Научная статья на тему 'Помехоустойчивый слоеный пространственный блоковый код'

Помехоустойчивый слоеный пространственный блоковый код Текст научной статьи по специальности «Математика»

CC BY
81
34
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Помехоустойчивый слоеный пространственный блоковый код»

УДК 621.391

ПОМЕХОУСТОЙЧИВЫЙ СЛОЕНЫЙ ПРОСТРАНСТВЕННЫЙ

БЛОКОВЫЙ КОД

М.В. Гофман, аспирант (Петербургский государственный университет путей сообщения, Московский пр., 9, г. Санкт-Петербург, 190031, Россия, [email protected])

Передатчик, оснащенный несколькими передающими антеннами, позволяет передавать множество сигналов одновременно, а приемник, использующий несколько принимающих антенн, обеспечивает большую надежность приема. Создавая пространственный код, который будет применяться в таких многоантенных системах связи, приходится выбирать между скоростью передачи и помехоустойчивостью связи. В данной статье представлен помехоустойчивый слоеный пространственный код. Параметры кода позволяют получать его реализации, ориентированные на тот или иной канал с замираниями. Особенностями кода являются отсутствие в нем символьной избыточности и постоянная задействованность каждой из передающих антенн. Предлагаемый код использует пространственный, временной и частотный виды разнесений.

Ключевые слова: многоантенная система связи, помехоустойчивый слоеный пространственный код, канал с замираниями, позиционирующие функции, порождающая матрица.

NOISE COMBATING LAYERED SPACE BLOCK CODE Gofman M. V., Postgraduate (Petersburg State Transport University, 9, Moskovsky Av., St. Petersburg, 190031, Russia, [email protected]) Аbstract. The transmitter is equipped with multiple transmit antennas can transmit multiple signals simultaneously, and the receiver uses multiple receiving antennas, allows more reliable reception. Creating space code, which will be used in the multi-antenna communication systems, we have to choose between the speed of transmission and noise combating. This article presents noise combating layered space code. Parameters allow you to get the code of its implementation, focused on a particular channel with fading. Feature of the code is that it does not have symbolic redundancy, and the fact that each of the transmit antennas are always involved. The proposed code uses the spatial, temporal and frequency types of diversity.

Keywords: MIMO communication system, noise combating layered space code, channel with fading, positioning function, generator matrix, diversity.

Многоантенные системы связи, в которых участники общения используют несколько передающих и принимающих антенн, позволяют передавать данные с высокой скоростью и обеспечивать их надежный прием. Помехоустойчивое пространственное кодирование, применяемое в таких системах связи в качестве канального кодирования, базируется на внесении избыточности во временную, частотную и пространственную области.

Верхние границы для значений попарной вероятности ошибки декодирования пространственных кодов по минимуму евклидова расстояния, представленные в статьях [1, 2] для каналов с медленными, быстрыми и блоковыми рэлеевскими замираниями, указывают на значительное снижение попарной вероятности ошибки декодирования для систем многоантенной связи по сравнению с системами одноантенной связи. В этих же работах подробно изложены критерии для проектирования помехоустойчивых кодов, основывающиеся на верхних границах.

В литературе уже описаны алгебраические слоеные пространственные коды, использующие, помимо слоения, свойства алгебраических чисел [3, 4], показано, что для некоторых из таких кодов существуют порождающие матрицы [5].

В ряде работ были представлены позиционирующие функции, позволяющие конструировать кодовые слова слоеных пространственных кодов [6, 7].

В данной статье представлен слоеный пространственный код, удовлетворяющий критериям для проектирования и ориентированный на каналы с медленными, быстрыми или блоковыми рэлеевскими замираниями. Особенностью кода является то, что в нем отсутствует символьная избыточность: число элементов в кодовом слове совпадает с числом элементов в кодируемом им векторе.

Модели каналов связи

Предположим, что передающие и принимающие антенны расположены друг от друга на достаточном расстоянии, чтобы предполагать отсутствие корреляции замираний в каналах, связывающих пары антенн. Допустим, что передачи ведутся с промежутком во времени, превышающем многолучевое рассеяние канала, то есть нет интерференции сигналов во времени. Также предположим, что длительность всех передач в целом намного меньше времени когерентности канала, то есть состояние канала не меняется в течение всего сеанса связи. При таких предположениях замирания в канале, как пространственно-селективные, можно рассматривать частотно- и временно-неселективные замирания. Канал с медленными рэлеевскими замираниями представляет собой такой пространственно-селективный частотно- и временно-неселективный канал, в кото-

ром принятый сигнал ГР N.

У (т) = Л' ^ Н'-1' С(т) + ^(т)'

где /е{1, 2, ..., Л^} - номер принимающей антенны; уе{1, 2, ..., ЫТх}} - номер передающей антенны; те{1, 2, ..., А^} - номер посылки; hijV(i,у) -независимые комплексные гауссовы случайные величины с математическим ожиданием, равным нулю, и дисперсией, равной единице; с(т) - элемент кодового слова - комплексное число; ^,(т) V (/, т) - независимые комплексные гауссовы случайные величины с математическим ожиданием, равным нулю, и дисперсией, равной единице; р -коэффициент, управляющий отношением сигнал/шум в модели канала. Нормирующий коэффициент ЫТх обеспечивает одинаковое количество мощности, излучаемой каждой передающей антенной.

Предположим, как и в предшествующей модели, пространственную селективность и частотную неселективность замираний. Но, в отличие от предыдущего случая, будем предполагать, что одна передача длится дольше времени когерентности канала, то есть замирания сигналов, посланных в одну передачу, отличаются от замираний сигналов, посланных в другую передачу. В этом случае замирания в канале можно характеризовать как пространственно-селективные частотно-неселективные временно-селективные. Канал с быстрыми рэлеевскими замираниями представляет собой такой пространственно-селективный частотно-неселективный временно-селективный канал, в котором принятый сигнал

у (т)=\Нг' £^1 (т)' с (т)+(т)'

V "Тх 1=1

где hij(m) V (/, у, т) - независимые комплексные гауссовы случайные величины с математическим ожиданием, равным нулю, и дисперсией, равной единице.

Допустим, что используется многочастотная передача, в которой каждый частотный подканал занимает полосу частот, большую полосы частотной когерентности канала, то есть замирания в частотной области отличаются для каждого частотного подканала, являясь замираниями частотно-селективными. Предположим, что к тому же в канале есть пространственно- и временно-селективные замирания. Канал с блоковыми рэлеевски-ми замираниями представляет собой такой пространственно/частотно/временно-селективный канал, в котором принятый сигнал

У* (т ) =\ ТГ ' ^ к (т ) ' (т ) + (т )'

V "тх ]=\

где ке{ 1, 2, ..., N} - номер частотного подканала;

(т) = Е аи,1 (т) ехР

2п1 (k -1) %1

Т

где I = V—1; Ь - число поступающих на приемник рассеянных реплик переданного сигнала; ау,г(т) V (/, у, I, т) - независимые комплексные гауссовы случайные величины с математическим ожиданием, равным нулю, и дисперсией, равной 52, при

этом

^ 1Ь) = 1; Т - длительность передачи одной

посылки; тI - задержка распространения сигнала.

Пространственное кодирование

Организуя передачу сигналов в многоантенных системах связи, необходимо указывать номер передающей антенны, номер частотного подканала (при многочастотной передаче) и номер посылки для каждого передаваемого сигнала. Таким образом, если нет многочастотной передачи, каждый передаваемый сигнал увязывается с номером передающей антенны и номером посылки. Если же применяется многочастотная передача, передаваемый сигнал увязывается с номерами передающей антенны, частотного подканала и посылки. Эти пары и тройки номеров называются позиционными парами и тройками соответственно.

Чтобы задать пространственное кодовое слово, требуется указать множество элементов кодового слова и позиционных пар (троек), а также правила соответствия элементов этих множеств друг другу. Пространственные кодовые слова представляются матрицами или векторами. В этих матричных или векторных формах каждый элемент - это элемент кодового слова. Ячейка в такой форме увязана с номерами передающей антенны, частотного подканала и посылки. Элемент кодового слова, заняв ячейку, увязывается с этими номерами, иными словами - с позиционной парой (или тройкой).

Порождающая матрица пространственного кода выполняет линейное преобразование кодируемого вектора в кодовое слово, тем самым выполняя сразу два действия для создания пространственного кодового слова - получение элементов кодового слова и увязывание их с позиционными парами (тройками). Порождающая матрица пространственного кода - это произведение из двух матриц: матрицы для преобразования и матрицы для выборки. Матрица для преобразования выполняет линейное преобразование кодируемого вектора в вектор из элементов кодового слова; таким образом осуществляется первое действие, требуемое для создания пространственного кодового слова, - получение элементов кодового слова. Матрица для выборки составляется из нулей и единиц так, что на каждой строке только одна единица, остальные элементы - нули. Каждой строке матрицы для выборки сопоставлены номе-

=1

ра передающей антенны, частотного подканала и посылки. Линейное преобразование, выполняемое над вектором из элементов кодового слова, - это второе и завершающее действие, необходимое для конструирования пространственного кодового слова, - увязывание элементов кодового слова с номерами антенн, подканалов и посылок.

Слоеный пространственный блоковый код

Предположим, что ЫТх - число передающих антенн, Ыс - число частотных подканалов (в случае, когда применяется многочастотная передача). Требуется за N посылок передать вектор 5 = 52 ... ^к)т, где s1 0'е{1, 2, ..., Ы^ЫМ}) -комплексные числа, мнимая и вещественная части которых - целые числа; - оператор транспонирования. Одна посылка - это время передачи NTxNc элементов, которое может включать заградительный интервал, как, например, с использованием OFDM-технологии.

Представленный в данной статье слоеный пространственный код имеет порождающую матрицу. Для задания порождающей матрицы используется несколько численных параметров, принимающих значения из множества целых положительных чисел. Эти параметры обозначены символами J, Ыф Ы,, Ыъ. Требуется, чтобы между величинами ЫТх, Ыс, N и параметрами J, Ы9, Ыь, Ыъ выполнялись следующие соотношения. Прежде всего необходимо, чтобы Ы9>ЫТх. Если Ыс=1 (нет многочастотной передачи), параметрам требуется задать такие целые положительные численные значения, при которых выполнялось бы равенство JЫqNLNъ= Ы; код при таком значении Ыс называется пространственно-временным (ПВ). Если же N>1, то параметрам задаются такие значения, которые удовлетворяют равенствам JЫчNL=Ыc и Ыъ=Ы код при таком значении Ыс называется пространственно-частотно-временным (ПЧВ).

Матрица для преобразования обозначена символом T и представляет собой блоково-диагональ-ную матрицу

Т (3, N, N1, N, ЫТх, ф ) = Iу ® DNg N (ф ),

где ф - алгебраический элемент; ® - оператор кронекерова произведения; I/ - единичная матрица размером JxJ;

' 0 (N) >

D,

'( Ф ) =

ф N

• 0( N )

ф N

• 0(N )

где N=NTxNLNb; если N=2n, то

° ( ^ ) = * ( F ( N ))H

exp I I---п

1 2 N

fI N-1

exp I I---п

Ч 2 N

где - оператор эрмитова сопряжения; F(N) -матрица прямого преобразования Фурье без нормирующего коэффициента, размер которой NxN; если же N^2n, то в качестве ©(N) используется первая главная подматрица размера NxN из мат-

V25NL(N)n n « -

рицы -р=—0 ( 21 " " ), где Ici - ближайшее

4n v '

целое, которое больше или равно с.

Матрицы ©(N) называют комплексными матрицами вращения, в [8] описаны варианты таких матриц. Эти матрицы совместно с ф выполняют преобразование части кодируемого вектора в слои кодового слова. Величиной N задается число элементов в слое, а произведением JNq - число слоев в кодовом слове.

Величина ф - это алгебраический элемент степени как минимум NLNqNb над полем F, которое представляет собой такое расширение поля Q (поле рациональных чисел), что содержит все элементы матрицы ©(N), информационный алфавит АсZ[i] (комплексные числа, мнимая и вещественная части которых - целые числа) и величины exp(-I.2m/rs). Одним из возможных вариантов значений для этой величины является

ф = exp

2п

при условии, что rl/sl е Q

и что наи-

—I |, где p - целое число, большее или

V Рп

равное ЫьЫ9Ыъ, а п - наибольшее общее кратное элементов множества {4Ы, 51, 52, ..., 5^}, где 5 (/е{1, 2, ..., Ь}) определяются из пропорции

Т .

больший общий делитель г и 5 равен 1. Кроме того, в качестве ф можно использовать трансцендентное над полем Е число. В [9] приведены примеры вычисления этой величины.

Матрица для выборки обозначена символом Б и составляется с применением позиционирующих

функций I и С: р (J, Nq, N., , ЫТх) =

Ад Рг,1

Р 1,2

Р 2,2

PNtx

PNTr

Р1, JNq N Р 2, JNq N

PNtx Nc N,, JNq N j

X

1

X

Nq-1

N-N.,1

N.N.,2

где p, =

= fl, j = (a (i) -1) • N + b (i),

10 иначе,

где a (i) = |((k (i) -1) mod( JNq NL) +1, m (i) +

k (i) -1

JNq NL

■NTx; Nq, NTx, Nl , Nb, J)

b (i) = Z((k (i) -1) mod ( JNq NL) +1, m(i)

k (i) -1

JNq NL

■ NTx; Nq, NTx, Nl , Nb, J),

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

где i e {1, 2, ..., NTxNcNt }; [a] - целая часть числа a;

i(i) = (i -1) mod (NTx) +1; к (i) =

i -1

N

+1

(x) mod (у) =

x - у

У * 0 У = 0

где

LcJ - бли-

жайшее целое, меньшее или равное с.

Порождающая матрица слоеного пространственного кода - это произведение из матриц T и Б:

G(J, Ы„ Ыи Ыь, Ытх, Ф)=Р-Т.

Чтобы закодировать вектор 5 слоеным кодом, достаточно выполнить линейное преобразование этого вектора порождающей матрицей G:

с=G(J, Ы„ Ыь, Ыь, Ытх, Ф)- ?, где С - кодовое слово слоеного пространственного кода. Если Ыс=1, то

с = (с, (1) с2 (1) ... (1) с, (2) ...

С, (Nt) с2 (Ы,) ... с^ (N))т,

где с (т) - элемент ПВ кодового слова, передаваемый у-й передающей антенной в течение т-й посылки. Если же N>1, то

<5 = (Сц (1) с2Д (1) ... ^,1 (1) <1,2 (1) с2,2 (1) ...

• • • ^ ,2 (1) - - - С1,Ыс ) С2^ () . . . С^^ (Ы, ))Т ,

где с^т) - элемент ПЧВ кодового слова, передаваемый у-й передающей антенной по к-му частотному подканалу в течение т-й посылки.

Слоеный пространственный код, в котором ЫТх=Ыч=А, J=1, N¿=1, Ыь=В, по свойствам подобен коду, предложенному в [3], а код, в котором J=A, ЫьЫч=2в, Ыь=С, - предложенному в [4].

Позиционирующие функции

Представим функции, через которые определяются позиционирующие функции.

>/А]

Функция goe (a, b) =

a b

где a, b е М \ {0};

Гс! - ближайшее целое, которое больше или равно с; [с] - целая часть (вместе со знаком) действительного числа с. Значение функции goe(a, Ь) либо

равно 1, если |a|>|b|, либо равно 0, если Ia|<|b|.

Функция

F (m, k; N) = (k - m + goe (k, m)) mod (N +1), где m,k,N e N \ {0}.

Функция д ( m, k; N, Ncr6) = = F ((m -1) mod (N) +1, (k -1) mod (Nct6) +1; N), где m, k, N, Nct6 e N \ {0} и Nct6 < N.

Функция /2 (m, k; N) = = (k + m - goe (N +1 - k, m)) mod (N +1), где m,k, N e N \ {0} и N +1 - k ф 0.

Функция n (m, k; N ) = = f2 ((m -1) mod (N) +1, (k -1) mod (N) +1; N), где m,k,N e N\{0}.

Функция о (m, k, j; N) = ^

(m-1)mod(N)+1,n( j,k;N),

где

т, к, у е {1,2,^, ; гаЬ - элемент единичной матрицы, расположенный на а-й строке и в Ь-м столбце, то есть еаа = 1 и еаЬ^ а = 0.

Функция v( т,к, ^ N^1^) = =дэе( Л^ ,к) (дэе( к,ц( т,к N Л^^)) х х( к-ц( тк, Л, Лстб) +1) +(1-ээе ( к, т,к Л, Л^))) х х( к+§эе( т,к, Л, Л^)) •( Л^-ц( т,к, Л, Л^) +1)))

где т, к, N, ^сг6 е N \ {0} и Ыстб < N.

Через эти функции вычисляются позиционирующие функции, которые определены для случаев, когда Ы9>МТх. Число может быть положительной рациональной дробью, однако знаменатель этой дроби должен быть делителем и Ыд, и Щ. Позиционирующие функции - это пара функций и С: с (т, к- Nq, ^, NL, Nb, 3) =

NTx Nb nL

X (li (m,i;Nq,NTx,NL,Nb, J)>

1 - goe

N

N

+1,2

XCT

i, k,

k -1

JNq Ntx Nb NL

; N

и Z (m, k; Nq, Ntx , Nz, Nb, J ) =

JNq (NTx )2 Nb Nl

= X (Zi (m,i;Nq,NTx,NL,Nb)>

i=1

f / 1 - goe

N..

N..

+1,2

+

+

и

+

и

x

k

X

X

к

x

x

хст

/, к,

k-1

Щх ыь N,

\\

; N

где

(т, к; Nq, Щх, N, N, J) = к -1

= ^ ст т, I,

N Nb

+1; N N

с(ц (/, к; Ыч, ЫТх ) + Ыч

т -1

к-1

N ^Тх Nь N1

л лл

mod(J)

УJ

С, (т, к;N,ЫТх,N,,N) =

NN

{ / " к-1 " Л

ст т,г, +1; N N )

V V . Лтх N _

(у((/-1) тоN) +1,(к-1) пЦ Л^) +1; N, N)-

//

г -1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Л

пЦ N)+1,

к-1

N

тоё( Л4) +1; ЫТх, N

Л)

где ^ (т,> N) = (т -1) + (к -1) N •

Примеры оценок помехоустойчивости слоеного пространственного блокового кода

Пространственные коды - это относительно новый инструмент, обещающий высокую помехоустойчивость беспроводной связи. Далее приведены несколько примеров слоеных пространственных кодов и графики зависимости вероятности ошибки декодирования по минимуму евклидова расстояния от отношения сигнал/шум на бит. Для декодирования кодов использовался сферический декодер [10, 11].

Для примера сравним помехоустойчивость двух слоеных пространственных кодов, а именно ПВ-кодов. Первый ПВ-код используется для случая, когда N^=2, N=1, N¿=2 и кодируются векторы ? = (^ s2 si s4 )г , где s¡ е Z [I]. Параметры кода: 7=1, Nq=2, N¿=1, N¿=1. Порождающая матрица первого кода G(1, 2, 1, 1, 2, ф)=?-Т, где (1 0 0 0^

ф = ехр(1-П8), Р = ( 0 ( 2)

0010 0 0 0 1 0 1 0 0

и Т =

ехр I1-0 ( 2)

где

0 (2)=л

ехр| ^ ехр|1-у

Кодовые слова первого кода: С =G(1, 2, 1, 1, 2, ехр(1-п/8))-?, где С =(с:(1) С2(1) Ы2) с2(1))т, где с,(т) - элемент кодового слова, передаваемый у'-й передающей антенной в течение т-й посылки.

Второй ПВ-код используется, когда N^=2, N<=1, N¿=4 и кодируются векторы ? =(^1 s2 ... s8)T, где е Z [I]. Параметры кода: .7=1, N^2, N¿=1, N¿=2. Порождающая матрица второго кода G(1, 2, 1, 2, 2, ф)=?-Т, где ф = ехр (Ьл/32).

Р

и Т =

где

(1 0 0 0 0 0 0 01

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

V 0 0 0 1 0 0 0 0,

0 ( 4) Л

Н1^ I-® (4)

ехр!1' П ехр|1-

ехр!1' "Л «»Р!1-1^

ехР!1' у

10п

ехР! ехр! 1-— ехр ! 1- ^

ехг'т)

Ч1'1?}

Ч1'X

ехр! 1'—,

Кодовые слова второго кода: С =G(1, 2, 1, 2, 2, ехр(1-л/32))-?, где С =(с1(1) С2(1) С1(2) с2(2) с1(3) с2(3) с1(4) с2(4))т, где с,(т) - элемент ПВ кодового слова, передаваемый '-й передающей антенной в течение т-й посылки.

Так как представленный в статье код не имеет символьной избыточности и при этом средняя энергия элемента кодового слова с равна средней энергии созвездий, из которых выбираются элементы кодируемого вектора У, то разумно сравнить помехоустойчивость многоантенных систем связи, не использующих пространственное кодирование, с помехоустойчивостью систем, применяющих представленный в статье слоеный пространственный код. Приведем результаты такого сравнения для двух описанных выше примеров кодов.

1

1

х

1=1

х

+

х

и

X

1=1

1

1

1

1

Графики зависимости вероятности ошибки декодирования от отношения сигнал/шум в канале с медленными замираниями для первого и второго ПВ-кодов представлены на рисунке 1. Система связи 1x1 (N^=N^=1), не использующая кодирование, обеспечивает вероятность ошибки 10-4 при отношении сигнал/шум на бит, приблизительно равном 38 дБ. Система связи 2x2 (N^=N^=2), не использующая пространственное кодирование, обеспечивает вероятность ошибки 10-4 при отношении сигнал/шум на бит, приблизительно равном 26 дБ, то есть выигрыш от увеличения числа передающих и принимающих антенн по сравнению с системой связи 1x1 составляет 12 дБ. Система связи 2x2, использующая первый ПВ-код, обеспечивает вероятность ошибки 10-4 при отношении сигнал/шум на бит, приблизительно равном 24 дБ, то есть выигрыш за счет применения первого ПВ-кода по сравнению с системой связи 2x2, не использующей пространственное кодирование, составляет 2 дБ. Такой же выигрыш обеспечивает и система связи 2x2, использующая второй ПВ-код, то есть в этом канале связи нет преимущества друг над другом у первого и второго

—ъ— 1x1, нет кодирования, 16КАМ, М Зам-я и АБГШ —2x2, нет кодирирования, 16КАМ, М Зам-я и АБГШ

—•—2x2, первый ПВ код, 16КАМ, М Зам-я и АБГШ —2x2, второй ПВ код, 16КАМ, М Зам-я и АБГШ —Ь— 1x1, нет кодирирования, 16КАМ, АБГШ

— +- - Ж- - 1 1 \ - i---[-- 1 in i i i и in i i i и m и Tin in i i i и tti -1 -+I-H in i i i и Ш _l -LI-LI III -

= = t = =t = = ^ г т K- = =1 = = = H Г Ж T ^ = = = = t = ± = =t = =: Г T ~T

1 1 £ 3 3 3 3 3 3 - = q= = =f = = 11 1 1 IV 1 3 3 E 3 3 = =1 = 1= = P = Xjl\E 11 L 1 1 1 = 3 = 3 = 3 = = P^P = =[ = =:

___J___L__ 1 1 - - __i _ i_____LX4- " X 1 1 \ __1_____ 1 1 ^ЁЁ^ЁЁЭ=3

E = £ = 3 = = - - 1---h-- E E Timi -LIWI 1 IILll

----I---1--- —1 — 1--~11.5дБ^--1 ~2дБ --~12дБ--^--.

О-"1-1-1-1--1-1-1-1-1-1-1-L-

0 3 6 9 12 13 15 18 21 24 27 30 33 36

8«В_,«Б

Рис. 1. Графики вероятностей ошибки декодирования на бит для трех многоантенных систем связи с медленными замираниями, передающих элементы 16-КАМ созвездия, и при этом две системыI используют слоеное ПВ-кодирование

Рис. 2. Графики вероятностей ошибки декодирования на бит для трех многоантенныгх систем связи с быгстрыжи замираниями, передающих элементыI 16-КАМ созвездия, и при этом две системыI используют слоеное ПВ-кодирование

ПВ-кодов. А система связи 1x1, в канале которой есть только аддитивный белый гауссовский шум и которая не использует кодирование, обеспечивает вероятность ошибки 10-4 при отношении сигнал/шум на бит, приблизительно равном 12,5 дБ.

Графики зависимости вероятности ошибки декодирования от отношения сигнал/шум в канале с быстрыми замираниями для первого и второго ПВ-кодов представлены на рисунке 2. Система связи 2x2, использующая первый ПВ-код, обеспечивает вероятность ошибки 10-4 при отношении сигнал/шум на бит, приблизительно равном 20 дБ, то есть выигрыш за счет применения первого ПВ-кода по сравнению с системой связи 2x2, не использующей пространственное кодирование, составляет 6 дБ. А система связи 2x2, использующая второй ПВ-код, обеспечивает вероятность ошибки 10-4 при отношении сигнал/шум на бит, приблизительно равном 16 дБ, то есть выигрыш за счет применения второго ПВ-кода по сравнению с системой связи 2x2, использующей первый ПВ-код, составляет 4 дБ.

Подытоживая, отметим, что в настоящей статье был представлен помехоустойчивый слоеный пространственный блоковый код. Его особенностями являются отсутствие символьной избыточности и то, что каждая из передающих антенн всегда задействована. Параметры кода позволяют получать его реализации, ориентированные на тот или иной канал с замираниями. Сравнение оценок помехоустойчивости реализаций кода с системами беспроводной связи, не использующими предложенное кодирование, показало, что его применение значительно увеличивает помехоустойчивость, не требуя дополнительных затрат мощности.

Литература

1. Tarokh V., Seshadri N., Calderbank A.R. Space-time codes for high data rate wireless communication: performance criterion and code construction, IEEE Transactions on Information Theory. 1998. Vol. 44, no. 2, pp. 744-765.

2. Weifeng Su, Safar Z., Olfat M., Liu K.J.R. Obtaining full-diversity space-frequency codes from space-time codes via mapping, IEEE Transactions on Signal Processing, 2003, Vol. 51, no. 11, pp. 2905-2916.

3. El Gamal H., Damen M.O. Universal Space-Time Coding, IEEE Transactions on Information Theory. 2003. Vol. 49, no. 5, pp. 1097-1119.

4. Zhang W., Xia X.-G., Ching P.C. High-Rate Full-Diversity Space-Time-Frequency Codes for Broadband MIMO BlockFading Channels, IEEE Transactions on Communications. 2007. Vol. 55, no. 1, pp. 25-34.

5. Гофман М.В. Построение кодовых слов пространственно-частотно-временных кодов // Программные продукты и системы. 2010. № 3. C. 149-151.

6. Гофман М.В. Метод построения алгебраических пространственно-частотно-временных кодов // Изв. ПГУПС. 2010. № 4. С. 88-98.

7. Гофман М.В. Алгебраический пространственно-частотно-временной код // Информационно-управляющие системы. 2011. № 3. С. 39-46.

8. Su W., Safar Z., Liu K.J.R. Full-rate full-diversity space-frequency codes with optimum coding advantage, IEEE Transac-

tions on Information Theory. 2005. Vol. 51, no. 1, pp. 229-249.

9. Kiran T., Rajan B.S. A systematic design of high-rate full-diversity space-frequency codes for MIMO-OFDM systems, International Symposium on Information Theory, ISIT-2005. Proc., 2005, pp. 2075-2079.

10. Agrell E., Eriksson T., Vardy A., Zeger K. Closest point search in lattices, IEEE Transactions on Information Theory. 2002. Vol. 48, no. 8, pp. 2201-2214.

11. Viterbo E., Boutros J. A universal lattice code decoder for fading channels, IEEE Transactions on Information Theory. 1999. Vol. 45, no. 5, pp. 1639-1642.

References

1. Tarokh V., Seshadri N., Calderbank A.R., IEEE Transactions on Information Theory, 1998, Vol. 44, no. 2, pp. 744-765.

2. Weifeng Su, Safar Z., Olfat M., Liu K.J.R., IEEE Transactions on Signal Processing, 2003, Vol. 51, no. 11, pp. 2905-2916.

3. El Gamal H., Damen M.O., IEEE Transactions on Information Theory, 2003, Vol. 49, no. 5, pp. 1097-1119.

4. Zhang W., Xia X.-G., Ching P.C., IEEE Transactions on Communications, 2007, Vol. 55, no. 1, pp. 25-34.

5. Gofman M.V., Programmnye produkty i sistemy, 2010, no. 3, pp. 149-151.

6. Gofman M.V., Izvestiya Peterburgskogo Univ. Putey Soobshcheniya, 2010, no. 4, pp. 88-98.

7. Gofman M.V., Informatsionno-upravlyayushchie sistemy, 2011, no. 3, pp. 39-46.

8. Su W., Safar Z., Liu K.J.R., IEEE Transactions on Information Theory, 2005, Vol. 51, no. 1, pp. 229-249.

9. Kiran T., Rajan B.S., Intern. Symposium on Information Theory ISIT-2005, 2005, pp. 2075-2079.

10. Agrell E., Eriksson T., Vardy A., Zeger K., IEEE Transactions on Information Theory, 2002, Vol. 48, no. 8, pp. 2201-2214.

11. Viterbo E., Boutros J., IEEE Transactions on Information Theory, 1999, Vol. 45, no. 5, pp. 1639-1642.

УДК 338.2:681

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

НЕЧЕТКАЯ КОГНИТИВНАЯ КАРТА КАК ИНСТРУМЕНТ МОДЕЛИРОВАНИЯ ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ НА РЕГИОНАЛЬНОМ УРОВНЕ

(Работа поддержана РФФИ, грант № 12-07-00238-а)

Б.В. Палюх, д.т.н., профессор, ректор (Тверской государственный технический университет, наб. Аф. Никитина, 22, г. Тверь, 170026, Россия, [email protected]); Т.В. Какатунова, к.э.н., доцент (Смоленский филиал Национального исследовательского университета МЭИ, Энергетический проезд, 1, г. Смоленск, 214013, Россия, [email protected])

Для разработки стратегических инновационных программ регионального промышленного комплекса и повышения эффективности реализации крупных инновационных проектов предложена методика моделирования инновационной деятельности с использованием многоуровневой нечеткой когнитивной модели, позволяющей определить взаимное влияние показателей реализации стратегий социально-экономического развития региона и инновационных стратегий регионального промышленного комплекса. Выявлены две основные особенности моделирования инновационной деятельности с использованием нечетких когнитивных карт как специальных ориентированных графов, узлами (концептами) которых являются характеристики социально-экономического развития региона и регионального промышленного комплекса. Первая особенность моделирования инновационной деятельности обусловливает необходимость определения традиционных системных показателей взаимодействия таких узлов графа, как консонанс, диссонанс, опосредованное взаимное влияние узлов друг на друга и т.д. Вторая особенность объясняется тем, что вес дуг между узлами графа (концептами) изменяется во времени, при этом может изменяться не только значение, но и характер влияния. Предлагается новая разновидность нечетких когнитивных карт с учетом неопределенности системных характеристик, отличающаяся представлением отношения влияния между концептами графа в виде нечетких множеств. Учет отрицательного влияния концептов осуществляется путем расширения базового множества для этих нечетких множеств на область отрицательных значений.

Ключевые слова: нечеткая когнитивная модель, нечеткие множества, моделирование, инновации, инновационная деятельность, регион, региональный промышленный комплекс.

A FUZZY COGNITIVE MAP AS A TOOL TO MODEL INNOVATION AT THE REGIONAL LEVEL Palyukh B. V., Ph.D., Professor, Rector (Tver State Technical University, 22, Quay Nikitin, Tver, 170026, Russia, [email protected]);

Kakatunova T. V., Ph.D., Associate Professor (Smolensk Branch of the Moscow Power Engineering Institute, 1, Energeticheskyproezd, Smolensk, 214013, Russia, [email protected]) Аbstract. For developing strategic innovative programs for regional industry and improve implementation of major investment projects, the technique of modeling innovation using multilevel fuzzy cognitive model to determine the relative impact of performance strategies of socio-economic development and innovation strategies of the regional industry. Two basic features of modeling innovation using fuzzy cognitive maps as a special directed graphs, nodes (concepts) which are the characteristics of the socio-economic development and regional industry. The first feature modeling innovation necessitates the definition of traditional indicators of system interaction graph nodes: consonance, dissonance, mediated by

i Надоели баннеры? Вы всегда можете отключить рекламу.