Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2013, вип. 5 (47)
ПРОМИСЛОВИЙ ТРАНСПОРТ
UDC 629.423.2.027.2:539.4
O. M. BONDAREV1*, E. M. DZICHKOVSKYY1, O. E. KRYVCHYKOV1, V. M. SKOBLENKO2
1 Dep. «Structural Mechanics», Dnepropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel./fax +38 (056) 793 19 08, e-mail [email protected] 1Dep. «Structural Mechanics», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel./fax +38 (056) 793 19 08, e-mail [email protected] 2The State Administration of Railway Transport of Ukraine, Tverska St., 5, Kyiv, Ukraine, 03680
HARDNESS INDICES ESTIMATION OF SUPPORTING STRUCTURE ELEMENTS OF MOTOR BOGIES OF THE ELECTRIC TRAIN ED9M
Purpose. The purpose of article is to develop the measures of hardness indices improvement of the supporting structures of motor cars of the electric trains ED9M. Methodology. In order to achieve the above stated aims the following measures had to be done: to develop a finite element model of the supporting structures of the motor bogie of the electric train ED9M, determine parameters of the developed model; perform the calculations to determine the stress-strain state during loads corresponding to different operating conditions with the search of geometric parameters reducing the highest stress levels. Findings. The obtained results of calculations (fields of stress distribution and strains in the elements of the motor bogie frame) from the viewpoint of the strength and stiffness discovered the best geometric parameters of the bearings in the central suspension beams of the electric trains ED9M in the places of load transmission from the car body to the bogie frame. Originality. Based on the developed finite element models and the theoretical and experimental researches the scientifically grounded modernization measures of the construction elements of the central suspension beams for motor bogies of the electric trains ED9M were developed. Practical value. It was developed an engineering solution concerning the measures to improve the strength and stiffness characteristics of the central suspension beams for the motor cars of the electric trains ED9M. It was given to the Ukrzaliznytsya's professionals to implement them during repairs.
Keywords: simulation models; theoretical calculations; ED9M electric train; motor bogie; bogie frame and the central suspension beam; strength characteristics
Introduction
In 2007 Russia bought a certain amount of electric trains ED9M produced by the Demikhiv plant of mechanical engineering in relation to the need to meet the demands for suburban passenger transportations and for the renewal of electric train fleet in Ukraine [6].
Fig. 1, 2 show a general view of the head and motor cars of this electric train, when Fig. 3, 4 shows the general view of the motor car bogie and
the central suspension beam [10, 11]. Fig. 1. The head car of the electric train ED9M
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2013, вип. 5 (47)
I
Fig. 2. The motor car of the electric train ЕD9М
Fig. 3. General view of the motor bogie of the electric train ЕD9М
Fig. 4. General view of the beam and elements of structure interaction with the body and bogie frame
As it was found out in a short operation period of these electric trains on the AC powered stations with quite simple profile in terms of loading, a beam fracture incident of the central suspension for electric train bogie had occurred. Fig. 5 shows a view of such beam.
Fig. 5. General view of the fractured beam
It is known that fractures occur in the places of maximum loadings, arising during operation. At the same time it should be noted that crack appearing, its development and fracture is to a great extent caused by the presence of excessive concentrators in the corresponding place due to poor casting.
A lot of works are dedicated to the following issues: the dynamic loading determination, comparative evaluation of various techniques during research conducting to identify the fatigue indicators and the resource of the bogie supporting structures, bench development and conduction of vibration bench testing for fatigue failure. These works were published in Ukraine and Russia [1, 3, 4, 7] and in the foreign countries as well [2, 12, 13].
Purpose
Aim of the study was to find out the factors that could lead to the fracture of the central suspension beam and on the basis of relevant work to develop a set of measures to improve the durability performance.
Methodology
To assess the stress levels that can be created in both the central suspension beam and in the basic bearing structures of the bogie frame a solid model displaying the configuration and the design features were created [14] and the finite-element calculation model was developed [9].
Beam models and the bogie frames are shown in Fig. 6 and 8 and its finite element calculation model - in Fig. 7 and 9.
Fig. 6. General view of the model of central suspension beam for the electric train ЕD9М
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2013, вип. 5 (47)
Fig. 7. Finite-element calculation model of the central suspension beam for the electric train ED9M
Fig. 8. Model of the motor bogie frame
The finite-element calculation model shown in Fig. 7 consists of 14016 elements and has 28.728 junctions.
body is increased by (1 + CVD) time, where CVD is the coefficient of vertical dynamics of central suspension;
3. Determination of the maximal stress levels during motion in traction mode. In this case, the horizontal lateral N and traction FT forces in the connection junctions of shifter arm, as well as bending moments in the vertical Mv and in the horizontal Mh areas are applied to the central suspension beam and longitudinal beams of the bogie frame.
Findings
Using the developed models [14] and finite-element schemes [9] the impact assess of geometric design parameters of the spring sets bearings, which are attached to the profile base of the beam on the stress state of these elements was calculated.
Figure 10 shows the distribution field of stresses in case the strengthening ribs of the spring set bearings, connecting with the profile base of the central suspension beam are absent.
Fig. 9. Finite-element calculation model of the motor bogie frame
The finite-element model of the bogie frame consists of 65144 elements and 131172 junctions.
According to the developed finite-element schemes [9] the calculations with the following operation modes modeling were carried out:
1. Determination of static stress elements from the body weight action. It is assumed that the motor car body weight 64.9 tons is evenly distributed among all the bearings and thus 32.45 tons fall to each central suspension beam. Then this loading is transferred to the bogie frame longitudinal beams;
2. Determination of the maximal stress levels during the coasting motion of electric train. In this case, it is assumed that the static loading from the
Fig. 10. Stress distribution field under static loading and absence of strengthening ribs
Fig. 11 shows the results of the stress-strain state calculation from the effect of static loading in case the strengthening ribs have the same thickness as in the fractured beam of central suspension.
Fig. 11. Stress distribution field under static loading with small strengthening rib
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2013, вип. 5 (47)
Fig. 12 shows the results of calculation of the stress-strain state during motion in traction mode for the case when the strengthening ribs have the same thickness as in the fractured beam of central suspension.
Fig. 12. Stress distribution field during motion of electric train in traction mode with small strengthening rib
Fig. 13 shows an example of the stress distribution field of the motor bogie frame during the modeling of motion; where in addition to the loading from body weight the force of buff dynamic loading in the fusing unit of traction gear box to the bogie frame is taken into account.
Fig. 13. Stress distribution field in the mode of motion, where the buff dynamic loading from the forces in the fusing unit of traction gear box to the bogie frame.
Table 1 shows the levels of maximal stresses in the most loaded areas of the central suspension beam in the proposed options of modernization for the supporting junction of spring set.
For the steel 09 H2S, which is used to product the supporting structures for rolling stock, the value of strength limit is 500 MPa, and liquid limit is 359 MPa.
Table 1
The maximal stress values in the central suspension beam in various modernization options
No. Modernization measures content Loading mode Area of maximal stress Equivalent stress value, МРа
1 There is no separating strengthening rib in the bearing of spring set. Static loading from the car body weight Transition point from the spring set bearing to the body bearing 268
Inner surface of separating fluting of the spring support 268
2 There are separating strengthening ribs 20 mm Static loading from the car body weight Transition point from the spring set bearing to the body bearing 210
thick Inner surface of separating fluting of the spring support 210
3 There are separating strengthening ribs 18 mm thick Static loading from the car body weight The separating strengthening rib in junction place to the body support fragment 265
4 There are separating strengthening ribs 25 mm thick Static loading from Transition point from the spring set bearing to the body bearing 195
the car body weight The separating strengthening rib in junction place to the body support fragment 195
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2013, вип. 5 (47)
End of the Table 1
No. Modernization measures content Loading mode Area of maximal stress Equivalent stress value, MPa
5 There are separating strengthening ribs 25 mm Static loading from Transition point from the spring set bearing to the body bearing 190
thick with roundings of 15 mm radius along the height the car body weight The separating strengthening rib in junction place to the body support fragment 190
6 There are separating strengthening ribs 25 mm thick with roundings of 15 mm radius along the height Dynamics, movement in the traction mode Transition point from the spring set bearing to the body bearing 195
Originality and Practical Value
On the basis of the worked out models and conducted research the scientifically grounded measures of modernization for central suspension beams of the electric cars ED9M were developed. It was obtained that the design of spring set support with the strengthening ribs 25 mm thick and the round-ings of 15 mm radius along the height is the best one. As a result of the research it was developed an engineering solution of measures to improve the strength performance of the central suspension beams for the motor cars of electric trains ED9M. This solution was transferred to the specialists of Ukrzaliznytsya to implement them during the PR3 or overall repairs.
Conclusions
The results of calculations and the obtained fields of stress distribution in the central suspension beam showed that the fracture occurred in the areas of maximal stresses, which are created in the operation condtions. The crack appearing, its development and fracture is also caused by the presence of excessive concentrators due to the poor casting.
On the basis of obtained results of theoretical studies it was found out that the junction of spring set support with strengthening ribs 25 mm thick and with roundings of 15 mm radius along the height is the best one.
General view of the best modernization variant, which has minimal stress levels and meets the requirements to the strength parameters [5] is shown in Fig. 14.
For bogie frame in the most unfavorable loading mode (calculation example of which is shown in Fig. 13) it was found out that the greatest stress
levels on the top sheets of longitudinal beams reach 100 MPa. In the middle of the longitudinal beams between the junctions of vertical loading transmition the maximal stresses are changing in the range of 56-70 MPa. On the transverse beams in the places of their junction to the longitudinal beams the maximal stresses are 40 MPa and 30 MPa in the middle.
Fig. 14. General view of the best modernization variant of the central suspension beam
On the bottom sheets of longitudinal beams in the area of load transferring from the bogie weight and central suspension beam the maximal stresses reach 126 MPa.
In the junction of transverse beams to the longitudinal beams the maximal stresses do not exceed 30 MPa, including the locations of support brackets for traction gear boxes.
On the basis of strength calculations of the basic supporting structures for motor bogie frames it can be concluded that the above mentioned stresses are those, which do not constitute a threat to the strength safety of their state [5]. But during operation of the electric trains ED9M in the motor bogies the condition of the longitudinal beams in the places the transmit nodes of vertical loading from the body and the bolster to the bogie frame should be controlled.
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету залiзничного транспорту, 2013, вип. 5 (47)
LIST OF REFERENCE LINKS
1. Бондарев, О. М. Визначення строку служби несучих конструкцш моторвагонного рухомого складу i3 застосуванням методики порiвняння !х динашчно! завантаженостi / О. М. Бондарев, В. Л. Горобець, I. М. Грущак // Вкн. Дншропетр. нац. ун-ту залiзн. трансп. iм. акад.
B. Лазаряна. - Д., 2008. - Вип. 24. - С. 18-24.
2. Бондарев, О. М. Експериментально-теоретична оцшка показнишв мщносп балок центрального пiдвiшування дизель-погдав ДР1А / О. М. Бондарев, Д. О. Ягода, В. М. Скобленко // Вкн. Дншропетр. нац. ун-ту залiзн. трансп. iм. акад. В. Лазаряна. - Д., 2011. - Вип. 37. -
C. 7-19.
3. Бондарев, О. М. Методики оцшки залишкового ресурсу пасажирського рухомого складу / О. М. Бондарев, В. Л. Горобець, Б. Я. Остапюк // Залiзн. трансп. Укра!ни. - 2002. - № 5. -С. 28-30.
4. Горобець, В. Л. Аналiз експлуатацшно! нароб-ки несучих конструкцш рухомого складу в задачах продовження терм^ його експлуатацп / В. Л. Горобець, О. М. Бондарев, В. М. Скобленко // Вюн. Дшпропетр. нац. ун-ту залiзн. трансп. iм. акад. В. Лазаряна. - Д., 2010. -Вип. 35. - С. 10-16.
5. Зенкевич, О. М. Метод конечных элементов в технике / О. М. Зенкевич. - М. : Мир, 1975. -542 с.
6. Концепщя Державно! програми реформування залiзн. трансп. ввд 27 грудня 2006 р. № 651-р [Електронний ресурс]. - Режим доступу: http://zakon1.rada.gov.ua/laws/show/651-2006-%D1%80. - Назва з екрану.
7. Кулешов, В. П. Оценка остаточного ресурса рам тележек электропоездов ЭР1, ЭР2 путем
их стендовых вибрационных испытаний / В. П. Кулешов, В. Л. Горобец, А. И. Палама-ренко // Трансп. нагруженность и прочность подвижного состава : сб. науч. тр. -Д., 1998. - C. 56-62.
8. Нормы расчета и оценки прочности несущих элементов и динамических качеств экипажной части моторвагонного подвижного состава железных дорог МПС РФ колеи 1520 мм. - М. : ВНИИЖТ РФ, 1997. - 148 с.
9. Потемкин, А. Твердотельное моделирование в системе КОМПАС - 3D (+ CD - ROM) / А. Потемкин. - СПб. : БХВ-Петербург, 2004. - 512 с.
10. Руководство по устройству электропоездов серии ЕД9М, ЕД9Т, ЕР9П. - М. : Центр Коммерческих Разраб., 2005. - 128 с.
11. Шеремет, Д. М. Электропоезда серий ЭД9М, ЭД9Т и ЭР9П. Руководство по эксплуатации / Д. М. Шеремет, С. А. Пономаренко, Ю. И. Ку-бышкин. - СПб. : Центр Коммерческих Разраб., 2005. - 116 с.
12. Hilberry, B. M. Fatigue life of 2024 T3 aluminum alloy under narrow- and broad band random loading / В. М. Hilberry // Effects of environment and complex load history on fatigue life (29.0904.10.1968). - Atlanta : ASTM STP 462, 1970. -P. 167-183.
13. Luo, R. K. Dynamic stress analysis of an open-shaped railway bogie frame / R. Luo, B. L. Gabbi-tas, B. V. Brickle // Engineering Failure Analysis.
- 1996. - Vol. 3, iss. 1. - P. 53-64.
14. The improvement of underground vehicles bogie construction / A. A. Bitiutsky, L. A. Sveshnikov, A. N. Sapozhnikov, R. A. Savushkin // Proc. of the 7th Mini Conf. on Vehicle System Dynamics, Identification and Anomalies (06.11-08.11.2000).
- Budapest, 2000. - Р. 241-247.
А. М. БОНДАРЕВ1*, Е. М. ДЗИЧКОВСКИЙ1, А. Е. КРИВЧИКОВ1, В. М. СКОБЛЕНКО2
1 Каф. «Строительная механика», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел./факс +38 (056) 793 19 08, эл. почта [email protected]
'Каф. «Строительная механика», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел./факс +38 (056) 793 19 08, эл. почта [email protected]
^Государственная администрация железнодорожного транспорта Украины, ул. Тверская, 5, Киев, Украина, 03680
ОЦЕНКА ПОКАЗАТЕЛЕЙ ПРОЧНОСТИ ЭЛЕМЕНТОВ НЕСУЩИХ КОНСТРУКЦИЙ МОТОРНЫХ ТЕЛЕЖЕК ЭЛЕКТРОПОЕЗДОВ СЕРИИ ЭД9М
Цель. Целью работы является разработка мероприятий по улучшению показателей прочности и жесткости элементов несущих конструкций тележек моторных вагонов электропоездов серии ЭД9М. Методика. Для достижения указанной цели было необходимо: разработать конечно-элементные модели несущих кон© О. М. Bondarev, Е. М. Dzichkovskyy, О. Е. Куу^у^, V. М. Skoblenko, 2013
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2013, вип. 5 (47)
ПРОМИСЛОВИЙ ТРАНСПОРТ
струкций моторной тележки электропоезда серии ЭД9М; определить параметры разработанной модели; провести расчеты по определению напряженно-деформированного состояния при нагрузках, соответствующих различным условиям эксплуатации, с поиском геометрических параметров, способствующих уменьшению наибольших уровней напряжений. Результаты. Результаты расчетов (поля распределения напряжений и деформаций в элементах рамы моторной тележки) позволили получить наилучшие с точки зрения прочности и жесткости геометрические параметры опорных частей балок центрального подвешивания моторных вагонов электропоездов серии ЭД9М в местах передачи нагрузок от кузова вагона. Научная новизна. На основании созданных моделей и выполненных теоретических и экспериментальных исследований разработаны научно обоснованные мероприятия по модернизации балок центрального подвешивания моторных тележек электропоездов серии ЭД9М. Практическая значимость. Разработано техническое решение для мероприятий по улучшению показателей прочности балок центрального подвешивания моторных тележек вагонов электропоездов серии ЭД9М и передано специалистам Укрзализныци для внедрения при выполнении ремонтов ТР-3 или КР.
Ключевые слова: расчетные модели; теоретические расчеты; электропоезд серии ЭД9М; моторная тележка; рама тележки и балка центрального подвешивания; показатели прочности
0. М. БОНДАРЕВ1*, е. М. ДЗГЧКОВСЬКИЙ1, О. е. КРИВЧИКОВ1, В. М. СКОБЛЕНКО2
1 Каф. «Будшельна мехашка», Дшпропетровськпй нацюнальний ушверситет зал1зничного транспорту 1меш академжа В. Лазаряна, вул. Лазаряна, 2, Дншропетровськ, Украша, 49010, тел./факс +38 (056) 793 19 08, ел. пошта [email protected]
'Каф. «Будiвельна мехашка», Днтропетровський нацюнальний ушверситет затзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Дншропетровськ, Украша, 49010, тел./факс +38 (056) 793 19 08, ел. пошта [email protected]
2Державна адмшстра^ залiзничного транспорту Украши, вул. Тверська, 5, Кшв, Украша, 03680
ОЦ1НКА ПОКАЗНИК1В М1ЦНОСТ1 ЕЛЕМЕНТ1В НЕСУЧИХ КОНСТРУКЦ1Й МОТОРНИХ В1ЗК1В ЕЛЕКТРОПО1ЗД1В СЕРП ЕД9М
Мета. Метою роботи е розробка заходiв з покращення показникiв мiцностi та жорсткосп елементiв несучих конструкцiй вiзкiв моторних вагонiв електропоiздiв сери ЕД9М. Методика. Для досягнення вказа-но! мети було необхвдно: розробити скшченно-елементт моделi несучих конструкцiй моторного вiзка елект-ропо1здв серп ЕД9М; визначити параметри розроблено! моделi; виконати розрахунки з визначення напру-жено-деформованого стану при навантаженнях, що вiдповiдають рiзним умовам експлуатацп, з пошуком геометричних параметрiв, що сприяють зменшенню найбшьших рiвнiв напружень. Результати. Результати розрахуншв (поля розподiлу напружень та деформацш в елементах рами моторного вiзка) виявили найкращi з позицп мщносп та жорсткостi геометричнi параметри опорних частин балок центрального щдашування моторних вагошв електропоiздiв серй' ЕД9М у мюцях передачi навантажень ввд кузова вагона до рами вiзка. Наукова новизна. На пiдставi створених скшченно-елементних моделей та виконаних теоретичних та експериментальних дослвджень розроблено науково обгрунтоват заходи з модернiзацii елементiв конструкцп надресорних балок центрального пiдвiшування моторних вiзкiв електропо1здв серй' ЕД9М. Практична значимкть. Розроблено технiчне рiшення для заходiв з покращення показникiв мщносп та жорсткостi балок центрального пвдвшування моторних вагонiв електропоiздiв серй' ЕД9М та передано спещалютам Укрзалiзницi для впровадження пiд час виконання ремонпв ПР-3 або КР.
Ключовi слова: розрахунковi моделi; теоретичнi розрахунки; електропоiзд серй ЕД9М; моторний вiзок; рама вiзка та балка центрального шдвшування; показники мiцностi
REFERENCES
1. Bondarev O.M., Horobets V.L., Hrushchak I.M. Vyznachennia stroku sluzhby nesuchykh konstruktsii motor-vahonnoho rukhomoho skladu iz zastosuvanniam metodyky porivniannia yikh dynamichnoi zavantazhenosti [Age-dating bearings constructions of rolling stock by dynamic loading comparison method]. Visnyk Dni-propetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dniproperovsk National University named after Academician V. Lazaryan], 2008, issue 24, pp. 18-24.
2. Bondarev O.M., Yagoda D.O., Skoblenko V.M. Eksperymentalno-teoretychna otsinka pokaznykiv mitsnosti balok tsentralnoho pidvishuvannia dyzel-poizdiv DR1A [Experimental and theoretical assessment of indicators
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету залiзничного транспорту, 2013, вип. 5 (47)
of durability of central suspension beams of the diesel trains DR1A series]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dniprop-erovsk National University named after Academician V. Lazaryan], 2011, issue 37, pp. 7-19.
3. Bondarev O.M., Horobets V.L., Ostapiuk B.Ya. Metodyky otsinky zalyshkovoho resursu pasazhyrskoho ruk-homoho skladu [Methods of estimation of remaining resource of passenger rolling stock]. Zaliznychnyi transport Ukrainy - Railway transport of Ukraine, 2002, issue 5, pp. 28-30.
4. Horobets V.L., Bondarev O.M., Skoblenko V.M. Analiz ekspluatatsiinoi narobky nesuchykh konstruktsii ruk-homoho skladu v zadachakh prodovzhennia terminu yoho ekspluatatsii [An analysis of operating work of bearings constructions of rolling stock in the tasks of extending its exploitation]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana. [Bulletin of Dniprop-erovsk National University named after Academician V. Lazaryan], 2010, issue 35, pp. 10-16.
5. Zenkevich O.M. Metodkonechnykh elementov v tekhnike [The finite elements method in technique]. Moscow, Mir Publ., 1975. 542 p.
6. Kontseptsiia Derzhavnoi prohramy reformuvannia zaliznychnoho transportu (Concept of the State railway reform). Available at: http://zakon1.rada.gov.ua/laws/show/651-2006-%D1%80 (Accessed 18 June 2013).
7. Kuleshov V.P., Gorobets V.L., Palamarenko A.Y. Otsenka ostatochnogo resursa ram telezhek elektropoyez-dov ER1, ER2 putem ikh stendovykh vibratsionnykh ispytaniy [Residual life assessment of bogie frames electric trains ER1, ER2 by their vibration test bench]. Transport. Nagruzhennost iprochnostpodvizhnogo sostava [Transport. Loading and strength of rolling stock]. Dnipropetrovsk, 1998, pp. 56-62.
8. Normy rashcheta i otsenki prochnosti nesushchikh elementov i dinamicheskikh kachestv ekipazhnoy chasti motorvagonnogo podvizhnogo sostava zheleznykh dorog MPS RF kolei 1520 mm [Rules for calculating and assessing the strength of load-bearing elements and dynamic qualities of the vehicle-railcar rolling stock Railway Ministry 1520 mm]. Moscow, VNIIZhT RF Publ., 1997. 148 p.
9. Potemkin A. Tverdotelnoye modelirovaniye v sisteme KOMPAS-3D (+CD-ROM) [Solid modeling in KOMPAS-3D]. Saint Petersburg, BKhV-Peterburg Publ., 2004, 512 p.
10. Rukovodstvo po ustroystvu elektropoyezdov seriy ED9M, ED9T, ER9P [Guidance on the arrangement of electric trains ED9M, ED9T, ER9P series]. Moscow, Tsentr Kommercheskikh Razrabotok Publ., 2005. 128 p.
11. Sheremet D.M., Ponomarenko S.A., Kubyshkin Yu.I. Elektropoyezda seriy ED9M, ED9T i ER9P. Rukovodstvo po ekspluatatsii [Electric trains ED9M, ED9T and ER9P series. Instruction manual]. Saint Petersburg, Tsentr Kommercheskikh Razrabotok Publ., 2005. 116 p.
12. Hilberry B.M. Fatigue life of 2024 T3 aluminum alloy under narrow- and broad band random loading. Effects of environment and complex load history on fatigue life. Atlanta, ASTM STP 462 Publ., 1970, pp. 167-183.
13. Luo R.K., Gabbitas B.L., Brickle B.V. Dynamic stress analysis of an open-shaped railway bogie frame. Engineering Failure Analysis, 1996, vol. 3, issue 1, pp. 53-64.
14. Bitiutsky A.A., Sveshnikov L.A., Sapozhnikov A.N., Savushkin R.A. The improvement of underground vehicles bogie construction. Proc. of the 7th Mini Conf. on Vehicle System Dynamics «Identification and Anomalies», Budapest 2000, pp. 241-247.
Ph.D. (Techn. Sc.), Ass. Prof. A. L. Pulariia (Ukraine), Ph.D. (Techn. Sc.),
Ass. Prof. O. D. Zhakovskyi (Ukraine) recommended this article to be published
Received: June 04, 2013
Accepted: August 08, 2013