivity analysis such as Sobol's indices [18].
Stresses that arise in the bogie side frame under the action of a static load are shown in Figure 1. The heavily loaded areas near the lower corner of the central spring opening, on the lower side frame member and at the point R55 of the pedestal jaw opening are clearly visible. The stress levels in these places for various combinations of loads are given in Table 1 and approach the maximum permissible values for 20GL steel. The I calculation mode corresponds to the loading variants a and b, and III to c...f. Also, the stress concentration is noticeable in the corners of the process window (101 MPa) and the upper corners of the central spring opening (114 MPa).
; СКЖЮ1
lOOKIOlU
357-OCqJ
Fig. 1. Stress distribution in side frame model for the Ill-design mode, MPa.
Наука та прогрес транспорту. Вюник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2018, № 4 (76)
The stress concentration at these points is expected from the point of view of the geometry of the model. Also these points are checkpoints according to [12].
Table 1
Maximum stresses in the bogie side frame, MPa
Loading variant Place of occurrence Permissible values Estimated value Checkpoints
a Lower corners of the central spring opening 250 240 6, 7, 27
b Vertical pedestal roof 250 235 14, 15,
c Lower corners of the central spring opening 140 132 6, 7, 27
d Vertical pedestal roof 140 137 14, 15,
e Vertical pedestal roof 140 139 14, 15,
f Lower corners of the central spring opening 140 131 6, 7, 27
ing to the acting forces. The points of application of unit forces and the direction of the local coordinate axes are shown in Figure 3
Fig. 2. Checkpoints
j 6
4л
i \5 7 —:— j il \ Jj-^
&
Fig. 3. Points of application of unit forces
Taking into account the obtained results, the points shown in Figure 2 were chosen to estimate the stressed state of the side frame. Their total number is 43, they are located in the middle of the lower side frame member (1-5, 18, 19, 25), in the upper (8, 9) and the lower (6, 7, 26, 27) corners of the central opening for spring suspension, in the opening between the diagonal tension member and the column (10-13), in the inner corner of the pedestal opening (14, 15), in the middle (20-24) and the cantilever part (16, 17) of the arch bar. The points located symmetrically are not shown in Fig. 2. And they are assigned with the numbers 4'... 27'.
The side frame perceives the forces from the central spring suspension and the axle box. To assess the effect of these forces on the stresses arising in the side frame, we sequentially determined the stresses from unit forces acting in three directions at the appropriate places. To balance the action of unit forces on the side frame, we applied inertia forces and a moment of inertia correspond-
Findings
As a result of the calculation, we obtained the tensors of stresses arising from the action of unit loads at the side frame checkpoints. On the basis of the obtained stress components, the corresponding equivalent stresses arising from the action of unit loads, the sensitivity coefficients, were calculated. The intensity of the effect of unit forces on the stresses at the points of the finite element model is shown in Fig. 4.
In Figure 4, the intensity of the shading of individual cells characterizes the degree of the force effect on equivalent stresses at the point of the model.
Analyzing the results of the calculation, we can conclude that the points 6, 8, 9 and symmetrical 6', 8' and 9 '- the lower and upper corners of the central spring opening - are the most sensitive to changes in the external load, up to 1.204 MPa/kN. Point 26, strengthening rib in the lower member, is sensitive to the vertical load from the sub-key spring - 1.054 MPa/kN.
Наука та прогрес транспорту. Вюник Дншропетровського нащонального ушверситету з&тзничного транспорту 2018, N° 4 (76)
РУХОМИЙ СКЛАД ЗАЛ1ЗНИЦЬ I ТЯГА ПО1ЗД1В
00 N
00 >"
00 X
r-N Ш
Г-i* N
X □
о N
чо § iM
Г»-; 1
a in g n
« « >.
\ * 1
Is 1
s | ^ Г 1
1 X
a N tr
t2 c
X 1 1
CS 1 N
£ 1
CN X
N
?
X
UMhOl o\r -t <N f П -Г " VO -«• 00 * 2 ■H ГЧ r n 1" 1 -1 VO Г - GO С О -•(NT 4 <N г П -f S <N г -1 VO r fS f i- i n VO - 00 с rs Ь ; -• fN О rt i> "1 VO Г чо - <N <N
Наука та прогрес транспорту. Вюник Дншропетровського нащонального унiверситету залiзничного транспорту 2018, № 4 (76)
The points located on the lower member (p. 1 -3, 18, 19, 25), the lower corner of the central spring opening (p. 6, 7, 27) are sensitive to vertical loads acting on the central opening roof, the sensitivity factor is 0.411 MPa/kN and 1.154 MPa/kN respectively, and points 6, 7, 27 are also sensitive to vertical loads from the friction key - up to 0.772 MPa/kN. The transition from the lower member to the diagonal tension member (p. 4, 5) is almost equally sensitive to all loading variants except the longitudinal forces in the pedestal opening and from the action of the friction keys - up to 0.156 MPa/kN. The upper corner of the central spring opening (p. 8, 9) is sensitive to vertical and transverse loads from the action of the friction key - up to 1.204 MPa/kN. The arch bar in the middle part (p. 20-24) is more sensitive to the transverse loads acting from the vibration dampers and in the axle box - up to 0.166 MPa/kN. For points located in the process window area (p. 10 - 13) it is quite difficult to determine a specific group of forces that exert significant influence, since this area experiences a complex loading - up to 0.348 MPa/kN.
The inner corner of the pedestal opening (p. 14, 15) is mostly influenced by longitudinal and vertical forces from the nearest pedestal opening - up to 0.143 MPa/kN. The arch bar in the pedestal opening area (p. 16, 17) is mostly influenced by the forces in the places of vertical and transverse axle box intersections as well - up to 0.109 MPa/kN, the influence of the remaining loads is less approximately twofold.
Thus, to reduce, for example, the stresses in the lower corners of the pedestal opening (p. 6, 7, 27) by 5% (6.95 MPa, III design mode), it is necessary to reduce the vertical load on the central spring opening by 19.64 kN (average sensitivity coefficient is 0.35 MPa/kN). To reduce stresses in the inner corner of the pedestal opening (p. 14, 15) by 5%, it is necessary to reduce the level of longitudinal or vertical load components in the axle box by 52 MPa (average sensitivity coefficient is 0.132 MPa/kN). Reducing the load in this range
can be difficult; therefore, along with changes in the parameters of the spring sets, it is necessary to provide for an increase in the strength of the structure due to local reinforcement.
In operation, static forces act on the side frame from the car gross weight - about 220 kN with an axial load of 23.5 tons per axle and the dynamic forces arising from the movement of the car can be from 50% to 80% of the static load [10]. Reduction of static loads is not advisable, since their main component is the load-carrying capacity of the car. Dynamic loads, the magnitude of which can reach up to 176 kN, can be reduced through the use of rational parameters of spring suspension and the structure as a whole. At the same time, a decrease in the dynamic component of the loads acting on the side frame by only 5% - 8.8 kN, can lead to a decrease in the stress level in the side frame by 1.37-10.60 MPa. This decrease is not significant in evaluating the strength of the structure, however, in assessing its durability, reducing the dynamic load amplitude by 5% will cause an increase in longevity by 20% (fatigue curve index 4).
Originality and practical value
For the first time, the effect of forces acting on the three-piece bogie side frame on the stress level arising in it has been estimated.
The obtained sensitivity factors can be used to optimize the parameters of the freight car bogie for increase of durability of its details.
The stress tensors obtained can be used to estimate the effect of complex loading on the side frame strength and durability.
Conclusions
We determined stress sensitivity coefficients on the certain sections of the three-piece bogie side frame to external loads acting on the side frame from the side of the pedestal and spring openings. The stress tensors obtained can be used to estimate the effect of complex loading on the side frame strength and durability.
LIST OF REFERNECE LINKS
1. Богатов, А. А. О повышении служебных характеристик боковой рамы тележки грузового вагона /
A. А. Богатов, Р. А. Ильиных // Вестник ВНИИЖТ. - 2010. - № 6. - С. 42-44.
2. Волченков, Н. Стальное литье и методы повышения качества [Electronic resource] / Н. Волченков,
B. Моисеенков, Е. Сургаева // ИИС «Металлоснабжение и сбыт». - 2011. - Available at: http://www.metalinfo.ru/ru/news/49443 - Title from the screen. - Accessed : 18.07.2018.
Наука та прогрес транспорту. Вюник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2018, N° 4 (76)
3. Демин, Ю. В. Улучшение технических характеристик тележек грузовых вагонов / Ю. В. Демин, Г. Д. Кочмала // Залiзн. трансп. Украши. - 1999. - № 3. - С. 26-29.
4. Динамика грузовых вагонов с учетом поперечного смещения тележек / Н. И. Луханин, С. В. Мямлин, Л. А. Недужая, А. А. Швец // Зб. наук. пр. Донец. ш-ту залiзн. трансп. - Донецьк, 2012. - № 29. -С. 234-241.
5. ДСТУ 7598:2014. Вагони вантажш. Загальш вимоги до розрахуншв та проектування нових i модершзо-ваних вагошв коли 1520 мм (несамохвдних). - Чинний вщ 2014-01-02. - Кив : УкрНДНЦ, 2017. - 162 с.
6. Ишмухамметов, Ф. Рамы грузовых тележек продолжают ломаться [Electronic resource] / Ф. Ишмухам-метов // Коммерсанта. - Available at: http://www.kommersant.ru/doc/2421946 - Title from the screen. -Accessed : 18.07.2018.
7. Конькова, Т. Е. О путях повышения эксплуатационной надежности стальных литых деталей тележек грузовых вагонов / Т. Е. Конькова, В. Б. Беловодский, А. В. Великанов // Вестник ВНИИЖТ. - 2009. -№ 1. - С. 22-26.
8. Манашкин, Л. А. Об измерении вертикальных сил в тележках грузовых вагонов / Л. А. Манашкин,
C. В. Мямлин, Е. А. Письменный // Вюн. Дшпропетр. нац. ун-ту залiзн. трансп. iм. акад. В. Лазаряна. -Дншропетровськ, 2004. - Вип. 5. - С. 132-135.
9. Мурадян, Л. А. Залежшсть величини зносу пари тертя «п'ятник-тдп'ятник» ввд пробку вантажного вагона / Л. А. Мурадян, Д. О. Подосьонов, В. Ю. Шапошник // Наука та прогрес транспорту. - 2017. -№ 6 (72). - С. 61-69. doi: 10.15802/stp2017/118136
10. Мурадян, Л. А. К вопросу о планах испытаний надежности механических систем / Л. А. Мурадян, В. Ю. Шапошник // Зб. наук. пр. Укр. держ. ун-ту затзн. трансп. - Харшв, 2015. - Вип. 157. - С. 119-128.
11. Перспективы создания сварных конструкций несущих элементов тележки грузового вагона / О. В. Махненко, Г. Ю. Сапрыкина, И. В. Мирзов, А. Д. Пустовой // Автоматическая сварка. - 2014. -№ 3. - С. 36-42.
12. РД 24.050.37.95. Вагоны грузовые и пассажирские. Методы испытания на прочность и ходовые качества. - Москва : ГосНИИВ, 1995. - 101 с.
13. Рейдемейстер, А. Г. Способы увеличения прочности боковых рам трехэлементных тележек / А. Г. Рей-демейстер, А. А. Шикунов // Наука та прогрес транспорту. - 2015. - № 5 (59). - С. 141-149. doi: 10.15802/stp2015/55351
14. Савчук, В. Б. Радиус излома на Совете главных конструкторов / В. Б. Савчук, Г. М. Зобов // Техника железных дорог. - 2013. - № 2 (22). - С. 32-36.
15. Ушкалов, В. Ф. Определение состава и уровня сил, действующих на консольную часть боковой рамы в процессе эксплуатации грузового вагона / В. Ф. Ушкалов, Н. В. Безрукавый // Техническая механика. -2016. - № 2. - С. 85-90.
16. Шупелов, Н. Анализ изломов боковых рам (2006^2014 гг.) [Electronic resource] / Н. Шупелов // My-Shared. - Available at: http://www.myshared.ru/slide/992141 - Title from the screen. - Accessed : 18.07.2018.
17. A new lever-type variable friction damper for freight bogies used in heavy haul railway / Ximing Xu, Maohai Fu, Zhaoxia Xu, Zhongyi Chen //Journal of Modern Transportation. - 2016. - Vol. 24. - Iss. 3. - P. 159-165. doi: 10.1007/s40534-016-0116-4
18. Global sensitivity analysis. The primer / A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni,
D. Gatelli, M. Saisana, S. Tarantola. - Chichester, West Sussex, England : John Wiley & Sons, 2008. - 292 p.
19. Mathematical Modeling of Dynamic Loading of Cassette Bearings for Freight Cars / S. Myamlin, O. Lunys, L. Neduzha, O. Kyryl'chuk // Transport Means : Proc. of 21st Intern. Scientific Conf. (20-22nd September, 2017). - Kaunas, 2017. - Р. 973-976.
20. Morris, M. D. Factorial sampling plans for preliminary computational experiments / Max D. Morris // Tech-nometrics. - 1991. - Vol. 33, No. 2. - Р. 161-174.
21. Prospects for the Use of Gondola Cars on Bogies of Model ZK1 in the Organization of Heavy Freight Traffic in the Republic of Kazakhstan / S. Abdullayev, G. Imasheva, N. Tomkurzina, N. Adilova, G. Bakyt // Mechanics. - 2018. - Vol. 24. - Iss. 1. - P. 32-36. doi: 10.5755/j01.mech.24.1.17710
22. Reidemeister, O. H. Method of Constructing the Dynamic Model of Movement of the Multi-Mass System / O. H. Reidemeister, V. O. Kalashnyk, O. A. Shykunov // Наука та прогрес транспорту. - 2017. - № 5 (71). -С. 99-106. doi: 10.15802/stp2017/112921
23. Shykunov, O. A. Three-element bogie side frame strength / О. А. Shykunov // Наука та прогрес транспорту. - 2017. - № 1 (67). - С. 183-193. doi: 10.15802/stp2017/92535
Наука та прогрес транспорту. Вюник Дншропетровського нащонального ушверситету з&тзничного транспорту 2018, N° 4 (76)
РУХОМИЙ СКЛАД ЗАШЗНИЦЬ I ТЯГА ПО1ЗДШ
О. Г. РЕЙДЕМЕЙСТЕР1, О. А. ШИКУНОВ2*
'Каф. «Вагони та вагонне господарство», Дн1пропетровськ1й нацюнальний ушверситет затзничного транспорту 1мен1 академжа В. Лазаряна, вул. Лазаряна, 2, Дшпро, Украша, 49010, тел. +38 (056) 373 15 04, ел. пошта [email protected], ORCID 0000-0001-7490-7180
2*Каф. «Вагони та вагонне господарство», Дншропетровськш нацюнальний ушверситет зал1зничного транспорту 1мен1 академжа В. Лазаряна, вул. Лазаряна, 2, Дшпро, Украша, 49010, тел. +38 (056) 373 15 04, ел. пошта [email protected], ORCID 0000-0002-8256-2634
ЧУТЛИВ1СТЬ НАПРУЖЕНЬ ДО СИЛ, ЩО Д1ЮТЬ НА ЛИТ1 ДЕТАЛ1 В1ЗК1В ВАНТАЖНИХ ВАГОН1В
Мета. Визначити вплив компоненпв сил, яш дшть у буксовому вузл1 та центральному ресорному сту-пеш п1дв1шування, на напруження, що виникають у б1чн1й рам1 трьохелементного в1зка, - основна мета нау-ково! роботи. Методика. Для оцшки впливу сил на виникнення напруги в б1чнш рам1 була розроблена li к1нцево-елементна модель. Шсля цього проведена оцшка напружено-деформованого стану б1чно! рами при вар1антах навантаження, вщповщних I i III розрахунковим режимам. За отриманими результатами визначеш точки концентрацп напружень у конструкцiях, якi обраш в якостi контрольних для подальших дослiджень. Також в якостi контрольних прийняп точки, що вiдповiдають мюцям встановлення датчиков при оцiнцi напружень у бiчнiй рамi шд час випробувань. На наступному етат послвдовно прикладалися одиночнi навантаження в мюцях взаемодй' бiчноl рами з буксами i центральним ресорним комплектом. Для отримання бiльш точного результату одиничш сили були врiвноваженi вiдповiдними силами та моментами шерцп. При кожному варiантi навантаження в контрольних точках були отриманi тензори напружень, що виникають щд дieю одиничних навантажень. На основi отриманих тензорiв напружень визначалися вiдповiднi е^валентш напруження - коефiцieнти чутливостi. Результати. У робот визначенi коефiцieнти чутливосп напруг до зовнiшнiх навантажень у бiчнiй рамi трьохелементного вiзка. Зовшшш навантаження дiють на раму з боку букси i центрального ресорного комплекту. За результатами оцшки отриманих коефщенпв визначенi сили, що чинять найбiльший вплив на окремi дмнки бiчноl рами. Наукова новизна. Вперше наведена оцшка впливу окремих компоненпв сил, що дшть на бiчну раму, на напруги в нш. Подана оцiнка можливостi за-стосування отриманих результатiв пiд час ошгашзацп параметрiв ресорного пiдвiшування вiзка для збшь-шення мiцностi й довговiчностi бiчноl рами. Практична значимiсть. Отриманий результат може бути ви-користаний тд час проектування й ошгашзацп трьохелементного вiзка, для пiдвищення довговiчностi бiч-них рам. Отриманi тензори напружень можуть бути використанi для оцшки впливу складного навантаження на мщшсть i довговiчнiсть бiчноl рами.
Ключовi слова: мщшсть; бiчна рама; трьохелементний вiзок; довговiчнiсть; вантажний вагон
А. Г. РЕЙДЕМЕЙСТЕР1, А. А. ШИКУНОВ2*
*Каф. «Вагоны и вагонное хозяйство», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 15 04, эл. почта [email protected], ORCID 0000-0001-7490-7180
2*Каф. «Вагоны и вагонное хозяйство», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 15 04, эл. почта [email protected], ORCID 0000-0002-8256-2634
ЧУВСТВИТЕЛЬНОСТЬ НАПРЯЖЕНИЙ К СИЛАМ, ДЕЙСТВУЮЩИМ НА ЛИТЫЕ ДЕТАЛИ ТЕЛЕЖЕК ГРУЗОВЫХ ВАГОНОВ
Цель. Определить влияние компонентов сил, действующих в буксовом узле и центральной рессорной ступени подвешивания, на напряжения, возникающие в боковой раме трёхэлементной тележки грузового вагона, - основная цель научной работы. Методика. Для оценки влияния сил на возникновение напряжения в боковой раме была разработана ее конечно-элементная модель. После этого проведена оценка напряженно-деформированного состояния боковой рамы при вариантах нагружения, соответствующих I и III расчетным
Наука та прогрес транспорту. Вюник Дншропетровського нацюнального ушверситету затзнпчного транспорту, 2018, № 4 (76)
РУХОМИЙ СКЛАД ЗАЛ1ЗНИЦЬ I ТЯГА ПО1ЗД1В
режимам. По полученным результатам определены точки концентрации напряжений в конструкции, которые выбраны в качестве контрольных для дальнейших исследований. Также в качестве контрольных приняты точки, соответствующие местам установки датчиков при оценке напряжений в боковой раме во время испытаний. На следующем этапе последовательно прикладывались единичные нагрузки в местах взаимодействия боковой рамы с буксами и центральным рессорным комплектом. Для получения более точного результата единичные силы были уравновешены соответствующими силами и моментами инерции. При каждом варианте нагружения в контрольных точках были получены тензоры напряжений, возникающие от действия единичных нагрузок. На основе полученных тензоров напряжений определялись соответствующие эквивалентные напряжения - коэффициенты чувствительности. Результаты. В работе определены коэффициенты чувствительности напряжений к внешним нагрузкам в боковой раме трехэлементной тележки. Внешние нагрузки действуют на раму со стороны буксы и центрального рессорного комплекта. По результатам оценки полученных коэффициентов определены силы, оказывающие наибольшее влияние на отдельные участки боковой рамы. Научная новизна. Впервые проведена оценка влияния отдельных компонентов сил, действующих на боковую раму, на напряжения в ней. Дана оценка возможности применения полученных результатов при оптимизации параметров рессорного подвешивания тележки для увеличения прочности и долговечности боковой рамы. Практическая значимость. Полученный результат может быть использован при проектировании и оптимизации трехэлементных тележек, для повышения долговечности боковых рам. Полученные тензоры напряжений могут быть использованы для оценки влияния сложного нагружения на прочность и долговечность боковой рамы.
Ключевые слова: прочность; боковая рама; трехэлементная тележка; долговечность; грузовой вагон
REFERENCES
1. Bogatov, A. A., & Ilinykh, R. A. (2010). O povyshenii sluzhebnykh kharakteristik bokovoy ramy telezhki gru-zovogo vagona. Vestnik of the Railway Research Institute, 6, 42-44. (in Russian)
2. Volchenkov, N., Moiseenkov, V., & Surgaeva, Ye. (2011). Stalnoe lite i metody povysheniya kachestva. IIS Metallosnabzhenie i sbyt. Retrieved from http://www.metalinfo.ru/ru/news/49443 (in Russian)
3. Demin, Yu. V., & Kochmala, G. D. (1999). Uluchshenie tekhnicheskikh kharakteristik telezhek gruzovykh vagonov. Zaliznychnyj transport Ukrajiny, 3, 26-29. (in Russian)
4. Lukhanin, N. I., Myamlin, S. V., Neduzhaya, L. A., & Shvets, A. A. (2012). Dinamika gruzovykh vagonov s uchetom poperechnogo smeshcheniya telezhek. Zbirnik naukovih prac' of Donetsk Railway Transport Institute, 29, 234-241. (in Russian)
5. Vagoni vantazhni. Zagalni vimogi do rozrakhunkiv ta proektuvannya novikh i modernizo -vanikh vagoniv kolii' 1520 mm (nesamokhidnikh), 162 DSTU 7598:2014 (2017). (in Ukranian)
6. Ishmukhammetov, F. (2014). Ramy gruzovykh telezhek prodolzhayut lomatsya. Kommersant.ru. Retrieved from http://www.kommersant.ru/doc/2421946 (in Russian)
7. Konkova, T. Ye., Belovodskiy, V. B., & Velikanov, A. V. (2009). O putyakh povysheniya ekspluatatsionnoy nadezhnosti stalnykh litykh detaley telezhek gruzovykh vagonov. Vestnik of the Railway Research Institute, 1, 22-26. (in Russian)
8. Manashkin, L. A., Myamlin, S. V., & Pismennyy, Y. A. (2004). About measuring vertical forces in freight car bogies. Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. La-zaryan, 5, 132-135. (in Russian)
9. Muradyan, L. A., Podosonov, D. O., & Shaposhnik, V. Yu. (2017). Theoretical dependence of wear value of friction pair «cenetr plate - center pad» on a freight car mileage. Science and Transport Progress, 6(72), 6169. doi: 10.15802/stp2017/118136 (in Ukranian)
10. Muradyan, L. A., & Shaposhnik, V. Yu. (2015). Question of Plans at Trials Reliability of Mechanical Systems. Collected Scientific Works of Ukrainian State University of Railway Transport, 157, 119-128. (in Russian)
11. Makhnenko, O. V., Saprykina, G. Yu., Mirzov, I. V., & Pustovoy, A. D. (2014). Perspektivy sozdaniya svarnykh konstruktsiy nesushchikh elementov telezhki gruzovogo vagona. Avtomaticheskaya svarka, 3, 36-42. (in Russian)
12. Vagony gruzovye i passazhirskie. Metody ispytaniya na prochnost i khodovye kachestva, 101 RD 24.050.37.95 (1995). (in Russian)
13. Reydemeyster, A. G., & Shikunov, A. A. (2015). Strength increase methods of the side frame of the bogie in three-piece truck. Science and Transport Progress, 5(59), 141-149. doi: 10.15802/stp2015/55351 (in Russian)
14. Savchuk, V. B., & Zobov, G. M. (2013). Radius izloma na Sovete glavnykh konstruktorov. Tekhnika zheleznykh dorog, 2(22), 32-36. (in Russian)
HayKa Ta nporpec TpaHcnopTy. BicHHK flmnponeTpoBChKoro Ha^oHaahHoro yrnBepcHTeTy 3&M3HHqHoro TpaHcnopTy, 2018, № 4 (76)
15. Ushkalov, V. F., & Bezrukavyy, N. V. (2016). Opredelenie sostava i urovnya sil, deystvuyushchikh na konsol-nuyu chast bokovoy ramy v protsesse ekspluatatsii gruzovogo vagona. Tekhnicheskaya mekhanika, 2, 85-90. (in Russian)
16. Shupelov, N. (2015). Analiz izlomov bokovykh ram (2006+2014 gg.). MyShared. Retrieved from http://www.myshared.ru/slide/992141 (in Russian)
17. Xu, X., Fu, M., Xu, Z., & Chen, Z. (2016). A new lever-type variable friction damper for freight bogies used in heavy haul railway. Journal of Modern Transportation, 24(3), 159-165. doi: 10.1007/s40534-016-0116-4 (in English)
18. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2008). Global sensitivity analysis. The primer. Chichester, West Sussex, England: John Wiley & Sons. (in English)
19. Myamlin, S., Lunys, O., Neduzha, L., & Kyryl'chuk, O. (2017). Mathematical Modeling of Dynamic Loading of Cassette Bearings for Freight Cars. Transport Means: Proc. of 21st Intern. Scientific Conf, 20-22 September, 2017, Kaunas, 973-976. (in English)
20. Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2), 161-174. (in English)
21. Imasheva, G., Abdullayev, S., Tokmurzina, N., Adilova, N., & Bakyt, G. (2018). Prospects for the Use of Gondola Cars on Bogies of Model ZK1 in the Organization of Heavy Freight Traffic in the Republic of Kazakhstan. Mechanics, 24(1), 32-36. doi: 10.5755/j01.mech.24.1.17710 (in English)
22. Reidemeister, O. H., Kalashnyk, V. O., & Shykunov, O. A. (2017). Method of Constructing the Dynamic Model of Movement of the Multi-Mass System. Science and Transport Progress, 5(71), 99-106. doi: 10.15802/stp2017/112921 (in English)
23. Shykunov, O. A. (2017). Three-element bogie side frame strength. Science and Transport Progress, 1(67), 183-193. doi: 10.15802/stp2017/92535 (in English)
Received: April 10, 2018 Accepted: July 17, 2018