Научная статья на тему 'Research of influencing of project discriptions of elevator on parameters of its drive'

Research of influencing of project discriptions of elevator on parameters of its drive Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
169
51
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЕЛЕВАТОР / КіВШ / ПРИВіД / ПОТУЖНіСТЬ / ПРОДУКТИВНіСТЬ / ВАНТАЖ / ЭЛЕВАТОР / КОВШ / ПРИВОД / МОЩНОСТЬ / ПРОИЗВОДИТЕЛЬНОСТЬ / ГРУЗ / ELEVATOR / BUCKET / DRIVE / POWER / PRODUCTIVITY / LOAD

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Bohomaz V.M., Hlavatskyi K. Ts., Mazur O.A.

Purpose. One of basic elements of band bucket elevators is their drive. For determination of power drive it is necessary to conduct calculations on standard by methods, in what it is needed to expend enough time. One of project parameters is productivity of elevator. It is necessary to build parametric dependence of power drive of elevator on its design capacity that takes into account a type and descriptions of load, lifting height, standard sizes and parameters of buckets and tapes. Methodology. Using the method of hauling calculation of band buckets elevators, the parametric dependences of power drive of high-speed elevators are built with deep and shallow buckets from their productivity at fixed type of load and height of getting up. Findings. It is set on the basis of the built parametric dependences that the change function of a size of elevator power from design capacity (at fixed to the lifting height, load type, rate of tape movement) is piecewise and droningly increasing. The intervals of project values of productivity, which provide the permanent size of elevator power drive are certain in a general view. As the example of application of the recived results the construction process of power drive dependence from design capacity of elevator of shotblasting room, which is intended for transporting of the metallic shot using for consolidating of carriage springs, is considered. For concrete type of load and lifting height of such elevator graphic dependence of power drive on productivity was built. Originality. Parametric dependences of elevator power drive on its design capacity were first built, which take into account a type and physical and mechanical descriptions of load, lifting height, standard sizes and parameters of buckets and tapes. Practical value. The use of the built dependences enables in relation to rapid determination of approximate value of power drive of vertical high-speed elevators with deep and shallow buckets on the stage of planning and to execute the high-quality selection of its basic elements at concrete project descriptions: type of load, productivity, lifting height.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Research of influencing of project discriptions of elevator on parameters of its drive»

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ види транспорту. МАШИНИ ТА МЕХАНІЗМИ

UDC 621.867.3

V. M. BOHOMAZ1*, K. TS. HLAVATSKYI2*, O. A. MAZUR3*

1 Dep. «Military Preparation», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 793 19 09, e-mail [email protected],

ORCID 0000-0001-5913-2671

2 Dep. «Applied Mechanics», Dnipropetrovsk National University of Railway Transport named after Academician

V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 18, e-mail [email protected], ORCID 0000-0002-3353-2543

3 Dep. «Applied Mechanics», Dnipropetrovsk National University of Railway Transport named after Academician

V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 18, e-mail [email protected], ORCID 0000-0002-3704-7799

RESEARCH OF INFLUENCING OF PROJECT DISCRIPTIONS OF ELEVATOR ON PARAMETERS OF ITS DRIVE

Purpose. One of basic elements of band bucket elevators is their drive. For determination of power drive it is necessary to conduct calculations on standard by methods, in what it is needed to expend enough time. One of project parameters is productivity of elevator. It is necessary to build parametric dependence of power drive of elevator on its design capacity that takes into account a type and descriptions of load, lifting height, standard sizes and parameters of buckets and tapes. Methodology. Using the method of hauling calculation of band buckets elevators, the parametric dependences of power drive of high-speed elevators are built with deep and shallow buckets from their productivity at fixed type of load and height of getting up. Findings. It is set on the basis of the built parametric dependences that the change function of a size of elevator power from design capacity (at fixed to the lifting height, load type, rate of tape movement) is piecewise and droningly increasing. The intervals of project values of productivity, which provide the permanent size of elevator power drive are certain in a general view. As the example of application of the recived results the construction process of power drive dependence from design capacity of elevator of shotblasting room, which is intended for transporting of the metallic shot using for consolidating of carriage springs, is considered. For concrete type of load and lifting height of such elevator graphic dependence of power drive on productivity was built. Originality. Parametric dependences of elevator power drive on its design capacity were first built, which take into account a type and physical and mechanical descriptions of load, lifting height, standard sizes and parameters of buckets and tapes. Practical value. The use of the built dependences enables in relation to rapid determination of approximate value of power drive of vertical high-speed elevators with deep and shallow buckets on the stage of planning and to execute the high-quality selection of its basic elements at concrete project descriptions: type of load, productivity, lifting height.

Keywords: elevator; bucket; drive; power; productivity; load

Introduction

Today it is hard to imagine any industry field without the use of transporting cars. Machines of continuous transport are the basis of complex

doi 10.15802/stp2015/42178

mechanization of cargo handling and industrial process. They increase the work productivity and production efficiency. The bucket belt elevators are the separate type of continuous transport machines. The elevators are lifts of vertical action

© V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

189

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

and used for vertical and high-angle (angle 60-82 о) transportation of bulk and manufactured cargo without intermediate loading and unloading. The use of elevators as an intermediate means of transport makes it possible to have a compact transport scheme, which occupies small space. They are used in the chemical, metallurgical, machine-building industry, production of construction materials, coal preparation plants, food plants and in granaries.

The main publications that describe the structure, design features, operational and design values of the elevators are [3, 4, 5, 6, 7, 9, 10]. It is necessary to calculate the reels, the traction unit (tapes), traction calculation and to perform the selection of the main elements of the driving unit for determination the parameters of elevator drive, and in particular its capacity. The order of performing such calculations are described in detail in [6, 7]. But, the definite part of time is spent during the attraction of such elevator drive calculation methodology. For the process of elevator drive design improvement, it is desirable to have a scheme which allows simplifying calculations to determine the desired value for the drive power depending on design capacity in a particular type of cargo and the height of its ascent.

Purpose

The aim of this work is building of a parametric dependence of the elevator power drive from its design capacity, which takes into account the type and characteristics of the cargo, lifting height, standard dimensions and parameters of the buckets and tapes.

Methodology

The value of the drive power of the elevator depends on many parameters. The main parameters are: type of cargo, design capacity and lifting height. For further study we will define the basic components of the overall calculation of the elevator which in varying degrees depends on design capacity. These include: linear capacity of buckets (capacity and disposed step of the buckets); width, number of strips and linear weight of tape; the required distributed weight of the load; linear load on the working branch; draft force on the drive drum.

Linear capacity of elevator buckets:

doi 10.15802/stp2015/42178

к = p = P

t 3,6vpy a ’

(1)

where a = 3,6vpy - value, that takes into account the properties of the transported cargo, t^m/bh; у - coefficient of bucket charge (according to the physical and mechanical properties of cargo); t -disposed step of buckets, m; p - cargo density, t/m3; v - tape speed, m/s.

According to the meaning of linear capacity of the elevator bucket that is calculated by the formula (1) the type and disposed step of buckets are selected by the table 1 [7]. The selection of bucket type depends on the material properties that is transported. The deep buckets are used for easily granular, powdered and small parts of cargoes; shallow - for difficult bulk materials.

With the aim of taking into account the subsequent calculations of the physical and mechanical properties of the cargo that is transported, we’ll build a correspondent table of the elevator parameters, defined in table 1, the value of performance, expressed by the formula (1) in parts of the coefficient a . The obtained data will be posted in tables 2 and 3 for elevators with deep and shallow buckets accordingly.

On the basis of design value capacity of the elevator productivity and the type of transported material, parameters of the bucket, the step of their disposition on the tape, and the necessary width of the tape are selected by tables 2 and 3. Characteristics of deep and shallow bucket (width, the bucket outreach, bucket height and capacity) are shown in table 4.

The tapes of State standart 23831-79, State standart 20-85 are used in the bucket elevator as the traction units. The rubber and fabric tapes of State standart 20-85 type BKNL-150 are accepted as a traction units of bucket elevator for the determination of further researches. The actual number of tape strips can be 3, 4, 5, 6.

The thickness of the tape is determined by the formula

Ss = Sr + iSp + Sn , (2)

where 5r = 3 mm, 5n = 1,5 mm is the thickness of the rubber plates with working and non-working sides of the tape; 5p = 1,6 mm is the thickness of

one fabric strip. i is the number of strips.

© V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

190

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

Table 1

Value of linear capacity of buckets

Bucket width Bk, mm Tape width B, mm Disposed step of the bucket t, mm Bucket

deep shallow

*0. l У, l/m t А і У, l/m t

100 125 200 0,2 1 0,1 0,5

125 150 320 0,4 1,3 0,2 0,66

160 200 320 0,6 2 0,35 1,17

200 250 400 1,3 3,24 0,75 1,87

250 300 400 2,0 5 1,4 3,5

320 400 500 4,0 8 2,7 5,4

400 500 500 6,3 12,6 4,2 8,4

500 650 630 12 19 - -

650 800 630 18 28,6 - -

800 1000 800 32 40 - -

1 000 1 200 800 45 56,25 - -

Table 2

Dependence of parameters of deep buckets on the productivity to the elevator

Bucket width Bk , mm Tape width B , mm Disposed step of buckets t, mm Bucket capacity iQ , л Elevator effectiveness, t/h

100 125 200 0,2 a

125 150 320 0,4 1,3a

160 200 320 0,6 2a

200 250 400 1,3 3,24a

250 300 400 2,0 5a

320 400 500 4,0 8a

400 500 500 6,3 12,6a

500 650 630 12 19a

650 800 630 18 28,6a

800 1 000 800 32 40a

1 000 1 200 800 45 56,25a

Table 3

Dependence of parameters of shallow buckets on the productivity to the elevator

Bucket width Bk, mm Tape width B , mm Disposed step of buckets t, mm Bucket capacity А л Elevator effectiveness, t/h

100 125 200 0,1 0,5a

125 150 320 0,2 0,66a

160 200 320 0,35 1,17a

doi 10.15802/stp2015/42178 © V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

191

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

End of table 3

Bucket width Bk, mm Tape width B , mm Disposed step of buckets t, mm Bucket capacity У л Elevator effectiveness, t/h

200 250 400 0,75 1,87a

250 300 400 1,4 3,5a

320 400 500 2,7 5,4a

400 500 500 4,2 8,4a

Table 4

Description of buckets to the elevator

Type of the bucket Internal sizes of the bucket, mm Capacity of the bucket, l

width Bk departure Ak hight R

100 50 65 25 0,1

100 75 80 25 0,2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

125 90 95 30 0,4

160 105 110 35 0,6

200 125 135 40 1,3

Curved deep D 250 140 150 45 2,0

320 175 190 55 4,0

400 195 210 60 6,3

500 235 255 75 12

650 250 275 80 18

800 285 325 85 32

1 000 310 355 95 45

125 65 85 30 0,2

160 75 100 35 0,35

200 95 130 40 0,75

Curved shallow S 250 120 160 55 1,4

320 145 190 70 2,7

400 170 220 85 4,2

The weight of one meter of tape is determined by the formula

qs = 10-6 BdsPs g, (3)

qv=

Pg

3,6v

:PP,

(4)

where ps = 1100 kg/m3 is a density of the tape.

Using the formula (2) and (3) for calculation, we presented the table of width and linear weight of tape with different number of stripes and its compliance of elevator productivity for deep and shallow buckets.

Distributed weight per 1 m of the tape is determined by the formula:

g

where p =------ is the coefficient, which depends

3,6v

on the speed tape, №s/kg^m.

The dependence of the distributed weight of the cargo from the design capacity is calculated by the formula (4) and shown in table 7.

doi 10.15802/stp2015/42178

© V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

192

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

Table 5

Linear weight of ribbons for deep buckets

Width of tape B , mm Linear weight of tape when І = 3 , N/m Linear weight of tape when І = 4 , N/m Linear weight of tape when І = 5 , N/m Linear weight of tape when І = 6 , N/m Elevator effectiveness, t/h

125 12,5 14,7 16,8 19,0 a

150 15,0 17,6 20,2 22,8 1,3a

200 20,1 23,5 27,0 30,4 2a

250 25,1 29,4 33,7 38,0 3,24a

300 30,1 35,3 40,4 45,6 5a

400 40,1 47,0 53,9 60,8 8a

500 50,1 58,8 67,4 76,0 12,6a

650 65,2 76,4 87,6 98,8 19a

800 80,2 94,0 107,8 121,6 28,6a

1 000 100,3 117,5 134,8 152,0 40a

1 200 120,3 141, 161,7 182,4 56,25a

Table 6

Linear weight of ribbons for shallow buckets

Width of tape B , mm Linear weight of tape when І = 3 , N/m Linear weight of tape when І = 4 , N/m Linear weight of tape when І = 5 , N/m Linear weight of tape when І = 6 , N/m Elevator effectiveness, t/h

125 12,5 14,7 16,8 19,0 0,5a

150 15,0 17,6 20,2 22,8 0,66a

200 20,1 23,5 27,0 30,4 1,17a

250 25,1 29,4 33,7 38,0 1,87a

300 30,1 35,3 40,4 45,6 3,5a

400 40,1 47,0 53,9 60,8 5,4a

500 50,1 58,8 67,4 76,0 8,4a

Linear weight of tape with buckets is determined by the formula

%

qs +

mk g t

where mk is bucket weight, kg (table 8).

(5)

Using the formula (5)-(6) and taking into account the data of table 8, we define the linear dependence of the load on the working branch of the elevator from the performance values in the deep and shallow buckets. The results of the calculations for tapes with different numbers of stripes are shown in tables 9, 10.

Linear load on working branch is given by:

<?r = 4h + <?v. (6)

Tentative mass of deep and shallow buckets are shown in table 8 [7].

Traction calculation of bucket tape elevator is performed by the method of the outline traversing, the basic principle of which is the revelation of the characteristic points of the route where the change in tension of the tape takes place.

doi 10.15802/stp2015/42178

© V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

193

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

Table 7

Distributed weight of load

Width of tape Bk, mm Distributed weight during the elevator work with shallow buckets, N/m Elevator productivity with sallow buckets, N/m Distributed weight during the elevator work with deep buckets, N/m Elevator effectiveness with deep buckets, N/m

100 0,5оф 0,5а ар а

125 0,66оф 0,66а 1,3 ар 1,3а

160 1,17оф 1,17а 2 ар 2а

200 1,87оф 1,87а 3,24аР 3,24а

250 3,5оф 3,5а 5 ар 5а

320 5,4оф 5,4а 8аР 8а

400 8,4оф 8,4а 12,6аР 12,6а

500 - - 19аР 19а

650 - - 28,6аР 28,6а

800 - - 40аР 40а

1 000 - - 56,25аР 56,25а

Table 8

Tentative mass of buckets to the elevator

Bucket weight, mm Wall thickness, mm The weight of one bucket, kg

Deep Shallow

100 2 0,5 0,4

125 2 0,7 0,6

160 2 0,9 0,7

200 3 2 1,5

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

250 3 3 2

320 3 5 5

400 4 11 10

500 5 18 -

650 5 23 -

800 6 28 -

1 000 6 33 -

Table 9

The linear loading on a working branch at deep bucket

Bucket width Bk, mm Distributed cargo weight qv, N/m Linear load on the working branch in tape with i = 3 qr, N/m Linear load on the working branch in tape with i = 4 qr, N/m Linear load on the working branch in tape with i = 5 qr, N/m Linear load on the working branch in tape with i = 6 qr, N/m Elevator effectiveness, t/h

100 ар 37+аР 39,2+аР 41,3+аР 43,5+аР а

125 1,3 ар 36,4+1,3аР 39+1,3аР 41,6+1,3аР 44,2+1,3 ар 1,3а

160 2 ар 47,7+2аР 51,1+2аР 54,6+2аР 58+2аР 2а

doi 10.15802/stp2015/42178 © V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

194

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

End of table 9

Bucket width Bk, mm Distributed cargo weight qv, N/m Linear load on the working branch in tape with і = 3 qr, N/m Linear load on the working branch in tape with = 4 qr , N/m Linear load on the working branch in tape with і = 5 qr, N/m Linear load on the working branch in tape with і = 6 qr , N/m Elevator effectiveness, t/h

200 3,24оф 74,1+3,24aP 78,4+3,24aP 82,7+3,24aP 87+3,24aP 3,24a

250 5оф 103,6+5оф 108,8+5aP 113,9+5aP 119,1+5aP 5a

320 8оф 138,1+8aP 145+8aP 151,1+8aP 158+8aP 8a

400 12,6оф 265,7+12,6aP 274,4+12,6aP 283+12,6aP 291,6+12,6aP 12,6a

500 19оф 345,2+19aP 356,4+19aP 367,6+19aP 378,8+19aP 19a

650 28,6оф 438+28,6aP 451,8+28,6aP 465,6+28,6aP 479,4+28,6aP 28,6a

800 40оф 443,3+40aP 460,5+40aP 477,8+40aP 495+40aP 40a

1 000 56,25оф 524,6+56,3aP 545,3+56,3aP 566+56,3aP 586,7+56,3aP 56,25a

Table 10

The linear loading on a working branch at shallow bucket

Bucket width Bk, mm Distributed cargo weight qv, N/m Linear load on the working branch in tape with і = 3 qr, N/m Linear load on the working branch in tape with і = 4 qr, N/m Linear load on the working branch in tape with і = 5 qr, N/m Linear load on the working branch in tape with і = 6 qr, N/m Elevator effectiveness, t/h

100 0,5aP 32,1+0,5aP 34,3+0,5aP 36,4+0,5aP 38,6+0,5aP 0,5a

125 0,66aP 33,4+0,66aP 36+0,66aP 37,8+0,66aP 40,4+0,66aP 0,66a

160 1,17aP 41,5+1,17aP 44,9+1,17aP 48,4+1,17aP 51,8+1,17aP 1,17a

200 1,87aP 61,9+1,87aP 66,2+1,87aP 70,5+1,87aP 74,8+1,87aP 1,87a

250 3,5aP 79,1+3,5aP 84,3+3,5aP 89,4+3,5aP 94,6+3,5aP 3,5a

320 5,4aP 138,1+5,4aP 145+5,4aP 151,1+5,4aP 158+5,4aP 5,4a

400 8,4aP 246,1+8,4aP 254,8+8,4aP 263,4+8,4aP 272+8,4aP 8,4a

In addition the tension in the next point (і +1) is the sum of the tape tension in the point (і) and the resistance of the tape movement on the section between these points:

S3 = kS2 + W2-3, (9)

where к = 1,08 is the coefficient of tension increase in the tape with buckets during the drum rounding .

S+1 = S

■Wі

(7)

In case of a drum drive speed (Fig. 1) by clockwise the minimum tension will be at the point 2 - S2. Such tension in the tape at normal material scooping satisfies the condition:

S2 = Smin > 5qv. (8)

The strength of the tension at the point 3 consists of a resistance force on the drum and resistance of cargo scooping W2-3:

Resistance of scooping material is determined by the formula

(10)

g

where kz is the coefficient of scooping (Nm/kg), which is determined by the specific work, that is expended on scooping of 1 kg material. When the speed of buckets is v = 1,0... 1,25 m/s, kz = 12,5...25 Nm/kg for pulverous and small pieces materials and kz = 20...40N/m for middle pieces materials.

doi 10.15802/stp2015/42178

© V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

195

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

Thus, substituting the formulas (8) and (10) in (9) we have:

( k >

У = qv 5,4 + ^

( g У

(11)

fies all cargoes) we have:

У = 7,95qv

(12)

The tension forces in the points 1 and 4 are determined by the formulas:

N = yb = У

S1 = Уь = У

W3_4 = 7,95qv + qrH , (13) + W2_, = 5qv + qhH , (14)

Fig. 1. Chart tape bucket of the elevator

Choosing the meaning kz = 25 Nm/kg (it satis-

where H - height of cargo lifting, m.

The dependence of the tension forces values at the point 4, calculated by the formula (13), from the value of design capacity, the type of bucket and the number of strips of tape are summarized in tables 11-12:

Table 11

The strength of tension in a point 4 at deep buckets

Bucket width Bk, mm The strength of tension in the tape with i = 3 S4, N The strength of tension in the tape with i = 4 S4, N Elevator effectiveness, t/h

100 37N+aP(7,95+N) 39,2N+aP(7,95+N) a

125 36,4N+1,3aP(7,95+N) 39N+1,3aP(7,95+N) 1,3 a

160 47,7N+2aP(7,95+N) 51,1N+2aP(7,95+N) 2a

200 74,1N+3,24aP(7,95+N) 78,4N+3,24aP(7,95+N) 3,24a

250 103,6N+5aP(7,95+N) 108,8N+5aP(7,95+N) 5a

320 138,1N+8aP(7,95+N) 145N+8aP(7,95+N) 8a

400 265,7N+12,6aP(7,95+N) 274,4N+12,6aP(7,95+N) 12,6a

500 345,2N+19aP(7,95+N) 356,4N+19aP(7,95+N) 19a

650 438N+28,6aP(7,95+N) 451,8N+28,6aP(7,95+N) 28,6a

800 443,3N+40aP(7,95+N) 460,5N+40aP(7,95+N) 40a

1 000 524,6N+56,3aP(7,95+N) 545,3N+56,3aP(7,95+N) 56,25a

Continuation of table 11

The strength of tension in a point 4 at deep buckets

Bucket width Bk , mm The strength of tension in the tape with i = 5 S4, N The strength of tension in the tape with i = 6 S4, N Elevator effectiveness, t/h

100 41,3N+aP(7,95+N) 43,5N+aP(7,95+N) a

125 41,6N+1,3aP(7,95+N) 44,2N+1,3aP(7,95+N) 1,3 a

160 54,6N+2aP(7,95+N) 58N+2aP(7,95+N) 2a

200 82,7N+3,24aP(7,95+N) 87N+3,24aP(7,95+N) 3,24a

250 113,9N+5aP(7,95+N) 119,1N+5aP(7,95+N) 5a

320 151,1N+8aP(7,95+N) 158N+8aP(7,95+N) 8a

400 283N+12,6aP(7,95+N) 291,6N+12,6aP(7,95+N) 12,6a

doi 10.15802/stp2015/42178 © V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

196

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

End of table 11

Bucket width Bk , mm The strength of tension in the tape with i = 5 S4, N The strength of tension in the tape with i = 6 S4, N Elevator effectiveness, t/h

500 367,6N+19aP(7,95+N) 378,8N+19aP(7,95+N) 19a

650 465,6N+28,6aP(7,95+N) 479,4N+28,6aP(7,95+N) 28,6a

800 477,8N+40aP(7,95+N) 495N+40aP(7,95+N) 40a

1000 566N+56,3aP(7,95+N) 586,7N+56,3aP(7,95+N) 56,25a

Table 12

The strength of tension in a point 4 at shallow buckets

Bucket width Bk , mm The strength of tension in the tape with i = 3 S4, N The strength of tension in the tape with i = 4 S4, N Elevator effectiveness, t/h

100 32,1N+0,5aP(7,95+N) 34,3N+0,5aP(7,95+N) 0,5a

125 33,4N+0,66aP(7,95+N) 36N+0,66aP(7,95+N) 0,66a

160 41,5N+1,17aP(7,95+N) 44,9N+1,17aP(7,95+N) 1,17a

200 61,9N+1,87aP(7,95+N) 66,2N+1,87 aP(7,95+N) 1,87a

250 79,1N+3,5aP(7,95+N) 84,3N+3,5aP(7,95+N) 3,5a

320 138,1N+5,4aP(7,95+N) 145N+5,4aP(7,95+N) 5,4a

400 246,1N+8,4aP(7,95+N) The strength of tension in a 254,8N+8,4aP(7,95+N) point 4 at shallow buckets 8,4a End of table 12

Bucket width Bk , The strength of tension in the tape The strength of tension in the tape Elevator effectiveness,

mm with i = 5 S4 , N with i = 6 S4 , N t/h

100 36,4N+0,5aP(7,95+N) 38,6N+0,5aP(7,95+N) 0,5a

125 37,8N+0,66aP(7,95+N) 40,4N+0,66aP(7,95+N) 0,66a

160 48,4N+1,17aP(7,95+N) 51,8N+1,17aP(7,95+N) 1,17a

200 70,5N+1,87aP(7,95+N) 74,8N1,87aP(7,95+N) 1,87a

250 89,4N+3,5aP(7,95+N) 94,6N+3,5aP(7,95+N) 3,5a

320 151,1N+5,4aP(7,95+N) 158N+5,4aP(7,95+N) 5,4a

400 263,4N+8,4aP(7,95+N) 272N+8,4aP(7,95+N) 8,4a

The dependence of the values of the tension forces at the point 1 is calculated by the formula (14) the value of design capacity, the type of bucket and the number of strips of tape are summarized in tables 13-14.

Table 13

The strength of tension in a point 1 at deep buckets

Bucket width Bk, mm The strength of tension in the tape with i = 3 Sj, N The strength of tension in the tape with i = 4 Sj, N The strength of tension in the tape with i = 5 Sj, N The strength of tension in the tape with i = 6 Sj, N Elevator effectiveness, t/h

100 37N+5aP 39,2N+5aP 41,3N+5aP 43,5N+5aP a

125 36,4N+6,5aP 39N+6,5aP 41,6N+6,5aP 44,2N+6,5aP 1,3a

160 47,7N+10aP 51,1N+10aP 54,6N+10aP 58N+10aP 2a

200 74,1N+16,2aP 78,4N+16,2aP 82,7N+16,2aP 87N+16,2aP 3,24a

doi 10.15802/stp2015/42178

© V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

197

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

End of table 13

Bucket width Bk, mm The strength of tension in the tape with І = 3 ^ , N The strength of tension in the tape with І = 4 ^ , N The strength of tension in the tape with І = 5 ^ , N The strength of tension in the tape with І = 6 ^, N Elevator effectiveness, t/h

250 103,6N+25aP 108,8N+25aP 113,9N+25aP 119,1N+25aP 5a

320 138,1N+40aP 145N+40aP 151,1N+40aP 158N+40aP 8a

400 265,7N+63aP 274,4N+63aP 283N+63aP 291,6N+63aP 12,6a

500 345,2N+95aP 356,4N+95aP 367,6N+95aP 378,8N+95aP 19a

650 438N+143aP 451,8N+143aP 465,6N+143aP 479,4N+143aP 28,6a

800 443,3N+200aP 460,5N+200aP 477,8N+200aP 495N+200aP 40a

1 000 524,6N+281,5aP 545,3N+281,5aP 566N+281,5aP 586,7N+281,5aP 56,25a

Table 14

The strength of tension in a point 1 at shallow buckets

Bucket width Bk, mm The strength of tension in the tape with І = 3 S1, N The strength of tension in the tape with І = 4 S1 , N The strength of tension in the tape with І = 5 S1 , N The strength of tension in the tape with І = 6 S1 , N Elevator effec tiveness, t/h

100 32,1N+2,5aP 34,3N+2,5aP 36,4N+2,5aP 38,6N+2,5aP 0,5a

125 33,4N+3,3aP 36N+3,3aP 37,8N+3,3aP 40,4N+3,3aP 0,66a

160 41,5N+5,85aP 44,9N+5,85aP 48,4N+5,85aP 51,8N+5,85aP 1,17a

200 61,9N+9,35aP 66,2N+9,35aP 70,5N+9,35aP 74,8N+9,35aP 1,87a

250 79,1N+17,5aP 84,3N+17,5aP 89,4N+17,5aP 94,6N+17,5aP 3,5a

320 138,1N+27aP 145N+27aP 151,1N+27aP 158N+27aP 5,4a

400 246,1N+42aP 254,8N+42aP 263,4N+42aP 272N+42aP 8,4a

Traction force with regard to the resistance to rotation of the drive drum is determined by the formula

F = S4 -S1 +(k'-1)(S4 + S1), (15)

where k' = 1,08 is the coefficient of resistance to the drive drum rotation.

After the algebraic transformations in formula (15) we have:

F0 = 1,08S4 - 0,92Sj. (16)

The value of traction force with regard to the resistance to rotation of the drive drum depending on the values of the design capacity, the type of bucket (deep and shallow) and the number of tape strips are summarized in table 15-16:

Table 15

Traction force on a drive drum at deep bucket

Bucket width Bk , mm Traction force of the tape with І = 3 F, N Traction force of the tape with І = 4 F, N Elevator effectiveness, t/h

100 5,9N+aP(4+1,08N) 6,3N+aP(4+1,08N) a

125 5,82N+1,3aP(4+1,08N) 6,2N+1,3aP(4+1,08N) 1,3a

160 7,63N+2aP(4+1,08N) 8,2N+2aP(4+1,08N) 2a

200 11,9N+3,24aP(4+1,08N) 12,5N+3,24aP(4+1,08N) 3,24a

250 16,6N+5aP(4+1,08N) 17,4N+5aP(4+1,08N) 5a

320 22,1N+8aP(4+1,08N) 23,2N+8aP(4+1,08N) 8a

400 42,5N+12,6aP(4+1,08N) 43,9N+12,6aP(4+1,08N) 12,6a

doi 10.15802/stp2015/42178 © V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

198

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

End of table 15

Traction force on a drive drum at deep buckets

Bucket width Bk, mm Traction force of the tape with i = 3 F , N Traction force of the tape with i = 4 F, N Elevator effectiveness, t/h

500 55,2N+19oP(4+1,08N) 57N+19aP(4+1,08N) 19a

650 70,1N+28,6aP(4+1,08N) 72,3N+28,6aP(4+1,08N) 28,6a

800 70,9N+40aP(4+1,08N) 73,7N+40aP(4+1,08N) 40a

1 000 83,9N+56,3aP(4+1,08N) 87,2N+56,3aP(4+1,08N) 56,25a

Bucket width Bk, Traction force of the tape with Traction force of the tape with Elevator effective-

mm i = 5 F, N i = 6 F, N ness, t/h

100 6,6N+aP(4+1,08N) 7N+aP(4+1,08N) a

125 6,7N+1,3aP(4+1,08N) 7,1N+1,3aP(4+1,08N) 1,3a

160 8,7N+2aP(4+1,08N) 9,3N+2aP(4+1,08N) 2a

200 13,2N+3,24aP(4+1,08N) 13,9N+3,24aP(4+1,08N) 3,24a

250 18,2N+5aP(4+1,08N) 19,1N+5aP(4+1,08N) 5a

320 24,2N+8aP(4+1,08N) 25,3N+8aP(4+1,08N) 8a

400 45,3N+12,6aP(4+1,08N) 46,7N+12,6aP(4+1,08N) 12,6a

500 58,8N+19aP(4+1,08N) 60,6N+19aP(4+1,08N) 19a

650 74,5N+28,6aP(4+1,08N) 76,7N+28,6aP(4+1,08N) 28,6a

800 76,4N+40aP(4+1,08N) 79,2N+40aP(4+1,08N) 40a

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1 000 90,6N+56,3aP(4+1,08N) 93,9N+56,3aP(4+1,08N) 56,25a

Table 16

Traction force on a drive drum at shallow buckets

Bucket width Bk , mm Traction force of the tape with i = 3 F, N Traction force of the tape with i = 4 F, N Elevator effectiveness, t/h

100 5,1N+aP(4+1,08N) 5,5N+aP(4+1,08N) 0,5a

125 5,3N+1,3aP(4+1,08N) 5,8N+1,3aP(4+1,08N) 0,66a

160 6,6N+2aP(4+1,08N) 7,2N+2aP(4+1,08N) 1,17a

200 9,9N+3,24aP(4+1,08N) 10,6N+3,24aP(4+1,08N) 1,87a

250 12,7N+5aP(4+1,08N) 13,5N+5aP(4+1,08N) 3,5a

320 22,1N+8aP(4+1,08N) 23,2N+8aP(4+1,08N) 5,4a

400 39,4N+12,6aP(4+1,08N) 40,8N+12,6aP(4+1,08N) 8,4a

Continuation of table 16

Traction force on a drive drum at shallow buckets

Bucket width Bk , mm Traction force of the tape with i = 5 F, N Traction force of the tape with i = 6 F, N Elevator effectiveness, t/h

100 5,8N+aP(4+1,08N) 6,2N+aP(4+1,08N) 0,5a

125 6,0N+1,3aP(4+1,08N) 6,5N+1,3aP(4+1,08N) 0,66a

160 7,7N+2aP(4+1,08N) 8,3N+2aP(4+1,08N) 1,17a

200 11,3N+3,24aP(4+1,08N) 12N+3,24aP(4+1,08N) 1,87a

doi 10.15802/stp2015/42178

© V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

199

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

End of table 16

Bucket width Bk, mm Traction force of the tape with i = 5 F, N Traction force of the tape with i = 6 F, N Elevator effectiveness, t/h

250 14,3N+5aP(4+1,08N) 15,1N+5aP(4+1,08N) 3,5 a

320 24,2N+8aP(4+1,08N) 25,3N+8aP(4+1,08N) 5,4a

400 42,1N+12,6aP(4+1,08N) 43,5N+12,6aP(4+1,08N) 8,4a

Kinematic chart of the elevator drive is shown

Fig. 2. Chart of the elevator drive:

1 - engine; 2 - elastic clutch; 3 - stopping device (arresting); 4 - reducing gear; 5 - chain transmission;

6 - drive drum; 7 - tape

The coefficient of the drive useful effect performance duty is determined by the formula:

Ч = ЧПіПш , (17)

where nr = 0,96 - coefficient of the reducing gear useful effect performance duty; nl = 0,95 -coefficient of the chain transmission useful effect performance duty; nm = 0,98 - coefficient of the

sleeve useful effect performance duty.

Therefore

The power of the engine is determined by the formula

P =

F0v 1000n

(18)

Design power of the engine is determined by the formula

Pr = nu P, (19)

where nu = 1,1...1,2 - margin of power coefficient.

As far as n = 0,89 and nu = 1,1, then from the formula (18) and (19) we receive:

Pr = F°V = 0,001F v . (20)

r 1000n о

The dependence of the calculated engine power from the values of the design capacity, the type of bucket, the number of tape strips , the speed of belt movement and the lifting height of the load is calculated by the formula (20) that based on the data tables 15-16 are summarized in tables 17-18:

П = nr П1 nm =0,96 -0,95 -0,98 = 0,89.

Table 17

Design engine power at deep buckets

Bucket width Bk, mm Engine power when the tape is i = 3 P, W Engine power when the tape is i = 4 P, W Elevator effectiveness, t/h

100 (5,9N+aP(4+1,08N))v (6,3N+aP(4+1,08N))v a

125 (5,82N+1,3aP(4+1,08N))v (6,2N+1,3aP(4+1,08N))v 1,3a

160 (7,63N+2aP(4+1,08N))v (8,2N+2aP(4+1,08N))v 2a

200 (11,9N+3,24aP(4+1,08N))v (12,5N+3,24aP(4+1,08N))v 3,24a

250 (16,6N+5aP(4+1,08N))v (17,4N+5aP(4+1,08N))v 5a

320 (22,1N+8aP(4+1,08N))v (23,2N+8aP(4+1,08N))v 8a

400 (42,5N+12,6aP(4+1,08N))v (43,9N+12,6aP(4+1,08N))v 12,6a

500 (55,2N+19aP(4+1,08N))v (57N+19aP(4+1,08N))v 19a

650 (70,1N+28,6aP(4+1,08N))v (72,3N+28,6aP(4+1,08N))v 28,6a

800 (70,9N+40aP(4+1,08N))v (73,7N+40aP(4+1,08N))v 40a

1 000 (83,9N+56,3aP(4+1,08N))v (87,2N+56,3 aP(4+1,08N))v 56,25a

doi 10.15802/stp2015/42178 © V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

200

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

End of table 17

Design engine power at deep buckets

Bucket width Bk, mm Engine power when the tape is i = 5 P, W Engine power when the tape is i = 6 P, W Elevator effectiveness, t/h

100 (6,6N+aP(4+1,08N))v (7N+aP(4+1,08N))v a

125 (6,7N+1,3aP(4+1,08N))v (7,1N+1,3aP(4+1,08N))v 1,3 a

160 (8,7N+2aP(4+1,08N))v (9,3N+2aP(4+1,08N))v 2a

200 (13,2N+3,24aP(4+1,08N))v (13,9N+3,24aP(4+1,08N))v 3,24a

250 (18,2N+5aP(4+1,08N))v (19,1N+5aP(4+1,08N))v 5a

320 (24,2N+8aP(4+1,08N))v (25,3N+8aP(4+1,08N))v 8a

400 (45,3N+12,6aP(4+1,08N))v (46,7N+12,6aP(4+1,08N))v 12,6a

500 (58,8N+19aP(4+1,08N))v (60,6N+19aP(4+1,08N))v 19a

650 (74,5N+28,6aP(4+1,08N))v (76,7N+28,6aP(4+1,08N))v 28,6a

800 (76,4N+40aP(4+1,08N))v (79,2N+40aP(4+1,08N))v 40a

1 000 (90,6N+56,3 aP(4+1,08N))v (93,9N+56,3aP(4+1,08N))v 56,25a

Table 18

Design engine power at shallow buckets

Bucket width Bk, mm Engine power when the tape is i = 3 P , W Engine power when the tape is i = 4 P, W Elevator effectiveness, t/h

100 (5,1N+aP(4+1,08N))v (5,5N+aP(4+1,08N))v 0,5a

125 (5,3N+1,3aP(4+1,08N))v (5,8N+1,3aP(4+1,08N))v 0,66a

160 (6,6N+2aP(4+1,08N))v (7,2N+2aP(4+1,08N))v 1,17a

200 (9,9N+3,24aP(4+1,08N))v (10,6N+3,24aP(4+1,08N))v 1,87a

250 (12,7N+5aP(4+1,08N))v (13,5N+5aP(4+1,08N))v 3,5a

320 (22,1N+8aP(4+1,08N))v (23,2N+8aP(4+1,08N))v 5,4a

400 (39,4N+12,6aP(4+1,08N))v (40,8N+12,6aP(4+1,08N))v 8,4a

End of table 18

Design engine power at shallow buckets

в Bucket width k , mm Engine power when the tape is i = 5 P, W Engine power when the tape is i = 6 P, W Elevator effectiveness, t/h

100 (5,8N+aP(4+1,08N))v (6,2N+aP(4+1,08N))v 0,5a

125 (6,0N+1,3aP(4+1,08N))v (6,5N+1,3aP(4+1,08N))v 0,66a

160 (7,7N+2aP(4+1,08N))v (8,3N+2aP(4+1,08N))v 1,17a

200 (11,3N+3,24aP(4+1,08N))v (12N+3,24aP(4+1,08N))v 1,87a

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

250 (14,3N+5aP(4+1,08N))v (15,1N+5aP(4+1,08N))v 3,5a

320 (24,2N+8aP(4+1,08N))v (25,3N+8aP(4+1,08N))v 5,4a

400 (42,1N+12,6aP(4+1,08N))v (43,5N+12,6aP(4+1,08N))v 8,4a

doi 10.15802/stp2015/42178

© V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

201

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

Findings

Analyse the impact of the design capacity of the elevator shotblasting room to the power of necessary drive should be conducted. Shotblasting room is used to strengthen the metal springs of car by the method of shot peening. For automation work of such room the elevator is used, that transports the spent shot in feed hopper of shotblasting machine of the rotary type. The steel shot of State standart 3184-95 with diameter of 1,2-1,4 mm is used for the strengthen of the springs. Given the physical and mechanical properties of steel shot (can be attributed to hard-running granular bulk cargo), the tape elevator with disposed buckets and centrifugal unloading was selected. The speed of the tape is v = 1,45 m/s; the fill factor bucket у = 0,6; p = 7,2 t/m3 is the shot density in accordance with State standart 3184-95; lifting height of the load H = 4,5 m.

Under these conditions, the coefficients are equal to:

a = 3,

6vpy = 3,6 -1,45 • 7,2 • 0,6

= 22,55 t • m/l per h ;

aP = 3,6vpy-^ = pyg

3,6v .

= 7,2• 0,6• 9,8 = 42,34 N/m3

The dependence of the design power of the electric drive motor of an elevator from the design capacity are shown in table 19.

Given the standard values of three-phase asynchronous briefly closed motors power of 4A series with synchronous rotation speed of 1000 rpm, table of design capacity and necessary engine power correspondence was built for the elevator drive of shotblasting room.

Table 19

Design engine power at deep buckets

Bucket width Bk, mm Engine power when the tape is i = 3 P , W Engine power when the tape is i = 4 P , W Engine power when the tape is i = 5 P , W Engine power when the tape is i = 6 P , W Elevator effectiveness, t/h

100 5 382,0 585,0 587,0 589,6 22,55

125 745,0 747,6 750,8 753,4 29,31

160 1 137,7 1 141,4 1 144,6 1 148,6 45,1

200 1 840,0 1 843,9 1 848,5 1 853,1 73,1

250 2 828,0 2 833,2 2 838,4 2 844,3 112,75

320 4 495,7 4 502,9 4 509,4 4 516,6 180,4

400 7 130,9 7 140,1 7 149,2 7 158,3 284,1

500 10 695,0 10 706,8 10 718,5 10 730,2 428,45

650 16 014,0 16 028,4 16 042,8 16 057,1 644,9

800 22 220,2 22 238,4 22 256,1 22 274,3 902

1 000 31 171,2 31 192,7 31 214,9 31 236,4 1 268,4

Table 20

Engine power at deep buckets

Bucket width Bk , mm Engine power P , kW Type of engine Elevator effectiveness, t/h

100 0,75 4А80А6Ш 22,55

125 1,1 4А80В6Ш 29,31

160 1,5 4А90Ь6Ш 45,1

doi 10.15802/stp2015/42178

© V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

202

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

End of table 20

Bucket width Bk , mm Engine power P , kW Type of engine Elevator effectiveness, t/h

200 2,2 4А100L6U3 73,1

250 3,0 4А112MA6U3 112,75

320 5,5 4А132S6U3 180,4

500 11,0 4А160S6U3 428,45

650 18,5 4А180Ы6Ш 644,9

800 30 4А200Ы6Ш 902

1 000 37 4А225Ы6Ш 1 268,4

Analyzing the results of calculations presented in table 20, we conclude that the dependence of the power drive of the elevator from its design capacity (at fixed lifting height, type of cargo, the speed of movement of the tape) in general is a piecewise continuous monotonically increasing function that is continuous on the left side at the point of rupture. In this case values effectiveness given in the last column of the table 20 should be considered where the power value changes and equals to the corresponding value given in the second column of the table 20. But to the value 29,31 t/h capacity is equal to 0,75 kW due to the minimality of such power in a number of engines of this class. The graph of the capacity of the elevator drive shotblasting room on the value of design capacity was built according to the results of calculations (Fig. 3).

Fig. 3. Dependence of the elevator drive power from the productivity

doi 10.15802/stp2015/42178

Originality and Practical value

A parametric dependence of the elevator power drive from its design capacity was built, and it takes into account the type and characteristics of the load, the lifting height, standard dimensions and parameters of the buckets and tapes.

Using the built dependencies enables relatively fast to determine an approximate value of power over the vertical speed elevators with deep and shallow buckets and perform the high-quality selection of its key elements by specific design characteristics: type of load, productivity, lifting height.

On the bases of the proposed approach the impact of the design capacity of the elevator shotblasting room to the required drive was analysed.

Conclusions

The parametric dependence of the values of drive power from its design capacity was built for the bucket tapes elevators. It gives the opportunity to obtain the necessary value of drive power based on the type and physical and mechanical properties of cargoes, the value of the lifting height and design capacity, using only one formula for calculation. The obtained results of the power drive generation process from the expected capacity of the elevator shotblasting room, which is designed to strengthen the car springs are used as an example of attracting. According to the standard of bucket parameters and characteristics of electric motors, the parametric and graphic dependences of drive power from the design capacity was built for

© V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

203

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

such type of elevators. It is proved that the function changes of the elevator capacity value from design capacity (at fixed lift height, type of cargo and the speed of the tape) are piecewise continuous and monotonically increasing.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Александров, М. П. Подъемно-транспортные машины : учеб. / М. П. Александров. - Москва : МГТУ им. Н. Баумана : Высш. шк., 2000. -522 с.

2. Горячев, Ю. К. Исследование возможности использования резервов энергии приводов подвесных канатных дорог с учетом диаграмм окружных усилий / Ю. К. Горячев, А. С. Куро-пятник, М. Р. Измайлов // Наука та прогрес трансп. Вісн. Дніпропетр. нац. ун-ту залізн. трансп. - 2014. - № 3 (51). - С. 109-116.

3. Зенков, Р. Л. Машины непрерывного транспорта : учеб. / Р. Л. Зенков, И. И. Ивашков, Л. Н. Колобов. - Москва : Машиностроение, 1987. - 432 с.

4. Іванченко, Ф. К. Підйомно-транспортні машини : підруч. / Ф. К. Іванченко. - Київ : Вища шк., 1993. - 413 с.

5. Катрюк, И. С. Машины непрерывного транспорта. Конструкции, проектирование и эксплуатация : учеб. пособие / И. С. Катрюк, Е. В. Мусияченко. - Красноярск : ИПЦ КГТУ, 2006. - 266 с.

6. Кузьмин, А. В. Справочник по расчетам механизмов подъемно-транспортных машин : учеб. пособие / А. В. Кузьмин. - Минск : Вышэйш. шк., 1983. - 350 с.

7. Підйомно-транспортні машини: розрахунки підіймальних і транспортувальних машин : підруч. / В. С. Бондарєв, О. І. Дубинець, М. П. Колісник [та ін.]. - Київ : Вища шк.,

2009. - 734 с.

8. Ракша, С. В. Аналіз впливу пружних деформацій несучого каната на зусилля в тяговому канаті підвісної дороги / С. В. Ракша, Ю. К. Горячев, О. С. Куроп’ятник // Наука та прогрес трансп. Вісн. Дніпропетр. нац. ун-ту залізн. трансп. - 2013. - № 6 (48). - С. 110-119.

9. Расчет и проектирование транспортных средств непрерывного действия : науч. пособие для вузов / А. И. Барышев, В. А. Будишевский, А. А. Сулима, А. М. Ткачук. - Донецк : Норд-Пресс, 2005. - 689 с.

10. Ромакин, Н. Е. Машины непрерывного транспорта : учеб. пособие. - Москва : Академия, 2008. - 432 с.

11. Jamaludin, J. Development of a self-tuning fuzzy logic controller for intelligent control of elevator systems / J. Jamaludin, N. A. Rahim, W. P. Hew // Engineering Applications of Artificial Intelligence. - 2009. - Vol. 22. - Iss. 8. - P. 1167-1178. doi: 10.1016/j.engappai.2009.04.006.

12. Kim, C. S. Nonlinear robust control of a hydraulic elevator: experiment-based modeling and two-stage Lyapunov redesign / C. S. Kim,

K. S. Hong, M. K. Kim // Control Engineering Practice, Exeter. - 2005. - Vol. 13. - Iss. 6. - P. 789-803. doi: 10.1016/j.conengprac.2004.09.003.

13. Strakosch, G. R. The Vertical Transportation Handbook / G. R. Strakosch, R. S. Caporale. -New York : John Wiley&Sons, 2010. - 610 p. doi: 10.1002/9780470949818.

В. М. БОГОМАЗ1*, К. Ц. ГЛАВАЦЬКИЙ2*, О. А. МАЗУР3*

1 Каф. «Військова підготовка», Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпропетровськ, Україна, 49010, тел. +38 (056) 793 19 09, ел. пошта [email protected], ORCID 0000-0001-5913-2671

2 Каф. «Прикладна механіка», Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпропетровськ, Україна, 49010, тел. +38 (056) 373 15 18,

ел. пошта [email protected], ORCID 0000-0002-3353-2543

3 Каф. «Прикладна механіка», Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпропетровськ, Україна, 49010, тел. +38 (056) 373 15 18,

ел. пошта [email protected], ORCID 0000-0002-3704-7799

ДОСЛІДЖЕННЯ ВПЛИВУ ПРОЕКТНОЇ ПРОДУКТИВНОСТІ ЕЛЕВАТОРУ НА ПОТУЖНІСТЬ ЙОГО ПРИВОДУ

Мета. Одним із основних елементів стрічкових ковшових елеваторів є їх привід. Для визначення потужності приводу необхідно провести розрахунки за стандартними методиками, для чого потрібно витратити достатньо часу. Одним із проектних параметрів є продуктивність елеватору. В статті необхідно побудувати параметричну залежність потужності приводу елеватору від його проектної продуктивності, яка

doi 10.15 802/stp2015/42178 © V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

204

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

враховує тип та характеристики вантажу, висоту підйому, стандартні розміри і параметри ковшів та стрічок. Методика. Використовуючи методику тягового розрахунку стрічкових ківшевих елеваторів, побудовані параметричні залежності потужності приводу швидкохідних елеваторів із глибокими та мілкими ковшами від їх продуктивності при фіксованому типі вантажу та висоті підйому. Результати. На основі побудованих параметричних залежностей встановлено, що функція зміни величини потужності елеватору від проектної продуктивності (при фіксованих висоті підйому, типу вантажу, швидкості руху стрічки) є кусково-сталою та монотонно зростаючою. Визначені в загальному вигляді інтервали проектних значень продуктивності, які забезпечують постійну величину потужності приводу елеватору. В якості прикладу залучення отриманих результатів розглянуто процес побудови залежності потужності приводу від проектної продуктивності елеватору дробометної камери, який призначений для транспортування металевого дробу, що використовується при зміцненні вагонних пружин. Для конкретних типу вантажу та висоти підйому такого елеватору побудовано графічну залежність потужності його приводу від продуктивності. Наукова новизна. Вперше виведені параметричні залежності потужності приводу елеватору від його проектної продуктивності, які враховують тип та фізико-механічні характеристики вантажу, висоту підйому, стандартні розміри та параметри ковшів і стрічок. Практична значимість. Використання побудованих залежностей дає можливість відносно швидкого визначення приблизного значення потужності приводу вертикальних швидкохідних елеваторів із глибокими та мілкими ковшами на стадії проектування. Також можливим є виконання якісного підбору його основних елементів при конкретних проектних характеристиках: тип вантажу, продуктивність, висота підйому.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ключові слова: елеватор; ківш; привід; потужність; продуктивність; вантаж

В. Н. БОГОМАЗ1*, К. Ц. ГЛАВАЦКИЙ2*, О. А. МАЗУР3*

1 Каф. «Военная подготовка», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, вул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел. +38 (056) 793 19 09,

эл. почта [email protected], ORCID 0000-0001-5913-2671

2 Каф. «Прикладная механика», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, вул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел. +38 (056) 373 15 18,

эл. почта [email protected], ORCID 0000-0002-3353-2543

3 Каф. «Прикладная механика», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, вул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел. +38 (056) 373 15 18,

эл. почта [email protected], OrCID 0000-0002-3704-7799

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРОЕКТНЫХ ХАРАКТЕРИСТИК ЭЛЕВАТОРА НА ПАРАМЕТРЫ ЕГО ПРИВОДА

Цель. Одним из основных элементов ленточных ковшовых элеваторов является их привод. Для определения мощности привода необходимо провести расчеты по стандартным методиками, для чего нужно потратить достаточно времени. Одним из проектных параметров является производительность элеватора. Необходимо построить параметрическую зависимость мощности привода элеватора от его проектной производительности, которая учитывает тип и характеристики груза, высоту подъема, стандартные размеры и параметры ковшей и лент. Методика. Используя методику тягового расчета ленточных ковшевых элеваторов, построены параметрические зависимости мощности привода быстроходных элеваторов с глубокими и мелкими ковшами от их производительности при фиксированных типе груза и высоте подъема. Результаты. На основе построенных параметрических зависимостей установлено, что функция изменения величины мощности элеватора от проектной производительности (при фиксированных высоте подъема, типе груза, скорости движения ленты) является кусочно-постоянной и монотонно возрастающей. Определены в общем виде интервалы проектных значений производительности, которые обеспечивают постоянную величину мощности привода элеватора. В качестве примера применения полученных результатов рассмотрен процесс построения зависимости мощности привода от проектной производительности элеватора дробометной камеры, которая предназначена для транспортировки металлической дроби, используемой при упрочнении вагонных пружин. Для конкретного типа груза и высоты подъема такого элеватора построена графическая зависимость мощности его привода от производительности. Научная новизна. Впервые выведены параметрические зависимости мощности привода элеватора от его проектной производительности, которые учитывают тип и физико-механические характеристики груза, высоту подъема, стандартные размеры и параметры ков-

doi 10.15 802/stp2015/42178 © V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

205

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, 2015, № 2 (56)

НЕТРАДИЦІЙНІ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАНІЗМИ

шей и лент. Практическая значимость. Использование построенных зависимостей дает возможность относительно быстрого определения приблизительного значения мощности привода вертикальных быстроходных элеваторов с глубокими и мелкими ковшами на стадии проектирования. Также возможным является выполнение качественного подбора его основных элементов при конкретных проектных характеристиках: тип груза, производительность, высота подъема.

Ключевые слова: элеватор; ковш; привод; мощность; производительность; груз

REFERENCES

1. Aleksandrov M.P. Podemno-transportnyye mashiny [Lifting and transporting machines]. Moscow, Izdatelstvo MGTU im. N. Baumana, Vysshaya shkola Publ, 2000. 522 p.

2. Goryachev Yu. K. Kuropyatnik A.S., Izmaylov M.R. Issledovaniye vozmozhnosti ispolzovaniya rezervov en-ergii privodov podvesnykh kanatnykh dorog s uchetom diagramm okruzhnykh usiliy [Possibility research of the use of energy reserve of aerial ropeway drives taking into account the twisting forces diagrams]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu - Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2014, no. 3 (51), pp. 109-116.

3. Zenkov R.L., Ivashkov I.I., Kolobov L.N. Mashiny nepreryvnogo transporta [Machines of continuous transport]. Moscow, Mashinostroeniye Publ., 1987. 432 p.

4. Ivanchenko F.K. Pidiomno-transportni mashyny [Lifting and transporting machines]. Kyiv, Vyshia shkola Publ., 1993. 413 p.

5. Katryuk I.S., Musiyachenko Ye.V. Mashiny nepreryvnogo transporta. Konstruktsii, proyektirovaniye i ek-spluatatsiya [Machines of continuous transport: Constructions, Planning and Exploitation]. Krasnoyarsk, IPTS KGTU Publ., 2006. 266 p.

6. Kuzmin A.V. Spravochnik po raschetam mekhanizmov podemno-transportnykh mashin [Reference book upon settlements of mechanisms of lifting and transporting machines]. Minsk, Vysheyshaya Shkola Publ., 1983. 350 p.

7. Bondariev V.S., Dubynets O.I., Kolisnyk M.P. Pidiomno-transportni mashyny: rozrakhunky pidiimalnykh i transportuvalnykh mashyn [Lifting and transporting machines: calculations of lifting and transporting machines]. Kyiv, Vyshcha Shkola Publ., 2009. 734 p.

8. Raksha S.V., Horiachev Yu.K., Kuropiatnyk O.S. Analiz vplyvu pruzhnykh deformatsii nesuchoho kanata na zusyllia v tiahovomu kanati pidvisnoi dorohy [Influence analysis of the elastic deformations of the track cable on the efforts in the hauling rope of aerial ropeway]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu - Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2013, no. 6 (48), pp. 110-119.

9. Baryshev A.I., Budishevskiy V.A., Sulima A.A., Tkachuk A.M. Raschet i proyektirovaniye transportnykh sredstv nepreryvnogo deystviya [Calculation and planning of transport vehicles of continuous action]. Donezk, 2005. 689 p.

10. Romakin N.E. Mashiny nepreryvnogo transporta [Machines of continuous transport]. Moscow, Akademiya Publ., 2008. 432 p.

11. Jamaludin J., Rahim N.A., Hew W.P. Development of a self-tuning fuzzy logic controller for intelligent control of elevator systems. Engineering Applications of Artificial Intelligence, 2009, vol. 22, issue 8, pp. 1-12. doi: 10.1016/j.engappai.2009.04.006.

12. Kim C.S., Hong K.S., Kim M.K. Nonlinear robust control of a hydraulic elevator: experiment-based modeling and two-stage Lyapunov redesign. Control Engineering Practice, Exeter, 2005, vol. 13, issue 6, pp. 789-803. doi: 10.1016/j.conengprac.2004.09.003.

13. Strakosch G.R., Caporale R.S. The Vertical Transportation Handbook. New-York, John Wiley&Sons Publ.,

2010. 624 p. doi: 10.1002/9780470949818.

Prof. S. V. Raksha, D. Sc. (Tech.) (Ukraine); Prof. V. H. Zarenbin, D. Sc. (Tech.) (Ukra-ine)recommended this article to be published

Accessed: Nov., 21.2014 Received: March, 27.2015

doi 10.15802/stp2015/42178 © V. M. Bohomaz, K. TS. Hlavatskyi, O. A. Mazur, 2015

206

i Надоели баннеры? Вы всегда можете отключить рекламу.