Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
UDC 621.867.3
V. M. BOHOMAZ1*, M. V. BORENKO2*, S. V. PATSANOVSKYI3*, O. O. TKACHOV4*
1 Dep. «Military Training of Specialists of the State Special Service of Transport», Dnepropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 19 09, e-mail [email protected], ORCID 0000-0001-5913-2671
2*Dep. «Military Training of Specialists of the State Special Service of Transport», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 19 09, e-mail [email protected], ORCID 0000-0001-9578-3906
3*Dep. «Military Training of Specialists of the State Special Service of Transport», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 19 09, e-mail [email protected], ORCID 0000-0002-1628-3733
4*Dep. «Military Training of Specialists of the State Special Service of Transport», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 19 09, e-mail [email protected], ORCID 0000-0002-1857-7567
ANALYSIS OF INFLUENCE OF DESIGN CHARACTERISTICS OF INCLINED BUCKET ELEVATOR ON THE POWER OF ITS DRIVE
Purpose. One of the main elements of the inclined belt bucket elevators is their drive. To determine the drive power, it is necessary to carry out calculations according to standard methods, which are described in the modern literature. The basic design parameters are the productivity, lifting height, type and properties of the transported material, the angle of inclination. It is necessary to build a parametric dependence of the driving power of the elevator on its design parameters, which takes into account the standard sizes and types of buckets and belts. Methodology. Using the methodology of traction calculation of inclined belt bucket elevator there were built parametric dependences of efforts in specific points of the route of the elevator, as well as the parametric dependences of the drive power of high-speed elevators with deep and shallow buckets on their design parameters and characteristics. Findings. On the basis of constructed parametric dependencies, it was found that the function of changing the value of the elevator's power from design capacity (at fixed lifting height, type of cargo, belt speed) is piecewise constant and monotonically increasing. It was built a graphical representation of elevator drive power on the angle of its inclination within acceptable limits of change. The resulting relationship is non-linear and monotonically decreasing. In general terms the intervals of project performance values, which provide a constant value of drive power of inclined elevator were defined. As an example of the obtained results it was observed the process of dependence construction of the drive power on design capacity and inclination angle of the elevator for transporting the fine coal. Originality. For the first time there were constructed the parametric dependences of drive power of inclined bucket elevator on its design parameters that take into account the standard sizes and types of buckets and belts. Practical value. Using the constructed dependencies enables relatively quick determination of the approximate value of the drive power of high-speed inclined elevators with deep and shallow buckets at the design stage and high-quality selection of its basic elements in the design of specific characteristics: type of cargo, productivity, lifting height, angle of inclination.
Keywords: inclined elevator; bucket; drive; power; productivity; cargo; angle of inclination
Introdiction
and high-volume production with wide use of automatic lines. A special type of stream-flow transportation machines is inclined belt bucket elevators. Generally, elevators are the lifts that are used for vertical and steeply inclined (at an angle 6082°) displacement of bulk and piece cargo without intermediate loading and unloading. Their use when transporting materials increase the efficiency of the production process in many industries: chemical, metallurgical, engineering, etc.
Increasing the pace of economic development is impossible without technical re-equipment of production. The successful solution of this problem is largely determined by implementation of new technologies with the use of stream-flow transportation machines. They have great performance and length of transportation and can replace batch machines in traditional application fields, such as hauling, handling and warehousing operations. These machines have become very popular in mass
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
The main publications describing the structure, design features, performance and design parameters of elevators, including the inclined ones are the following works [5-9, 11-15]. To determine the drive power of inclined elevator it is necessary to conduct a detailed calculation of its elements and perform a selection of basic elements of the drive. The order of these calculations is described in detail in the works [8, 9]. It should be noted that the use of traditional calculation methodology of the elevator's drive requires a lot of time. To improve the design process of the inclined elevator's drive it is necessary to define a scheme that makes it possible to determine the required drive power value depending on the specific design parameters: the type of load, lifting height, track inclination angle and performance using simpler calculations. The works [2-4] of one of the authors include similar scheme for vertical elevators and conveyor belts. The natural generalization and continuation of these works will be the construction of schemes for inclined elevators. This is because the inclined elevators as opposed to the vertical ones include the component of tension force related to the force of belt friction on the support elements.
Purpose
The article is aimed to construct and analyze the parametric dependence of inclined elevator's drive power on its design parameters (type of load, lifting height, angle of inclination, performance) taking into account the standard sizes and parameters of buckets and belts.
Methodology
In general, for design of stream-flow transportation machines one should have the following basic data:
- diagram of machine track with indicated places of loading and unloading;
- appointment, conditions and operation mode of machine and the place of its installation;
- the required performance;
- characteristics of transported cargoes.
Thus, the initial data for design calculation of the elevator are such values as the transported material (its density and physical and mechanical properties) lift height of cargo, inclination angle of elevator to the horizon, required performance.
To construct general dependence of drive power on the performance there will be used the required coefficients at the values that make it possible to calculate the corresponding values of the required drive power for specific types of cargoes.
By analogy with [3] let us consider the value a that takes into account the properties of transported cargo for further studies:
a = 3,6vpy. (1)
Linear content of the elevator's bucket:
Pr
t 3,6vpy
Pr
a
(2)
where a - is a value that takes into account characteristics of the cargo and is calculated using dependence (1), t m/l h; y - is a coefficient of bucket fill (according to the physical and mechanical properties of cargo); t - is a spacing of the buckets, m; p - is a cargo density, t/m3; v - is a speed of the belt movement, m/s.
According to the value of linear content of elevator's bucket calculated from the formula (2) the type and spacing of buckets in accordance with the table 1 recommended by the wok [9] are selected. Selection of buckets type depends on the properties of the material, which is being transported. Deep buckets are used for free-flowing, dusty and small pieced cargoes; the shallow ones - for non-free-flowing cargoes.
To take account physical and mechanical properties of the cargo, which is being transported in further calculations let us construct the correspondence tables of elevator parameters specified in the Table 1 to the performance value expressed by the formula (2) in the parts of coefficient a . The obtained data will be tabulated in the Tables 2, 3 for elevators with deep and shallow buckets respectively.
Based on the design value of elevator productivity and the type of material, which is being transported according to the Tables 2 and 3, the bucket parameters, their spacing on the belt and the required width of the belt are selected. Characteristics of deep and shallow buckets are shown in the Tab. 4.
0
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
НЕТРАДИЦШШ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАН1ЗМИ
Table 1
Value of linear content of buckets
Bucket width Bb , mm Bucket
Belt width B , Spacing of the deep shallow
mm buckets t, mm lQ ' 1 1/m t lQ. 1 1/m t
1 2 3 4 5 6 7
100 125 200 0.2 1 0.1 0.5
125 150 320 0.4 1.3 0.2 0.66
160 200 320 0.6 2 0.35 1.17
200 250 400 1.3 3.24 0.75 1.87
250 300 400 2.0 5 1.4 3.5
320 400 500 4.0 8 2.7 5.4
400 500 500 6.3 12.6 4.2 8.4
500 650 630 12 19 - -
650 800 630 18 28.6 - -
800 1000 800 32 40 - -
1000 1200 800 45 56.25 - -
Table 2
Dependence of parameters of deep buckets on the elevator's productivity
Bucket width Bb , mm Belt width B , mm Spacing of the buckets t, mm Bucket capacity i), l Elevator productivity, t/h
100 125 200 0.2 a
125 150 320 0.4 1.3a
160 200 320 0.6 2a
200 250 400 1.3 3.24a
250 300 400 2.0 5a
320 400 500 4.0 8a
400 500 500 6.3 12.6a
500 650 630 12 19a
650 800 630 18 28.6a
800 1000 800 32 40a
1000 1200 800 45 56.25a
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2016, № 6 (66)
Table 3
Dependence of parameters of shallow buckets on the elevator's productivity
Bucket width Bb , mm Belt width B , mm Spacing of the buckets t, mm Bucket capacity i). l Elevator productivity, t/h
100 125 200 0.1 0.5a
125 150 320 0.2 0.66a
160 200 320 0.35 1.17a
200 250 400 0.75 1.87a
250 300 400 1.4 3.5a
320 400 500 2.7 5.4a
400 500 500 4.2 8.4a
Description of elevator buckets
Table 4
Bucket type Internal size of bucket, mm Bucket ca-
width Bb outreach Ab height R pacity, l
Rounded deep one D 100 50 65 25 0.1
100 75 80 25 0.2
125 90 95 30 0.4
160 105 110 35 0.6
200 125 135 40 1.3
250 140 150 45 2.0
320 175 190 55 4.0
400 195 210 60 6.3
500 235 255 75 12
650 250 275 80 18
800 285 325 85 32
1000 310 355 95 45
Bucket type Internal size of bucket, mm Bucket ca-
width Bb outreach Ab height R pacity, l
Rounded shallow one S 125 65 85 30 0.2
160 75 100 35 0.35
200 95 130 40 0.75
250 120 160 55 1.4
320 145 190 70 2.7
400 170 220 85 4.2
For clearness of further research let us take the conveyor belt according to State Standard 20-85 of the type BKNL-150 as traction body of elevator. The actual number of spacer plates of the belt can be 3-6.
The belt thickness is determined by the formula
Ô, =ô„ +70
f
(3)
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
where 5o = 3 mm, 5n = 1,5 mm - is the thickness of rubber coatings from the working and non-working sides of the belt; 5 f = 1,6 mm - is the
thickness of fabric insert ply, i - is the number of fabric insert plies.
The weight of one running meter of belt is determined by the formula
qb = 10-6B5bpbg, (4)
where pb = 1100 kg/m3 - belt density.
Involving the formulas (3)-(4) in the calculation let us present the table of correspondence of width and linear weight of the belt with a different number of insert plies to design values of elevator productivity for deep and shallow buckets.
Table 5
Linear weight of belts for deep buckets
Bucket width B , Linear weight of Linear weight of Linear weight of Linear weight of Elevator productivity,
mm the belt at i = 3 , the belt at the belt at i = 5 , the belt at t/h
N/m i = 4 , N/m N/m i = 6 , N/m
125 12.5 14.7 16.8 19.0 a
150 15.0 17.6 20.2 22.8 1.3a
200 20.1 23.5 27.0 30.4 2a
250 25.1 29.4 33.7 38.0 3.24a
300 30.1 35.3 40.4 45.6 5a
400 40.1 47.0 53.9 60.8 8a
500 50.1 58.8 67.4 76.0 12.6a
650 65.2 76.4 87.6 98.8 19a
800 80.2 94.0 107.8 121.6 28.6a
1000 100.3 117.5 134.8 152.0 40a
1200 120.3 141.0 161.7 182.4 56.25a
Table 6
Linear weight of belts for shallow buckets
Bucket width B , Linear weight of Linear weight of Linear weight of Linear weight of Elevator productivity,
mm the belt at i = 3 , the belt at the belt at i = 5 , the belt at t/h
N/m i = 4 , N/m N/m i = 6 , N/m
125 12.5 14.7 16.8 19.0 0.5a
150 15.0 17.6 20.2 22.8 0.66a
200 20.1 23.5 27.0 30.4 1.17a
250 25.1 29.4 33.7 38.0 1.87a
300 30.1 35.3 40.4 45.6 3.5a
400 40.1 47.0 53.9 60.8 5.4a
500 50.1 58.8 67.4 76.0 8.4a
Distributed weight of cargo per 1 m of belt is determined by the formula:
qw = TT = À Pr' 3,6v
(5)
g
where X= - coefficient depending on the
3,6v
belt speed, N-s/kg-m.
The dependence of value of distributed weight of cargo on the design productivity calculated by the formula (5) is given in the Table 7.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
Table 7
Distributed weight of cargo
Bucket
width Bb
Distributed cargo weight during operation of elevator with shallow buckets N/m
Elevator productivity with shallow buckets, N/m
Distributed cargo weight during operation of elevator with deep buckets N/m
Elevator productivity with deep buckets, N/m
100 0.5a!
125 0.66a!
160 1.17a!
200 1.87a!
250 3.5a!
320 5.4a!
400 8.4a! 500 650 800 1000
Linear weight of the belt with buc mined by the formula:
0.5a 0.66a 1.17a 1.87a 3.5a 5.4a 8.4a
a! 1.3a! 2a! 3.24a! 5a! 8a! 12.6a! 19a! 28.6a! 40a!
a 1.3a 2a 3.24a 5a 8a 12.6a 19a 28.6a 40a 56.25a
= 4b +-
m
cets is deter-
(6)
where mb - bucket weight, kg (Tab. 8).
Linear burden on the loaded strand is determined using the formula:
qo = + • (7)
56.25a!
The estimated weight of deep and shallow buckets is given in the Table 8 [9].
Involving the formulas (6)-(7) in the calculation and taking into account data from the Table 8 let us determine the dependency of linear load on the loaded strand of elevator on the productivity values for deep and shallow buckets. The obtained results of calculations for belts with different number of insert plies is presented in the Tables 9, 10.
Table 8
Estimated mass of elevator's buckets
Bucket width, mm Wall thickness, mm Weight of one bucket, kg
Deep Shallow
100 2 0.5 0.4
125 2 0.7 0.6
160 2 0.9 0.7
200 3 2 1.5
250 3 3 2
320 3 5 5
400 4 11 10
500 5 18 -
650 5 23 -
800 6 28 -
1000 6 33 -
mm
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету затзничного транспорту, 2016, № 6 (66)
The linear load on the loaded strand for deep buckets
Table 9
Bucket width Bb , mm Distributed weight of carg° qw, N/m Linear load on loaded strand at the belt with i = 3 qo, N/m Linear load on loaded strand at the belt with i = 4 qo , N/m Linear load on loaded strand at the belt with i = 5 qo , N/m Linear load on loaded strand at the belt with i = 6 qo , N/m Elevator productivity, t/h
100 a! 37+a! 39.2+a! 41.3+a! 43.5+a! a
125 1.3 a! 36.4+1.3a! 39+1.3a! 41.6+1.3a! 44.2+1.3a! 1.3a
160 2a! 47.7+2a! 51.1+2a! 54.6+2a! 58+2a! 2a
200 3.24a! 74.1+3.24a! 78.4+3.24a! 82.7+3.24a! 87+3.24a! 3.24a
250 5a! 103.6+5a! 108.8+5a! 113.9+5a! 119.1+5a! 5a
320 8a! 138.1+8a! 145+8a! 151.1+8a! 158+8a! 8a
400 12.6a! 265.7+12.6a! 274.4+12.6a! 283+12.6a! 291.6+12.6a! 12.6a
500 19 a! 345.2+19a! 356.4+19a! 367.6+19a! 378.8+19a! 19a
650 28.6a! 438+28.6a! 451.8+28.6a! 465.6+28.6a! 479.4+28.6a! 28.6a
800 40a! 443.3+40a! 460.5+40a! 477.8+40a! 495+40a! 40a
1000 56.25a! 524.6+56.3a! 545.3+56.3a! 566+56.3a! 586.7+56.3a! 56.25a
The linear load on the loaded strand for shallow buckets
Table 10
Bucket width Bb , mm Distributed weight of carg° 4w . N/m Linear load on loaded strand at the belt with i = 3 qo , N/m Linear load on loaded strand at the belt with i = 4 qo , N/m Linear load on loaded strand at the belt with i = 5 qo , N/m Linear load on loaded strand at the belt with i = 6 qo , N/m Elevator productivity, t/h
1 2 3 4 5 6 7
100 0.5a! 32.1+0.5a! 34.3+0.5a! 36.4+0.5a! 38.6+0.5a! 0.5a
1 2 3 4 5 6 7
125 0.66a! 33.4+0.66a! 36+0.66a! 37.8+0.66a! 40.4+0.66a! 0.66a
160 1.17 a! 41.5+L17a! 44.9+1.17a! 48.4+1.17a! 51.8+L17a! 1.17a
200 1.87a! 61.9+L87a! 66.2+1.87a! 70.5+1.87a! 74.8+1.87a! 1.87a
250 3.5a! 79.1+3.5a! 84.3+3.5a! 89.4+3.5a! 94.6+3.5a! 3.5a
320 5.4a! 138.1+5.4a! 145+5.4a! 151.1+5.4a! 158+5.4a! 5.4a
400 8.4a! 246.1+8.4a! 254.8+8.4a! 263.4+8.4a! 272+8.4a! 8.4a
Traction calculation of inclined bucket elevator is performed by the method of encirclement, the basic principle of which is to identify specific points of the track where the belt tension is changed. At this tension in the next (i +1) point is equal to the sum of belt tension in this ( i ) point and the belt movement resistance in the area between these points:
In case of drive drum rotation (Fig. 1) in clockwise order the minimum tension will be at the point 2 - S2. This tension in the belt during normal scooping satisfies the following condition:
S2 = Smm ^
(9)
The belt tension force at the point 3 consists of tension force S2, drum resistance and resistance to
=
-W7
(8) scooping of cargo W2
2-3 •
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2016, № 6 (66)
S3 —
W2
(10)
where k = 1,08 - coefficient of tension increase in the belt with buckets when bending around the drum.
Fig. 1. Scheme of inclined bucket elevator
Resistance to material scooping is determined using the formula:
W =-
2-3
g
(11)
Choosing the value ks = 25 meets all cargoes) we have:
S3 =7,95qw.
N m/kg (which
(13)
We assume that the belt with buckets at the track sections 3-4 and 1-2 (Fig. 1) is supported by direct roller supports.
The specific weight of moving parts of roller supports for loaded (section 3-4) and unloaded (section 1-2) strands is determined by the formulas:
Qoo = T .
^ = T
(14)
(15)
where ks - is a coefficient of scooping (Nm/kg), which is determined by specific work expended for scooping of 1 kg of material. At the speed of buckets v = 1,0...1,25 m/s ks = 12,5...25 Nm/kg for powdered and small pieced materials, and ks = 20...40 Nm/kg - for medium pieced material.
Thus, substituting formulas (8) and (11) to (10), we have:
( k \ S3 = qw 5,4 + ^ . (12)
where Gr - weight of rotating parts of the upper and lower rolers.
For further calculations the tables of estimated values of the distances between rollers of loaded strand (Tab. 11) and the characteristics and sizes of roller supports shown in the Table 12 will be used.
Ordinary roller supports of the strand 1-2 are
set with the spacing lr, twice as high as lr. The dependence of the weight of ordinary roller supports on the belt width is presented in the Table 12.
To facilitate further studies, it is assumed that the cargo has a density in the range of 1 ... 2 t/m3. Using the formulas (14)-(15) let us present the values of specific weight of moving parts of roller supports for loaded and unloaded strands depending on the belt width and width of the bucket. Calculated values of the specific weight will be presented in the Table 13.
Table 11
The estimated value of distances between supports of loaded strand lr
Material density
P, t/m3
Distances between supports of loaded strand at the belt width, mm
400 500 650 800 1000 1200 1400.1600 1800.2000
1500 1500 1400 1400 1300 1300 1200 1100
1400 1400 1300 1300 1200 1200 1100 1100
1300 1300 1200 1200 1100 1100 1100 900
1
1...2 more than 2
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету затзничного транспорту, 2016, № 6 (66)
НЕТРАДИЦШШ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАШЗМИ
Table 12
Weight of ordinary direct roller supports
Belt width B, mm Weight, kg
400 6.0
500 7.5
650 10.5
800 18.5
1 000 22.0
1 200 25.0
Table 13
The estimated values of the specific weight of moving parts of roller supports for loaded and unloaded strands
Specific weight of moving parts Bucket width Bb , mm
320 400 500 650 800 1000
loaded strand qoo, N/m 40 50 75 132 169 192
uloaded strand qon, N/m 20 25 37.5 66 84.5 96
For clearness of further calculations at the buckets with width less than 320 mm, let us take the value of specific weight of moving parts of roller supports for loaded and unloaded strands branches qoo = 40 N/m, qon = 20 N/m, respectively. We also accept that working conditions of the elevator will be difficult; therefore, the resistance coefficient of the belt movement along the rollers in future will be equal to 0.03.
Traction forces at the points 1 and 4 are determined using the formulas:
S4 = Snb = S3 + W3-4 =
= 7,95qw + (qo + qoo )H • c • ctgP + qwH , (16)
Si = Szb = S2 + W2-1 =
= 5qw +(qx + qon )H • c • ctgP + qxH, (17)
where H - lift height of cargo, m; p - inclination angle of elevator, degree; c = 0,03 - resistance coefficient of the belt movement along the rollers.
The dependence of traction forces values at the point 4 calculated by the formula (16) on the value
of design productivity, bucket type and amount of insert plies are summarized in the Tables 14-15.
The dependence of the values of tension force at the point 1 calculated by the formula (17) on the value of design productivity, bucket type and amount of insert plies of the belt are summarized in the Tables 16-17.
Tractive effort accounting rotational resistance of the drive drum is determined using the formula:
F° = S4 - S + (k- 1)(S4 + S,), (18)
where k' = 1,08 - is a resistance coefficient of drive drum rotation.
After algebraic transformations in the formula (18) we have:
F° = 1,08S4 - 0,92Sj. (19)
The values of tractive effort taking into account the drum rotation resistance depending on the values of design performance, bucket type (deep and shallow) and the number of insert plies of the belt are summarized in the Tables 18-19.
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету залiзничного транспорту, 2016, № 6 (66)
Table 14
Traction force at the point 4 at deep buckets
Bucket width Bb, Traction force at the belt with i — 3 S4, N Traction force at the belt with i — 4 S4, N Traction force at the belt with i — 5 S4, N Traction force at the belt with i — 6 S4, N Elevator productivity, t/h
mm
100 37H+aX (7.95+H)+ +(77+aX) cHctgß 39.2H+aX (7.95+H)+ +(79.2+aX) cHctgß 41.3H+aX(7.95+H)+ +(81.3+aX) cHctgß 43.5H+aX (7.95+H)+ +(83.5+aX) cHctgß a
125 36.4H+1.3aX(7.95+H )+ +(76.4+1.3aX)cHctgß 39H+1.3aX (7.95+H)+ +(79+1.3 aX)cHctgß 41.6H+1.3aX(7.95+H ) +(81.6+1.3aX) cHctgß 44.2H+1.3aX (7.95+H) +(84.2+1.3aX) cHctgß 1.3a
160 47.7H+2aX (7.95+H)+ +(87.7+2 aX) cHctgß 51.1H+2aX (7.95+H)+ +(91.1+2aX) cHctgß 54.6H+2aX(7.95+H)+ +(94.6+2aX) cHctgß 58H+2aX (7.95+H)+ +(98+2aX) cHctgß 2a
200 74.1H+3.24aX(7.95+ H) +(114.1+3.24aX)cHct gß 78.4H+3.24aX(7.95+ H)+ +(118.4+3.24aX) cHctgß 82.7H+3.24aX(7.95+ H) +(122.7+3.24aX)cHct gß 87H+3.24aX (7.95+H)+ +(127+3.24aX) cHctgß 3.24a
250 103.6H+5aX (7.95+H)+ +(143.6+5aX) cHctgß 108.8H+5aX (7.95+H)+ +(148.8+5aX) cHctgß 113.9H+5aX(7.95+H) + +(153.9+5aX) cHctgß 119.1H+5aX (7.95+H) +(159.1+5aX) cHctgß 5a
320 138.1H+8aX (7.95+H)+ +(178.1+8aX) cHctgß 145H+8aX (7.95+H)+ +(185+8aX) cHctgß 151.1H+8aX(7.95+H) + +(191.1+8aX) cHctgß 158H+8aX(7.95+H)+ +(198+8aX) cHctgß 8a
400 265H+12.6aX(7.95+ H) +(315.7+12.6aX)cHct gß 274.4H+12.6aX(7.95 +H) +(324.4+12.6aX) cHctgß 283H+12.6aX(7.95+ H) +(333+12.6aX) cHctgß 291.6H+12.6aX(7.95+ H) +(341.6+12.6aX) cHctgß 12.6a
500 345.2H+19aX (7.95+H) +(420.2+19aX) cHctgß 356.4H+19aX(7.95+ H) +(431.4+19aX) cHctgß 367.6H+19aX(7.95+ H) +(442.6+19aX) cHctgß 378.8H+19aX(7.95+H ) +(453.8+19aX) cHctgß 19a
650 438H+28.6aX (7.95+H) +(570+28.6aX) cHctgß 451.8H+28.6aX(7.95 +H) +(583.8+28.6aX) cHctgß 465H+28.6aX(7.95+ H) +(597.6+28.6aX)cHct gß 479.4H+28.6aX(7.95+ H) +(611.4+28.6aX) cHctgß 28.6a
800 443.3H+40aX (7.95+H) +(612.3+40aX) cHctgß 460.5H+40aX(7.95+ H) +(629.5+40aX) cHctgß 477.8H+40 aX(7.95+ H) +(646.8+40aX) cHctgß 495H+40aX(7.95+H) + +(664+40aX) cHctgß 40a
1 000 524H+56.3aX(7.95+ H) +(716.6+56.3 aX)cHct gß 545.3H+56.3aX(7.95 +H) +(737.3+56.3aX) cHctgß 566H+56.3aX(7.95+ H)+ +(758+56.3aX) cHctgß 586.7H+56.3aX(7.95+ H) +(778.7+56.3aX) cHctgß 56.25a
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету затзничного транспорту, 2016, № 6 (66)
Table 15
Traction force at the point 4 at shallow buckets
Bucket width Bb, Traction force at the belt with i = 3 S4, N Traction force at the belt with i = 4 S4, N Traction force at the belt with i = 5 S4, N Traction force at the belt with i = 6 S4, N Elevator productivity, t/h
mm
100 32.1Я+0.5о!(7.95+ H) +(72.1+0.5a!) cHctgß 34.3H+0.5a!(7.95+ H) +(74.3+0.5a!) cHctgß 36.4H+0.5a!(7.95+ H) +(76.4+0.5 a!) cHctgß 38.6H+0.5a!(7.95+ H) +(78.6+0.5a!) cHctgß 0.5a
125 33.4H+0.66a!(7.95 +H)+(73.4+0.66a!) cHctgß 36H+0.66a! (7.95+H) +(76+0.66a!) cHctgß 37.8H+0.66a!(7.95 +H) +(77.8+0.66a!) cHctgß 40.4H+0.66a!(7.95+ H) +(80.4+0.66a!) cHctgß 0.66a
160 41.5H+1.17a!(7.95 +H) +(81.5+L17a!) cHctgß 44.9H+1.17a!(7.95 +H) +(84.9+1.17a!) cHctgß 48.4H+1.17a!(7.95 +H) +(88.4+1.17a!) cHctgß 51.8H+1.17a!(7.95+ H) +(91.8+1.17a!) cHctgß 1.17a
200 61.9H+1.87a!(7.95 +H) +(101.9+1.87a!)cH ctgß 66.2H+1.87a!(7.95 +H) +(106.2+1.87a!)cH ctgß 70.5H+1.87a!(7.95 +H) +(110.5+1.87a!)cH ctgß 74.8H+1.87a!(7.95+ H) +(114.8+1.87a!)cHc tgß 1.87a
250 79.1H+3.5a!(7.95+ H)+ +(119.1+3.5a!)cHct gß 84.3H+3.5a!(7.95+ H)+ +(124.3+3.5 a!)cHct gß 89.4H+3.5a!(7.95+ H)+ +(139.4+3.5a!)cHct gß 94.6H+3.5a! (7.95+H) +(134.6+3.5a!)cHct gß 3.5a
320 138.1H+5.4a!(7.95 +H) +(178.1+5.4a!)cHct gß 145H+5.4a! (7.95+H) +(185+5.4a!)cHctg ß 151.1H+5.4a!(7.95 +H) +(191.1+5.4a!)cHct gß 158H+5.4a! (7.95+H)+ +(198+5.4a!)cHctgß 5.4a
400 246.1H+8.4a!(7.95 +H) +(296.1+8.4a!)cHct gß 254.8H+8.4a!(7.95 +H) +(304.8+8.4a!)cHct gß 263.4H+8.4a!(7.95 +H) +(313.4+8.4a!)cHct gß 272H+8.4a! (7.95+H)+ +(322+8.4a!)cHctgß 8.4a
Table 16
Traction force at the point 1 at deep buckets
Bucket Traction force at the Traction force at the Traction force at the Traction force at the Elevator
width Bb , belt with i = 3 Sj, belt with i = 4 S1, belt with i = 5 S1, belt with i = 6 S1, productivity
mm N N N N , t/h
1 2 3 4 5 6
100 37H+5a!+ 39.2H+5a!+ 41.3H+5a!+ 43.5H+5a!+ a
+57cHctgß +59.2cHctgß +61.3 cHctgß +63.5 cHctgß
125 36.4H+6.5a!+ 39H+6.5a!+ 41.6H+6.5a!+ 44.2H+6.5a!+ 1.3a
+56.4cHctgß +59cHctgß +61.6cHctgß +64.2cHctgß
160 47.7H+10a!+ 51.1H+10a!+ 54.6H+10a!+ 58H+10a!+ 2a
+67.7cHctgß +71.1 cHctgß +74.6cHctgß +78cHctgß
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
НЕТРАДИЦШШ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАШЗМИ
End of table 16
Bucket Traction force at the Traction force at the Traction force at the Traction force at the Elevator
width Bb , belt with i = 3 S1, belt with i = 4 S1, belt with i = 5 S1 , belt with i = 6 S1 , productivity
mm N N N N , t/h
1 2 3 4 5 6
200 74.1H+16.2a!+ 78.4H+16.2a!+ 82.7H+16.2a!+ 87H+16.2a!+ 3.24a
+94.1cHctgß +98.4cHctgß +102.7cHctgß +97cHctgß
250 103.6H+25a!+ 108.8H+25a!+ 113.9H+25a!+ 119.1H+25a!+ 5a
+123.6cHctgß +128.8cHctgß +133.9cHctgß +139.1cHctgß
320 138.1H+40a!+ 145H+40a!+ 151.1H+40a!+ 158H+40a!+ 8a
+158.1cHctgß +165cHctgß +171.1cHctgß +178cHctgß
Table 17
Traction force at the point 1 at shallow buckets
Bucket width Bb , mm Tractive effort at the belt with i = 3 S1 , N Tractive effort at the belt with i = 4 S1, N Tractive effort at the belt with i = 5 S1 , N Tractive effort at the belt with i = 6 S1, N Elevator productivity, t/h
100 32.1H+2.5a!+ 34.3H+2.5a!+ 36.4H+2.5a!+ 38.6H+2.5a!+ 0.5a
+52.1cHctgß +54.3 cHctgß +56.4cHctgß +58.6cHctgß
125 33.4H+3.3a!+ 36H+3.3a!+ 37.8H+3.3a!+ 40.4H+3.3a!+ 0.66a
+53.4cHctgß +56cHctgß +57.8cHctgß +60.4cHctgß
160 41.5H+5.85a!+ 44.9H+5.85a!+ 48.4H+5.85a!+ 51.8H+5.85a!+ 1.17a
+61.5cHctgß +64.9cHctgß +68.4cHctgß +71.8cHctgß
200 61.9H+9.35a!+ 66.2H+9.35a!+ 70.5H+9.35a!+ 74.8H+9.35a!+ 1.87a
+81.9cHctgß +86.2cHctgß +90.5cHctgß +94.8cHctgß
250 79.1H+17.5a!+ 84.3H+17.5a!+ 89.4H+17.5a!+ 94.6H+17.5a!+ 3.5a
+99.1cHctgß +104.3 cHctgß +109.4cHctgß +114.6cHctgß
320 138.1H+27a!+ 145H+27a!+ 151.1H+27a!+ 158H+27a!+ 5.4a
+158.1cHctgß +165 cHctgß +171.1cHctgß +178cHctgß
400 246.1H+42a!+ 254.8H+42a!+ 263.4H+42a!+ 272H+42a!+ 8.4a
+271.1 cHctgß +279.8cHctgß +288.4cHctgß +297cHctgß
Table 18
Tractive effort on the drive drum at deep buckets
Bucket width Bb, mm Tractive effort at the belt with i = 3 F , N Tractive effort at the belt with i = 4 F , N Tractive effort at the belt with i = 5 F , N Tractive effort at the belt with i = 6 F , N Elevator productivity, t/h
1 2 3 4 5 6
100 5. 9H+a!(4+1.08H)+ +(30.7+1.08a!)cHct gß 6.3H+a! (4+1.08H)+ +(31.1+1.08a!)cHctg ß 6.6H+a! (4+1.08H)+ +(31.4+1.08a!)cHctg ß 7H+a! (4+1.08H)+ +(31.8+1.08a!)cHctg ß a
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету залiзничного транспорту, 2016, № 6 (66)
End of table 18
Bucket width B , mm Tractive effort at the belt with i = 3 F , N Tractive effort at the belt with i = 4 F , N Tractive effort at the belt with i = 5 F , N Tractive effort at the belt with i = 6 F , N Elevator productivity, t/h
1 2 3 4 5 6
125 5.82H+L3o&(4+1.0 8H) +(30.6+1.4cA) cHctgß 6.2H+1.3CÜ, (4+1.08H) +(31+1.4cA) cHctgß 6.7H+1.3cA (4+1.08H) +(31.5+1.4о&) cHctgß 7.1H+1.3al (4+1.08H)+ +(31.9+1.4о&) cHctgß 1.3a
160 7.63H+2al (4+1.08H) +(32.4+2.16o&) cHctgß 8.2H+2o& (4+1.08H)+ +(33+2.16al) cHctgß 8.7H+2o& (4+1.08H)+ +(33.5+2.16al) cHctgß 9.3H+2al (4+1.08H)+ +(34.1+2.16o&) cHctgß 2a
200 1L9H+3.24o&(4+1. 08H) +(36.7+3.5al) cHctgß 12.5H+3.24cA(4+1. 08H) +(37.3+3.5al) cHctgß 13.2H+3.24o&(4+1. 08H) +(38 +3.5al) cHctgß 13.9H+3.24aX (4+1.08H) +(38.7+3.5o&) cHctgß 3.24a
250 16.6H+5aX (4+1.08H)+ +(41.4+5.4aX) cHctgß 17.4H+5o& (4+1.08H)+ +(42.2+5.4aX) cHctgß 18.2H+5al (4+1.08H)+ +(43+5.4aX) cHctgß 19.1H+5o& (4+1.08H)+ +(43.9+5.4o&) cHctgß 5a
320 22.1H+8aX (4+1.08H)+ +(46.9+8.64o&) cHctgß 23.2H+8o& (4+1.08H)+ +(48+8.64o&) cHctgß 24.2H+8aX (4+1.08H)+ +(49+8.64aX) cHctgß 25.3H+8o& (4+1.08H)+ +(50.1+8.64o&) cHctgß 8a
400 42.5H+12.6cA(4+1. 08H) +(73.5+13.6o&) cHctgß 43.9H+12.6o&(4+1. 08H) +(74.9+13.6aT) cHctgß 45.3H+12.6o&(4+1. 08H) +(76.3+13.6al) cHctgß 46.7H+12.6aX (4+1.08H) +(77.7+13.6aX) cHctgß 12.6a
500 55.2H+19o& (4+1.08H)+ +(101.7+20.5aX) cHctgß 57H+19o& (4+1.08H)+ +(103.5+20.5al) cHctgß 58.8H+19o& (4+1.08H) +(105.3+20.5al) cHctgß 60.6H+19o& (4+1.08H) +(107.1+20.5a!) cHctgß 19a
650 70.1H+28.6cA(4+1. 08H) +(167.8+30.9aX) cHctgß 72.3H+28.6o&(4+1. 08H) +(170+30.9aT) cHctgß 74.5H+28.6o&(4+1. 08H) +(172.2+30.9al) cHctgß 76.7H+28.6al (4+1.08H) +(174.4+30.9aX) cHctgß 28.6a
800 70.9H+40o& (4+1.08H) +(196+43.2o&) cHctgß 73.7H+40o& (4+1.08H) +(198.8+43.2aX) cHctgß 76.4H+40o& (4+1.08H) +(201.5+43.2aX) cHctgß 79.2H+40o& (4+1.08H) +(204.3+43.2aX) cHctgß 40a
1000 83.9H+56.3o&(4+1. 08H) +(202.9+60.8aX) cHctgß 87.2H+56.3o&(4+1. 08H) +(206.2+60.8aX) cHctgß 90.6H+56.3o&(4+1. 08H) +(209.6+60.8al) cHctgß 93.9H+56.3al (4+1.08H) +(212.9+60.8al) cHctgß 56.25a
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету затзничного транспорту, 2016, № 6 (66)
Table 19
Tractive effort on the drive drum at shallow buckets
Bucket width Bb, mm Tractive effort at the belt with i = 3 F , N i =3 F, N Tractive effort at the belt with i = 3 F , N i =4 F, N Tractive effort at the belt with i = 3 F , N i =5 F, N Tractive effort at the belt with i = 3 F, N i =6 F, N Elevator productivity, t/h
100 5.1H+a! (4+1.08H)+ 5.5H+a! (4+1.08H)+ 5.8H+a! (4+1.08H)+ 6.2H+a! (4+1.08H)+ 0.5a
+(30+1.08a!) cHctgß +(30.3+1.08a!)cHctgß +(30.6+1.08a!)cHctg ß +(31+1.08a!) cHctgß
125 5.3H+1.3a!(4+1.08H) 5.8H+1.3a!(4+1.08H) 6.0H+1.3a!(4+1.08H) 6.5H+1.3a!(4+1.08H) 0.66a
+(30.1+1.4a!) cHctgß +(30.6+1.4a!) cHctgß +(30.8+1.4a!) cHctgß +(31.3+1.4a!) cHctgß
160 6.6H+2a! (4+1.08H)+ 7.2H+2a! (4+1.08H)+ 7.7H+2a! (4+1.08H)+ 8.3H+2a! (4+1.08H)+ 1.17a
+(31.4+2.16 a!)cHctg ß +(32+2.16a!) cHctgß +(32.5+2.16a!)cHctgß +(33.1+2.16a!)cHctgß
200 9.9H+3.24a!(4+1.08H) 10.6H+3.24a!(4+1.08H) 11.3H+3.24a!(4+1.08H) 12H+3.24a! (4+1.08H)+ 1.87a
+(34.7+3.5a!) cHctgß +(35.4+3.5a!) cHctgß +(36.1+3.5a!) cHctgß +(36.8+3.5a!) cHctgß
250 12.7H+5a! (4+1.08H)+ 13.5H+5a! (4+1.08H)+ 14.3H+5a! (4+1.08H)+ 15.1H+5a! (4+1.08H)+ 3.5a
+(37.5+5.4a!) cHctgß +(38.3+5.4a!) cHctgß +(39.1+5.4a!) cHctgß +(39.9+5.4a!) cHctgß
320 22.1H+8a! (4+1.08H)+ 23.2H+8a! (4+1.08H)+ 24.2H+8a! (4+1.08H)+ 25.3H+8a! (4+1.08H)+ 5.4a
+(46.9+8.6a!) cHctgß +(48+8.6a!) cHctgß +(49+8.6a!) cHctgß +(50.1+8.6a!) cHctgß
400 39.4H+12.6a!(4+1.08H) 40.8H+12.6a!(4+1.08H) 42.1H+12.6a!(4+1.08H) 43.5H+12.6a!(4+1.08H) 8.4a
+(70.4+13.6a!) cHctgß +(71.8+13.6a!) cHctgß +(73.1+13.6a!) cHctgß +(74.5+13.6a!) cHctgß
Estimated kinematic scheme of the elevator's drive is shown in the Fig. 2.
Fig. 2. Scheme of bucket elevator drive:
1 - engine; 2 - elastic clutch; 3 - locking device (ratchet); 4 -reducing gear; 5 - chain transmission; 6 - drive drum; 7 - belt
Efficiency coefficient of the drive is determined by the formula:
n = ng nch nc, (20)
where n g = 0,96 - efficiency coefficient of reducing gear; nch = 0,95 - efficiency coefficient of chain transmission; nc = 0,98 - efficiency coefficient of clutch. Thus,
n = ng nch nc =0,96 • 0,95 • 0,98 = 0,89.
Engine power is determined by the formula:
Fv
P = ■
1000n
(21)
Calculated power of the engine is determined by the formula:
pg = nup ,
(22)
where nu = 1,1... 1,2 - is the safety factor.
Since n = 0,89 and nu = 1,1 then using the formulas (21) and (22) we obtain the following:
F° v
Pg =-
1000n
= 0,001Fv .
(23)
Dependence of the calculated engine power on the values of design performance, bucket type, number of insert plies of the belt, speed of the belt movement and lifting height of cargo calculated using the formula (23) taking into account data from the Tables 18-19 are summarized in the Tables 20-21:
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету залiзничного транспорту, 2016, № 6 (66)
Table 20
Calculated power of engine at deep buckets
Bucket width Bb, mm Engine power at the belt with i = 3 P , W Engine power at the belt with i = 4 P , W Engine power at the belt with i = 5 P , W Engine power at the belt with i = 6 P , W Elevator productivity, t/h
1 2 3 4 5 6
100 v [5.9H+0& (4+1.08H)+ +(30.7+1.08al)cHct gß] v [6.3H+al (4+1.08H)+ +(31.1+1.08al)cHct gß] v [6.6H+aX (4+1.08H)+ +(31.4+1.08al)cHct gß] v[7H+al (4+1.08H)+ +(31.8+1.08al) cHctgß] a
125 [5.82H+1.3al(4+1. 08H) +(30.6+1.4al)cHctg ß]v [6.2H+1.3al (4+1.08H) +(31+1.4al) cHctgß]v [6.7H+1.3al (4+1.08H) +(31.5+1.4al) cHctgß]v [7.1H+1.3 al(4+1.08 H)+ +(31.9+1.4al)cHctg ß]v 1.3a
160 v[7.63H+2al (4+1.08H) +(32.4+2.16al) cHctgß] [8.2H+2al (4+1.08H)+ +(33+2.16al) cHctgß]v [8.7H+2al (4+1.08H)+ +(33.5+2.16al)cHct gß]v v[9.3H+2al (4+1.08H)+ +(34.1+2.16al) cHctgß] 2a
200 [11.9H+3.2al(4+1. 08H) +(36.7+3.5al) cHctgß]v [12.5H+3.2al(4+1.0 8H) +(37.3+3.5al) cHctgß]v [13.2H+3.2al(4+1.0 8H) +(38 +3.5al) cHctgß]v [13.9H+3.2al(4+1.0 8H) +(38.7+3.5al) cHctgß]v 3.24a
250 [16.6H+5al (4+1.08H)+ +(41.4+5.4aX) cHctgß]v [17.4H+5al (4+1.08H)+ +(42.2+5.4al) cHctgß]v [18.2H+5al(4+1.08 H)+ +(43+5.4al)cHctgß] v [19.1H+5al (4+1.08H)+ +(43.9+5.4al) cHctgß]v 5a
320 [22.1H+8al (4+1.08H)+ +(46.9+8.64aX)cHct gß]v [23.2H+8al (4+1.08H)+ +(48+8.64al) cHctgß]v [24.2H+8al (4+1.08H)+ +(49+8.64al)cHctgß ]v [25.3H+8al (4+1.08H)+ +(50.1+8.64al)cHct gß]v 8a
400 [42.5H+12.6aX(4+1 .08H) +(73.5+13.6al) cHctgß]v [43.9H+12.6al(4+1. 08H) +(74.9+13.6aT) cHctgß]v [45.3H+12.6al(4+1. 08H) +(76.3+13.6al) cHctgß]v [46.7H+12.6al(4+1. 08H) +(77.7+13.6aX) cHctgß]v 12.6a
500 [55,2H+19aX (4+1,08H)+ +(101,7+20,5 al)cH ctgß]v v[57H+19al (4+1,08H)+ +(103,5+20,5al) cHctgß] v[58,8H+19al (4+1,08H) +(105,3+20,5al) cHctgß] v[60,6H+19al (4+1,08H) +(107,1+20,5aT) cHctgß] 19a
650 [70,1H+28,6aX(4+1 ,08H) +(167,8+30,9al)cH ctgß]v [72,3H+28,6al(4+1, 08H) +(170+30,9al) cHctgß]v [74,5H+28,6al(4+1, 08H) +(172,2+30,9aX)cHc tgß]v [76,7H+28,6aX(4+1, 08H) +(174,4+30,9aX)cHc tgß]v 28,6a
800 [70,9H+40al (4+1,08H) +(196+43,2aX) cHctgß]v [73,7H+40al (4+1,08H) +(198,8+43,2al)cHc tgß]v [76,4H+40aX (4+1,08H) +(201,5+43,2aX)cHc tgß]v [79,2H+40aX (4+1,08H) +(204,3+43,2aX)cHc tgß]v 40a
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету затзничного транспорту, 2016, № 6 (66)
End of table 20
Bucket width Bb , mm Engine power at the belt with i = 3 P , W Engine power at the belt with i = 4 P , W Engine power at the belt with i = 5 P , W Engine power at the belt with i = 6 P , W Elevator productivity, t/h
1000 [83,9H+56,3aX(4+1 ,08H) +(202,9+60,8aX)cH ctgß]v [87,2H+56,3o&(4+1, 08H) +(206,2+60,8aX)cHc tgßlv [90,6H+56,3aX(4+1, 08H) +(209,6+60,8aX)cHc tgß]v [93,9H+56,3aX(4+1, 08H) +(212,9+60,8aX)cHc tgß]v 56,25a
Table 21
Calculated power of engine at shallow buckets
Bucket width B, mm Engine power at the belt with i = 3 P , W Engine power at the belt with i = 4 P , W Engine power at the belt with i = 5 P , W Engine power at the belt with i = 6 P , W Elevator productivity, t/h
100 [5,1H+o& (4+1,08H)+ +(30+1,08al) cHctgß]v v[5,5H+a! (4+1,08H)+ +(30,3+1,08aX) cHctgß] v[5,8H+a! (4+1,08H)+ +(30,6+1,08aX) cHctgß] v[6,2H+al (4+1,08H)+ +(31+1,08aX) cHctgß] 0,5a
125 [5,3H+1,3aX(4+1,08 H)+ +(30,1+1,4al) cHctgß]v [5,8H+1,3aX(4+1,08 H)+ +(30,6+1,4aX) cHctgß]v [6,0H+1,3aX(4+1,08 H)+ +(30,8+1,4aX) cHctgß]v [6,5H+1,3aX(4+1,08 H)+ +(31,3+1,4aX) cHctgß]v 0,66a
160 [6,6H+2aX (4+1,08H)+ +(31,4+2,16aX)cHct gß]v [7,2H+2aX (4+1,08H)+ +(32+2,16al) cHctgß]v [7,7H+2aX (4+1,08H)+ +(32,5+2,16aX)cHct gß]v [8,3H+2al (4+1,08H)+ +(33,1+2,16aX)cHct gß]v 1,17a
200 [9,9H+3,24aX (4+1,08H) +(34,7+3,5aX) cHctgß]v [10,6H+3,2aX(4+1,0 8H) +(35,4+3,5al) cHctgß]v [11,3H+3,2aX(4+1,0 8H) +(36,1+3,5aX) cHctgß]v [12H+3,24aX(4+1,0 8H) +(36,8+3,5aX) cHctgß]v 1,87a
250 [12,7H+5aX(4+1,08 H)+ +(37,5+5,4al) cHctgß]v [13,5H+5aX (4+1,08H)+ +(38,3+5,4aX) cHctgß]v [14,3H+5aX (4+1,08H)+ +(39,1+5,4aX) cHctgß]v [15,1H+5al (4+1,08H)+ +(39,9+5,4aX) cHctgß]v 3,5a
320 [22,1H+8aX (4+1,08H)+ +(46,9+8,6al) cHctgß]v [23,2H+8aX (4+1,08H)+ +(48+8,6aX) cHctgß]v [24,2H+8aX (4+1,08H)+ +(49+8,6aX) cHctgß]v [25,3H+8al (4+1,08H)+ +(50,1+8,6aX) cHctgß]v 5,4a
400 [39,4H+12,6aX(4+1, 08H) +(70,4+13,6aX) cHctgß]v [40,8H+12,6aX(4+1, 08H) +(71,8+13,6aX) cHctgß]v [42,1H+12,6aX(4+1, 08H) +(73,1+13,6aX) cHctgß]v [43,5H+12,6aX(4+1, 08H) +(74,5+13,6aX) cHctgß]v 8,4a
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету затзничного транспорту, 2016, № 6 (66)
Findings
Let us analyze the influence of design parameters of inclined bucket elevator for transportation of fine coal on the power of required drive. Taking into account the physical and mechanical properties of fine coal according to the recommendations presented in the work [9] it was selected the belt elevator with spaced deep buckets and centrifugal discharge. The speed of belt movement is v = 1,6m/s; fill factor of the bucket v = 1,6; t/m3 -density of fine coal; lift height of the cargo H = 10 m; inclination angle of elevator to the horizontal p = 75°.
Under these conditions the coefficient are:
a = 3,6vpy = 3,6-1,6-1,0- 0,8 = 4,61 (t m/l h); aX = 3,6vpy g = pyg =
3,6 v
= 1,0- 0,8- 9,8 = 7,84. (N/m)
At this the dependence of calculated power of electric engine of the elevator's bucket on the design performance is given in the Table 22.
Taking into account standard values of power of three-phase asynchronous squirrel cage motors of 4A series with synchronous frequency of
rotation 1000 rev/min for the drive of inclined elevator for transportation of fine coal it was compiled the table of correspondence of design performance and the required engine power.
Analyzing results of calculations presented in the Table 23 it can be concluded that the dependence of elevator drive power on its design performance (at fixed lift height, type of cargo, the angle of inclination to horizontal) in general is a piecewise constant monotonically increasing function. At this the productivity values given in the last column of the Table 23 should be considered as such, in which the power value varies and is equal to the appropriate value given in the second column of the Table 23. But to the value of 4.61 t/h the power is 0.75 kW due to the minimum of such power in the engines of such class. According to calculations it was plotted the dependence of inclined elevator drive for fine coal transportation on the value of design productivity (Fig. 3).
To determine the graphic dependence of elevator drive power on its inclination angle we take the initial data: transported material - fine coal; productivity Pr = 20 t/h lift height H = 10 m; speed of the belt movement v = 1,6 m/sec.
Table 22
Calculated power of the engine at deep buckets
Bucket width B, mm Engine power at the belt with i = 3 P , W Engine power at the belt with i = 4 P , W Engine power at the belt with i = 5 P , W Engine power at the belt with i = 6 P , W Elevator productivity, t/h
100 520 533 543 555 4.61
125 614 627 651 670 6
160 899 918 934 953 9.22
200 1438 1457 1480 1502 14.9
250 2158 2184 2210 2239 23.1
320 3306 3341 3373 3409 36.9
400 5452.5 5493 5538 5588 58.1
500 7935 7988 8045 8109 87.6
650 11533 11603 11673 11746 131.8
800 15251 15341 15430 15519 184.4
1000 20939 21039 21144 21261 259.3
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
Taking into account the fact that a = 4,611 t m/l h • and Pr = 20 t/h for calculation of drive power the dependency in the 5th line and first column will be used (Tab. 20).
Substituting the initial data for calculation into resulting dependence we obtain:
P = 76,3• ctgß +1751,2 .
(24)
Graphic dependence of value of elevator drive power when transporting fine coal with design productivity Pr = 20 t/h on the angle of its inclination within ß = n 3...rc/ 2 is presented in the Fig. 4.
Engine power at shallow buckets
Table 23
Bucket width Bb , mm Engine power P , kW Engine type Elevator productivity, t/h
100 0.75 4А80А6У3 4.61
125 0.75 4А80А6У3 6
160 1.1 4А80В6У3 9.22
200 1.5 4А90Ь6У3 14.9
250 2.2 4А100Ь6У3 23.1
320 4.0 4А112ЫВ6У3 36.9
400 5.5 4А132S6У3 58.1
500 11.0 4А160S6У3 87.6
650 15.0 4А160Ы6У3 131.8
800 18.5 4А180Ы6У3 184.4
1000 30 4А200Ы6У3 259.3
Fig. 3. Dependence of elevator drive power on the productivity
Fig. 4. Dependence of elevator drive power on the angle of inclination
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету затзничного транспорту, 2016, № 6 (66)
Originality and practical value
It was plotted the analytical dependence of elevator drive power on its design parameters (type and characteristics of the cargo, lifting height, inclination angle, productivity), which takes into account the standard sizes and types of buckets and belts.
Using this dependence makes it possible rapid determination of the approximate value of drive power of inclined elevators with deep and shallow buckets and performing high-quality selection of its key elements at the specific design characteristics.
Based on the proposed dependences it was plotted graphic dependence of power influence of required inclined elevator's drive on design productivity at the fixed lift height, inclination angle, and the type of cargo. It was also presented the graphic dependence of drive power on the inclination angle of elevator at the other fixed design parameters.
Conclusions
For inclined belt bucket elevators it was plotted analytical dependence of the drive power value on its design parameters. This makes it possible to obtain the required drive power value taking into account the type and physical and mechanical properties of the cargo, the value of lift height, inclination angle, design productivity and working conditions, involving only one calculation formula. As an example of involving the obtained results it was considered the process of plotting the dependence of drive power on the design productivity of elevator for fine coal transportation. For such elevator it was plotted the parametric and graphic dependence of drive power on design productivity and inclination angle of elevator taking into account the standard parameters of buckets and properties of electric engines. It was established that the function of varying the value of elevator power on the design productivity (at fixed lifting height, type of cargo, inclination angle) is piecewise and mono-tonically increasing, and the dependence of elevator power value on its inclination angle (at fixed design productivity, lift height, load type, the speed of belt movement) is non-linear and monotonically decreasing.
LIST OF REFERENCE LINKS
1. Александров, М. П. Подъемно-транспортные машины : учебник / М. П. Александров. - Москва : Высш. шк., 2000. - 522 с.
2. Богомаз, В. М. Аналiз впливу проектних характеристик елеватора на параметри його приводу / В. М. Богомаз // Наука та прогрес транспорту. - 2015. - № 3 (57). - С. 162-175. doi: 10.15802/stp2015/46076.
3. Богомаз, В. М. Дослвдження впливу проектно! продуктивносп елеватора на потужшсть його приводу / В. М. Богомаз, К. Ц. Главацький, О. А. Мазур // Наука та прогрес транспорту. -2015. - № 2 (56). - С. 189-206. doi: 10.15802/stp2015/42178.
4. Богомаз, В. М. Дослщження залежносп поту-жносп приводу стрiчкового конвееру ввд його проектних параметрiв / В. М. Богомаз // Наука та прогрес транспорту. - 2016. - № 1 (61). -С. 131-146. doi: 10.15802/stp2016/61024.
5. Зенков, Р. Л. Машины непрерывного транспорта : учебник / Р. Л. Зенков, И. И. Ивашков, Л. Н. Колобов. - Москва : Машиностроение, 1987. - 432 с.
6. 1ванченко, Ф. К. Щдйомно-транспортш маши-ни : тдручник / Ф. К. 1ванченко. - Ки!в : Вища шк., 1993. - 413 с.
7. Катрюк, И. С. Машины непрерывного транспорта. Конструкции, проектирование и эксплуатация : учеб. пособие / И. С. Катрюк, Е. В. Мусияченко. - Красноярск : ИПЦ КГТУ, 2006. - 266 с.
8. Кузьмин, А. В. Справочник по расчетам механизмов подъемно-транспортных машин : учеб. пособие. - Минск : Высш. шк., 1983. - 350 с.
9. Шдйомно-транспортш машини: розрахунки шдшмальних i транспортувальних машин : ш-дручник / В. С. Бондарев, О. I. Дубинець, М. П. Колюник [та ш.]. - Ки!в : Вища шк., 2009. - 734 с.
10. Ракша, С. В. Аналiз впливу пружних деформа-цш несучого каната на зусилля в тяговому канат шдвкно! дороги / С. В. Ракша, Ю. К. Го-рячов, О. С. Куроп'ятник // Наука та прогрес транспорту. - 2013. - № 6 (48). - С. 110-119. doi: 10.15802/stp2013/19686.
11. Расчет и проектирование транспортных средств непрерывного действия : науч. пособие для вузов / А. И. Барышев, В. А. Будишевский, А. А. Сулима, А. М. Ткачук. - Донецк : Норд-Пресс, 2005. - 689 с.
12. Ромакин, Н. Е. Машины непрерывного транспорта : учеб. пособие / Н. Е. Ромакин. - Москва : Издательский дом «Академия», 2008. - 432 с.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету затзничного транспорту, 2016, № 6 (66)
13. Askari, H. Nonlinear Oscillations Analysis of the Elevator Cable in a Drum Drive Elevator System / H. Askari, D. Younesian, Z. Saadatnia // Advances in Applied Mathematics and Mechanics. - 2015. -Vol. 7. - Iss. 01. - P. 43-57. doi: 10.4208/aamm.2013.m225.
14. Failure Analysis on Conveyer Chain Links of a Central Bucket Elevator / J. Yin, O. Muvengei,
J. Kihiu, K. Njoroge / J. of Mechanical and Civil Engineering. - 2016. - Vol. 13. - Iss. 04. -P. 56-63. doi: 10.9790/1684-1304075663.
15. Li, S. C. Study on Elevator Drive System Dynamics Simulation of Rail Transport Conveyer / S. C. Li, X. J. Wang // Applied Mechanics and Materials. -2014. - Vol. 511-512. - P. 619-622. doi: 10.4028/www. scientific.net/amm. 511-512.619.
В. М. БОГОМАЗ1*, М. В. БОРЕНКО2*, С. В. ПАЦАНОВСЬКИЙ3*, О. О. ТКАЧОВ4*
1 Каф. «Вшськова тдготовка спещалютш Державно! спещально! служби транспорту», Дтпропетровський
нацюнальний ушверситет залiзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Днтро, Украша,
49010, тел. +38 (056) 373 19 09, ел. пошта [email protected], ОЯСГО 0000-0001-5913-2671
2*Каф. «Вшськова тдготовка спещалютш Державно! спещально! служби транспорту», Дтпропетровський
нацюнальний ушверситет залiзничного транспорту iменi академiка В. Лазаряна, вул. Лазаряна, 2, Дшпро, Укра!на,
4*9010, тел. +38 (056) 373 19 09, ел. пошта [email protected], ОЯСГО 0000-0001-9578-3906
3*Каф. «Вшськова тдготовка спещалютш Державно! спещально! служби транспорту», Дтпропетровський
нацюнальний ушверситет залiзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Днтро, Укра!на,
4*9010, тел. +38 (056) 373 19 09, ел. пошта [email protected], ОЯСГО 0000-0002-1628-3733
4*Каф. «Вiйськова пiдготовка спещалютш Державно! спецiально! служби транспорту», Дтпропетровський
нацюнальний ушверситет залiзничного транспорту iменi академiка В. Лазаряна, вул. Лазаряна, 2, Днтро, Укра!на,
49010, тел. +38 (056) 373 19 09, ел. пошта [email protected], ОЯСГО 0000-0002-1857-7567
АНАЛ1З ВПЛИВУ ПРОЕКТНИХ ХАРАКТЕРИСТИК ПОХИЛОГО К1ВШОВОГО ЕЛЕВАТОРА НА ПОТУЖН1СТЬ ЙОГО ПРИВОДУ
Мета. Одним iз основних елеменпв похилих стрiчкових швшових елеваторiв е !х привад. Для визначення потужностi приводу необхвдно виконати розрахунки за стандартними методиками, якi наведет в сучаснiй лiтературi. Основними проектними параметрами таких елеваторiв е продуктившсть, висота тд-йому, тип та властивосп транспортованого вантажу, кут нахилу. В роботi необхвдно побудувати параметри-чну залежнiсть потужностi приводу елеватора ввд його проектних параметрiв, яка враховувала б стандартш розмiри i типи ковшiв та стрiчок. Методика. Використовуючи методику тягового розрахунку похилих стрь чкових швшевих елеваторiв, побудовано параметричнi залежностi зусиль у характерних точках траси елеватора, а також залежносп потужностi приводу швидкохщних елеваторiв iз глибокими та мшкими ковшами вiд !х проектних параметрiв та характеристик. Результата. На основi побудованих параметричних залежно-стей встановлено, що функцгя змiни величини потужносп елеватора вiд проектно! продуктивностi (при фш-сованих висотi шдйому, тит вантажу, кутi нахилу) е кусково-сталою та монотонно зростаючою. Побудовано графiчну залежнiсть потужностi приводу елеватора вщ кута нахилу в допустимих межах його змiни. Отримана залежшсть е нелiнiйною та монотонно спадаючою. Визначенi в загальному виглядi штервали проектних значень продуктивностi, що забезпечують постiйну величину потужностi приводу похилого елеватора. Як приклад залучення отриманих результатiв розглянуто процес побудови залежностей потужностi приводу вiд проектно! продуктивносп та кута нахилу елеватора для транспортування дрiбного вугiлля. Наукова новизна. Авторами вперше побудованi параметричш залежностi потужностi приводу похилого швшевого елеватора вiд його проектних параметрiв, якi враховують стандартнi розмiри i типи ковшiв та стрiчок. Практична значимкть. Використання побудованих залежностей дае можливють ввдносно швид-кого визначення приблизного значення потужностi приводу похилих швидкохвдних елеваторiв iз глибокими та мiлкими ковшами на стадi! проектування, а також можливо виконати яшсний пiдбiр його основних елементiв при конкретних проектних характеристиках: тип вантажу, продуктившсть, висота шдйому, кут нахилу.
Ключовi слова: похилий елеватор; швш; привiд; потужшсть; продуктивнiсть; вантаж; кут нахилу
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
НЕТРАДИЦШШ ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАШЗМИ
В. Н. БОГОМАЗ1*, Н. В. БОРЕНКО2*, С. В. ПАЦАНОВСКИЙ3*, А. А. ТКАЧОВ4*
1 Каф. «Военная подготовка специалистов Государственной специальной службы транспорта», Днепропетровский национальний университет железнодорожного транспорта имени академика В. Лазаряна, вул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 19 09, эл. почта [email protected], ORCID 0000-0001-5913-2671 2*Каф. «Военная подготовка специалистов Государственной специальной службы транспорта», Днепропетровский национальний университет железнодорожного транспорта имени академика В. Лазаряна, вул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 19 09, эл. почта [email protected], ORCID 0000-0001-9578-3906 3*Каф. «Военная подготовка специалистов Государственной специальной службы транспорта», Днепропетровский национальний университет железнодорожного транспорта имени академика В. Лазаряна, вул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 19 09, эл. почта [email protected], ORCID 0000-0002-1628-3733 4*Каф. «Военная подготовка специалистов Государственной специальной службы транспорта», Днепропетровский национальний университет железнодорожного транспорта имени академика В. Лазаряна, вул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 19 09, эл. почта [email protected], ORCID 0000-0002-1857-7567
АНАЛИЗ ВЛИЯНИЯ ПРОЕКТНЫХ ХАРАКТЕРИСТИК НАКЛОННОГО КОВШОВОГО ЭЛЕВАТОРА НА МОЩНОСТЬ ЕГО ПРИВОДА
Цель. Одним из основных элементов наклонных ленточных ковшовых элеваторов является их привод. Для определения мощности привода необходимо провести расчеты по стандартным методикам, которые изложены в современной литературе. Основными проектными параметрами являются производительность, высота подъема, тип и свойства транспортированного материала, угол наклона. В работе необходимо построить параметрическую зависимость мощности привода элеватора от его проектных параметров, которая учитывала бы стандартные размеры и типы ковшей и лент. Методика. Используя методику тягового расчета наклонных ленточных ковшовых элеваторов, построены параметрические зависимости усилий в характерных точках трассы элеватора, а также зависимости мощности привода быстроходных элеваторов с глубокими и мелкими ковшами от их проектных параметров и характеристик. Результаты. На основе построенных параметрических зависимостей установлено, что функция изменения величины мощности элеватора от проектной производительности (при фиксированных высоте подъема, типе груза, скорости движения ленты) является кусочно-постоянной и монотонно возрастающей. Построена графическая зависимость мощности привода элеватора от угла наклона в допустимых пределах его изменения. Полученная зависимость является нелинейной и монотонно убывающей. Определены в общем виде интервалы проектных значений производительности, которые обеспечивают постоянную величину мощности привода наклонного элеватора. В качестве примера применения полученных результатов рассмотрен процесс построения зависимости мощности привода от проектной производительности и угла наклона элеватора для транспортировки мелкого угля. Научная новизна. Авторами впервые построены параметрические зависимости мощности привода наклонного ковшевого элеватора от его проектных параметров, которые учитывают стандартные размеры и типы ковшей и лент. Практическая значимость. Использование построенных зависимостей дает возможность относительно быстрого определения приблизительного значения мощности привода наклонных быстроходных элеваторов с глубокими и мелкими ковшами на стадии проектирования. А также можно выполнить качественный подбор его основных элементов при конкретных проектных характеристиках: типе груза, производительности, высоте подъема, угле наклона.
Ключевые слова: наклонный элеватор; ковш; привод; мощность; производительность; груз; угол наклона
REFERENCES
1. Aleksandrov M.P. Podyemno-transportnyye mashiny [Handling machinery]. Moscow, Vysshaya shkola Publ., 2000. 522 p.
2. Bohomaz V.M. Analiz vplyvu proektnykh kharakterystyk elevatoru na parametry yoho pryvodu [Influence analyses of designed characteristics of the elevator to the parameters of its drive]. Nauka taprohres transportu - Science and Transport Progress, 2015, no. 3 (57), pp. 162-175. doi: 10.15802/stp2015/46076.
3. Bohomaz V.M., Hlavatskyi K.Ts., Mazur O.A. Doslidzhennia vplyvu proektnoi produktyvnosti elevatoru na potuzhnist yoho pryvodu [Research of influencing of project discriptions of elevator on parameters of its drive]. Nauka ta prohres transport - Science and Transport Progress, 2015, no. 2 (56), pp. 189-206. doi: 10.15802/stp2015/42178.
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету залiзничного транспорту, 2016, № 6 (66)
4. Bohomaz V.M. Doslidzhennia zalezhnosti potuzhnosti pryvodu strichkovoho konveieru vid yoho proektnykh parametriv [Research of dependence of belt conveyer drive power on its design parameters]. Nauka taprohres transportu - Science and Transport Progress, 2016, no. 1 (61), pp. 131-146. doi: 10.15802/stp2016/61024.
5. Zenkov R.L., Ivashkov I.I., Kolobov L.N. Mashiny nepreryvnogo transporta [Stream-flow transportation machines]. Moscow, Mashinostroyeniye Publ., 1987. 432 p.
6. Ivanchenko F.K. Pidiomno-transportni mashyny [Handling machinery]. Kyiv, Vyshcha shkola Publ., 1993. 413 p.
7. Katryuk I.S., Musiyachenko Ye.V. Mashiny nepreryvnogo transporta. Konstruktsii, proyektirovaniye
i ekspluatatsiya [Stream-flow transportation machines. Constructions, designing and operation]. Krasnoyarsk, IPTs KGTU Publ., 2006. 266 p.
8. Kuzmin A.V. Spravochnik po raschetam mekhanizmov podyemno-transportnykh mashin [Reference book on calculation of mechanisms of handling machinery]. Minsk, Vysshaya shkola Publ., 1983. 350 p.
9. Bondariev V.S., Dubynets O.I., Kolisnyk M.P. Pidiomno-transportni mashyny: rozrakhunky pidiimalnykh i transportuvalnykh mashyn [Handling machinery: calculations of lifting and transporting machines]. Kyiv, Vyshcha shkola Publ., 2009. 734 p.
10. Raksha S.V., Horiachov Yu.K., Kuropiatnyk O.S. Analiz vplyvu pruzhnykh deformatsii nesuchoho kanata na zusyllia v tiahovomu kanati pidvisnoi dorohy [Influence analysis of elastic deformations of the track cable on efforts in the hauling rope of aerial ropeway]. Nauka ta prohres transportu - Science and Transport Progress, 2013, no. 6 (48), pp. 110-119. doi 10.15802/stp2016/61024.
11. Baryshev A.I., Budishevskiy V.A., Sulima A.A., Tkachuk A.M. Raschet i proyektirovaniye transportnykh sredstv nepreryvnogo deystviya [Calculation and design of stream-flow transportation machines]. Donetsk, Nord-Press Publ., 2005. 689p.
12. Romakin N.Ye. Mashiny nepreryvnogo transporta [Stream-flow transportation machines]. Moscow, Akade-miya Publ., 2008. 432 p.
13. Askari H., Younesian D., Saadatnic Z. Nonlinear oscillations analysis of the elevator cable in a drum drive elevator system. Advances in Applied Mathematics and Mechanics, 2015, vol. 7, issue 01, pp. 43-57. doi: 10.4208/aamm.2013.m225.
14. Yin J., Muvengei O., Kihiu J., Njoroge K. Failure analysis on conveyer chain links of a central bucket elevator. Journal of Mechanical and Civil Engineering, 2016, vol. 13, issue 04, pp. 56-63. doi: 10.9790/16841304075663.
15. Li S.C., Wang X.J. Study on elevator drive system dynamics simulation of rail transport conveyer. Applied Mechanics and Materials, 2014, vol. 511-512, pp. 619-622. doi: 10.4028/www.scientific.net/amm.511-512.619.
Prof. S. V. Raksha, D. Sc. (Tech.); Associate Prof. S. V. Shatov, D. Sc. (Tech.) recommended this
article to be published
Accessed: Sep. 07, 2016
Received: Dec. 29, 2016