Journal of Siberian Federal University. Chemistry 2 (2019 12) 240-247
УДК 547.773+66.095.115
Synthesis of Sulphanylamides
from New Derivatives of Aminopyrazoles
Ilya G. Povarov, Viktor V. Efimov, Alexey V. Lyubyashkin, Anna S. Kositsyna, Georgy A. Suboch and Mikhail S. Tovbis*
Reshetnev Siberian State University of Science and Technology 31 Krasnoyarsky Rabochy, Krasnoyarsk, 660037, Russia
Received 23.12.2018, received in revised form 29.12.2018, accepted 01.04.2019
For the newly synthesized 3-aryl-5-methoxymethyl-4-amino-1H-pyrazoles the sulfonylation reaction of the amino group by p-acetamidobenzenesulfonyl chloride was carried out. As a result, sulfanilamide derivatives of substituted aminopyrazoles identified using NMRH, IR spectroscopy and mass spectrometry were obtained for the first time.
Keywords: Pyrazole, aminopyrazole, sulfonylamide, sulfonylation, NMRH, IR spectroscopy, mass spectrometry.
Citation: Povarov I.G., Efimov V.V., Lyubyashkin A.V., Kositsyna A.S., Suboch G.A., Tovbis M.S. Synthesis of sulphanylamides from new derivatives of aminopyrazoles, J. Sib. Fed. Univ. Chem., 2019, 12(2), 240-247. DOI: 10.17516/1998-2836-0122.
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: povarov_i@mail.ru, tovbis@bk.ru
Получение сульфаниламидов
на основе новых производных аминопиразолов
И.Г. Поваров, В.В. Ефимов, А.В. Любяшкин, А.С. Косицына, Г.А. Субоч, М.С. Товбис
Сибирский государственный университет науки и технологий им. академика М.Ф. Решетнева Россия, 660037, Красноярск, пр. имени газеты «Красноярскийрабочий», 31
Для недавно синтезированных 3-арил-5-метоксиметил-4-амино-1Н-пиразолов проведена реакция сульфонилирования по аминогруппе п-ацетамидобензолсульфохлоридом. В результате впервые получены сульфаниламидные производные замещенных аминопиразолов, идентифицированные с использованием ИК-, ЯМРН-спектроскопии и масс-спектрометрии.
Ключевые слова: Пиразол, аминопиразол, сульфаниламид, сульфонилирование, ЯМРН-, ИК-спектроскопия, масс-спектрометрия.
Введение
Сульфаниламидные препараты являются основными лекарственными средствами, позволившими впервые проводить успешную профилактику и лечение разнообразных бактериальных инфекций [1-3]. В настоящее время синтезировано множество новых сульфаниламидных лекарственных веществ, однако из-за привыкания микроорганизмов к их действию постоянно приходится применять все новые и новые препараты. Следовательно, синтез новых веществ подобного строения - актуальная задача.
На кафедре органической химии и технологии органических веществ СибГУ им. Решетне-ва ранее был синтезирован ряд аминопиразолов с арильными, алкоксильными и алкильными заместителями [4] и доказана их фармакологическая активность [5].
Настоящая статья посвящена синтезу ранее неизвестных сульфаниламидных производных аминопиразолов, обладающих потенциальной биологической активностью. Для этого нами были синтезированы аминопиразолы с различными заместителями и после обработки п-ацетамидобензолсульфохлоридом были впервые выделены сульфаниламидные производные аминопиразолов, доказано их строение с использованием современных физических методов анализа.
Результаты и их обсуждение
Недавно были синтезированы нитрозопиразолы 2 (рис. 1) по реакции циклоароматиза-ции изонитрозо-Р-дикетонов с общей формулой 1 с гидразингидратом в минимальном объеме спиртового раствора; при восстановлении нитрозопиразолов 2 гидразингидратом в хлористом метилене на катализаторе Pd/C получили соответствующие аминопроизводные 3 [4].
]В настоящейработе мы пвювтли реакцию кувоФонилнуовлиля аминопиразолов За-Л и полу чили сульфаниламидные производные 4а^ с выходами от 55-79 % в виде белых либо светло-бежевых кристаллов с высокими температурами плавления. Строение синтезированных веществ доказывали с помощью ИК-, ЯМР'Н-спектров и масс-спектрометрии. В ИК-спектрах всех сяодименрш присутствоямлнвалентныеколмбанияк=0-цвявей суттфоткмидных групп а вблости еС53-В1бВ см"'. ВИ мисс - спевнрлх соединения (Оуе|Н) амвоибн сигннмья сс^(^т^^нбствуи^1иие молек(лярному цону -ВК]К и яго-шл [М+1]р [М+2]р соотношанит явокрых явогбнрэвделтвтстбв, саояоетствующийрассчицвлрамуНижс пpиврдeмaлepoтяиaйCPKмaCмлгмeнтaции молекул
r
CH3CO O H
NH 2NH 2
c2h5oh Ar
HN-N
' I
H 3COC HN ^ so 2 C l HN -N
Ar
a) Ar = 4-ClPh, Alk = CH2OCH3
b) Ar = C6H5, Alk = CH2OCH3
c) Ar = C10H7, Alk = CH2OCH3
d) Ar = CH3, Alk = CH3
NHC OCH 3 4 a-d
Рис.1.Схема получения снхьфенилированныхороизводных ашшепиназьлов lig. l.Schemn Oorobtaonong xulgonolggrivotoves oXamioooyrangles
O
O
N aNO
NH 2NH2 / Pd|C
k
CH Cl
3-15 C
k
k
3
N^ O2S -NH
Ы—NiH
307(50)
HN^ O2S' -NH
294(17)
185(14)
l +
SO
O2S—0 /—NH -NH
266(100)
142(87)
Рис. 2. gytiMa фроьментациооого рихпада NoOy-(N-03N-(SMeT-ra-lH-ngoa3ng-4-ira)cygnOoxoHS^eHra) ацетамида (4d)
Fig. 2. Scheme of the fragmentation decomposition of N-(4-(N-(3,5-dimethyl-1H-pyrazol-4-yl)sulfamoyl)phenyl) acetamide (4d)
OS
+
-1.........I.........I.........I.........I.........I.........I.........I.........I.........I.........I.........I.........I.........I........
14 13 12 11 10 9 8 7 6 5 4 3 2 1 ppm
--13Г" isf W -lar Iii iai fal
ацетамида
Fig. 3. NMR'H-spectrum of N-(4-(N-(5-(4-chlorophenyl)-3-(methoxymethyl)-1H-pyrazol-4-yl)sulfamoyl)phenyl) acetamide
соединения (4d) в результате ионизации электр оспреем при применении метода ВЭЖХ-МС [6, 7]. Для соединен ий (4a,b) картина выглядела аналогично.
Важнейшая информация была получена по итогам записи и анализа ЯМР1Н-спектров. Так, в ЯМР1Н-спектре ^(4-(^(5-(4-хлорфенил)-3-(метоксиметил)-1Н-пиразол-4-ил)сульфамоил)-фенил)ацетамида, иртвединногт на рис. 3, присутстсует м.р., ствасет-
стФуисщиИ дяатвнамметимьфий гру ппи в сосаеае ацетильвига земевамтсля. Протоны ме-токсиметильного заместителя представлены двумя синглетами с хим. сдвигами 3.19 м.д. для метильной и 4.10 м.д. для метиленовой групп. В области от 7.23 до 7.51 м.д. регистрируется мультиплет, принадлежащий протонам двух замещенных фенильных колец. Синглет с хим. сивисим 9.у6 ы.д. принадлежит ато^евдорода ецееимедаогп еамевтитема, а синглет в области )0.20 м.д.- протону сульфамидной группы. В области слабого поля наблюдается синглет в области 13.17 м.д. - сигнал протона пиразольного кольца.
В ЯМР'Н-спектре ^(4-^-(3-(метоксиметил)-5-фенил-1Н-пиразол-4-ил)сульфамоил)фе-нил)ацетамида на рис. 4 протоны метильной группы ацетамидного фрагмента представлены в виде синглееа с хим. сдвигом 2.08 м.д. Сигналы в виде синглетов с хим. сдвигами 3.17 и 4.05 м.д. соответствуют метильной и метиленовой группам в составе метоксиметильного заместителя. В области 7.23-7.53 м.д. находится мультиплет ароматических протонов. Синглет в области 9.33 - протон ацетамидной группы. Атом водорода сульфамидного фрагмента дает синглет с хим. сдвигом 10.19 м.д., а протон пиразольного кольца представлен синглетом в области 13.07 м.д.
В ЯМР'Н-спектре ^(4-(^3-(метоксиметил)-5-(нафталин-2-ил)-1Н-пиразол-4-ил)суль-фамоил)фенил)ацетамида на рис. 5 в области 1.99 м.д. присутствует сигнал в виде синглета, соответствующий протонам метильной группы в составе ацетамидного заместителя. Син-глет в области 3.23 м.д. принадлежит протонам метильной группы, а синглет с хим. сдвигом
55 3 S ^ Я
емое1тток
JU
13 12 11 1<>
Ы Isl
П5
М I «ц
Рис. 4. ЯМР'Н-спектр N-(4-(N-(3-(метоксиметил)-5-фенил-1Н-пиразол-4-ил)сульфамоил)фенил) ацетамида
Fig. 4. NMR'H specTrum o(N-(4-(N-(r-(теШетатиШИ)il-phenyl-lH-eTrazele-4-yl)sulfamoe1)ph9nyl) acetamide
Рис. 5.енил) ацетамида
Fig. 5. NMR'H spectrum N-(4-(N-3-(methoxymethyl)-5-(naphthalen-2-yl)-1H-pyrazol-4-yl)sulfamoyl)phenyl) ac etamide
4.17 м.д. - протонам метиленовой группы в сос таве метоксиметильного заместителя. Протоны ароматических колец дают мультиплет в области от 7.4 до 8.3 м.д. Сигнал в виде синглета в области 9.45 м.д. соответствует протону ацетамидной группы. Атом водорода сульфамидного фрагмента соответствует синглету в области 9.89 м.д. В области слабого поля (13.19 м.д.) расположен синглет, характерный дня атома водорода пиразольного кольеа.
ЯМР1Н-спектр ^(4-^-(3,5-диметил-1Н-пиразол-4-ил)сульфамоил)фенил)ацетамида приведен на рис. 6. В области сильного поля в спектре отчетливо видны два сигнала в виде син-глетов с хим. сдвигами 1.86 и 2.09 м.д., первый из которых соответствует шести протонам двух
к к JE к s щ
£ К К h! к H -
I ^ I I
Риа. Р ЯМРН-спектр М4Р(РН-(3,0-ркдьтил4Н1ирнзоке4-ии)сульфамоФл)феиил)ацеташ)да Fig. 6. NMR'H spectrum of N-(4-(N-(3,5-dimethyl-1H-pyrazol-4-yl)sulfamoyl)phenyl)acetamide
метильных групп при пиразольном кольце, второй - протонам метильной группы ацетамид-ного заместителя. Протоны ароматического кольца представлены двумя дублетами в области 7.57-7.59 и 7.77-7.78 м.д. Сигнал в области 9.46 м.д. в виде синглета принадлежит протону при атоке азота ацеткмиднсш г^пкив Протон, свяианный с атомом азота присульфамидной грум-пеи ииедсиавилн - об ла^кенсиаКнго иил-в аиде иинарота 10.47 м.д.
Экспериментальная часть
Спектры ЯМР регистрировали на приборе Bruker Avance III 600 MHz Центра коллектив-сюоикоаьзования Кртснояаскнгр научного цеиира СО РАН.
Запиео к^^сефиьгртг проиодииааь на пньбоьв РЫтвириВСНВ/К-2РК 0 и атсннркПРАДТ-Ж ARC-18 100. Хроматографирование проводили в изократическом режиме при температуре 35 °С в термостатируемой колонке. Масс-спектры получали прямым вводом образца и элюата, подаваемого хроматдгррфом ао а-оростию 0]КШ нн--бин. с иониницарй д^мекатикгп^^^двен^^ ном икточниае (НК1). Кыли выбданыс лекв^е^ фслоьия мвсс-декенынневи-шв: полажиьелрнаь и отрицательная поляризации, напряжение электроспрея 6 кВ, потенциал декластеризации и потенциал ввода - 60В при давлении газа завесы 5,0 л/мин и газа распыления 5,0 л/мин [6, 7]. Диапазон сканирования составлял 20-500 Да.
Мк-епе итры по лучены на иЯРм иппос-crcieS p нсииаыфдН -ks p ectlRra М-зе Ик-Фикне-спеккрофотомеьр а -ифиИ 4 ве щеетно иидтщьлики нтиолочвннуюикивт инн, роккаиы-
вали роликовым ножом, помещали на столик микроскопа и снимали спектр НПВО. Детектор МСТ/А, объектив Si Caplugs, диапазон волновых чисел 4000-650 см-1, разрешение 1.928 см-1, количество сканирований 64, программное обеспечение OMNIC 5.1 E.S.P.
^(4-(^(5-(4-хлорфенил)-3-(метоксиметил)-1Н-пиразол-4-ил)сульфамоил)фе-нил)ацетамид (4а). 0,1 г (0,23 ммоль) амина растворяли в 6 мл воды. После растворения небольшими порциями попеременно добавляли 0,1 г (0,43 ммоль) хлорангидрида и-ацетаминобензолсульфокислоты и 0,032 г (0,30 ммоль) соды при непрерывном перемеши-
вании и поддержании температуры 30 °С. Добавив расчетное количество хлорангидрида и соды, увеличивали температуру до 60 °С и перемешивали смесь в течение двух часов. Затем охлаждали и добавляли соляную кислоту при комнатной температуре. Перемешивали в течение 30 мин, отфильтровывали и промывали водой до нейтральной среды. Выход: 0,17 г (69 %), Тпл. = 186-188 °С. ИК-спектр, v, см-1: 1596, 1543 (C6H4), 1161 (SO2), 1091 (COC). Спектр ЯМРН, 5, м. д.: 2.08 с (3H, CH3C(O)), 3.19 c (3H, CH3O), 4.10 c (2H, CH2), 7.23-7.51 м (8Наром), 9.36 с (1H, NHCO), 10.20 с (1H, NHSO2), 13.17 c (1H, NH). Спектр ЯМР13С, 5, м. д.: 24.38, 57.93, 112.73, 118.42, 127.86, 128.43, 133.90, 143.27, 169.09. Масс-спектр m/z (1отн., %): 434 (25) [M+], 425 (9), 374 (61), 349 (25), 273 (100), 194 (96), 152 (14).
^(4-(^(3-(метоксиметил)-5-фенил-1Н-пиразол-4-ил)сульфамоил)фенил)ацетамид (4b). 0.1 г (0,25 ммоль) амина растворяли в 6 мл воды. После растворения небольшими порциями попеременно добавляли 0.14 г (0,60 ммоль) хлорангидрида и-ацетаминобензолсульфокислоты и 0.04 г (0,38 ммоль) соды, как в предыдущем примере. Далее обрабатывали аналогично 4a. Выход: 0,13 г. (62 %), Тпл. = 138-140 °С. ИК-спектр, v, см-1: 1591, 1530 (C6H5), 1153 (SO2), 1074 (COC). Спектр ЯМРН, 5, м. д.: 2.08 с (3H, CH3C(O)), 3.17 c (3H, CH3O), 4.05 c (2H, CH2), 7.23-7.53 м (9Наром), 9.33 с (1H, NHCO), 10.19 с (1H, NHSO2), 13.07 c (1H, NH). Спектр ЯМР13С, 5, м. д.: 24.37, 57.87, 112.56, 118.48, 126.89, 127.87, 128.20, 134.03, 143.11, 169.12. Масс-спектр m/z (1отн., %): 400 (38) [M+], 390 (5), 357 (100), 328 (6), 313 (12), 297 (14), 183 (13).
N-(4-(N-3-(метоксиметил)-5-(нафталин-2-ил)-1Н-пиразол-4-ил)сульфамоил) фенил)ацетамид (4c). 0.1 г (0,23 ммоль) амина растворяли в 6 мл воды. После растворения небольшими порциями попеременно добавляли 0.1 г (0,43 ммоль) хлорангидрида и-ацетаминобензолсульфокислоты и 0.037 г (0,35 ммоль) соды, как в предыдущем примере. Далее обрабатывали аналогично 4a. Выход: 0,11 г (55 %), Тпл. = 226-228 °С. ИК-спектр, v, см-1: 1594, 1543 (C10H7), 1153 (SO2), 1091 (COC). Спектр ЯМР'Н, 5, м. д.: 1.99 с (3H, CH3C(O)), 3.23 c (3H, CH3O), 4.17 c (2H, CH2), 7.4-8.3 м (Наром.), 9.45 с (1H, NHCO), 9.89 с (1H, NHSO2), 13.19 c (1H, NH).
^(4-^-(3,5-диметил-1Н-пиразол-4-ил)сульфамоил)фенил)ацетамид (4d). 1.0 г
(0,32 ммоль) амина растворяли в 9 мл воды. После растворения небольшими порциями попеременно добавляли 2.3 г (0,99 ммоль) хлорангидрида и-ацетаминобензолсульфокислоты и 0.69 г (6,51 ммоль) соды, как в предыдущем примере. Далее обрабатывали аналогично 4a. Выход: 0,89 г (79 %), Тпл. = 202-204 °С. ИК-спектр, v, см-1: 1586, 1526 (C6H4), 1158 (SO2), 1092 (COC). Спектр ЯМР'Н, 5, м. д.: 1.86 с (6Н, 2 СН3), 2.09 с (OT3C(O)), 7.57-7.78 м (4Наром.), 9.46 c (1H, NHCO), 10.74 c (1H, NHSO2). Масс-спектр m/z (1отн., %): 307 (56) [M+], 294 (17), 266 (100), 183 (14), 142 (87).
Список литературы
1. Машковский М.Д. Лекарственные средства. В 2-х частях. 14-е изд., перераб. и доп. М.: Медицина, 2000. Т. 1, 736 с. Т. 2, 688 с. [Mashkovsky M.D. Medicinal products. In 2 parts. 14 th ed., rev. M .: Medicine, 2000. Vol. 1, 736 p. Vol. 2, 688 p. (In Russ.)]
2. Солдунов Г.Н. Сульфаниламидные препараты. Учебное пособие по фармацевтической химии ЦМС ВолгГМУ, 2012. 57 с. [Soldunov G.N. Sulfanilamide preparations. A manual on pharmaceutical chemistry CMS VolgGMU, 2012. 57 p. (In Russ.)]
3. Беликов В.Г. Фармацевтическая химия. Учебное пособие по фармацевтической химии. М.: МЕДпресс-информ, 2007. 216 с. [Belikov V.G. Pharmaceutical Chemistry, Manual on Pharmaceutical Chemistry. M.: MEDpress-Inform, 2007. 216 p. (In Russ.)]
4. Ефимов В.В., Любяшкин А.В., Субоч Г. А., Товбис М.С. Синтез новых алкоксиметилза-мещенных 4-амино-1Н-пиразолов и их ацилирование. Журнал органической химии 2016. Т. 56, С. 52-54 [Efimov V.V., Lyubiashkin A.V., Suboch G.A., Tovbis M.S. Synthesis of new alkoxymethyl-substituted 4-amino-1H-pyrazoles and their acylation. Journal of Organic Chemistry 2016. Vol. 56, P. 52-54. (In Russ.)]
5. Любяшкин А.В., Поваров И.Г., Субоч Г.А., Товбис М.С. Ацилирование и сульфонили-рование некоторых азотосодержащих соединений: Монография: СибГУ им. Решетнева 2018. 184 с. [Lyubiashkin A.V., Povarov I.G., Suboch G.A. Tovbis M.S. Acylation and sulfonylation of some nitrogen-containing compounds: Monograph of Reshetnev SibSU 2018. 184 p. (In Russ.)]
6. Бочкарев В.Н., Поливанов А.Н., Фалько В.С. Масс-спектры положительных и отрицательных ионов линейных метил фенилсилоксанов. Журнал общей химии 1978. Т. 48, С. 858-861. [Bochkarev V.N., Polivanov A.N., Fal'ko V.S. Mass spectra of positive and negative ions of linear methyl phenylsiloxanes. Log general chemistry 1978. T. 48, C. 858-861. (In Russ.)]
7. Chinnaraja D., Rajalakshmi R., Latha V., Manikandan H. Synthesis, spectral characterization and biological evaluation of 1-thiocarbamoyl-3-phenyl-5-hydroxy-5-(-2-pyridyl)-4-pyrazolines via michael addition. Journal of Saudi Chemical Society 2016, Vol. 20, P. 599-605. doi:10.1016/j. jscs.2013.04.006