Научная статья на тему 'Physical and chemical properties of sorbents used for wastewater purification from oil products'

Physical and chemical properties of sorbents used for wastewater purification from oil products Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
171
29
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
OIL PRODUCTS / SYNTHETIC SORBENTS / NATURAL SORBENTS / PHYSICOCHEMICAL PROPERTIES

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Gusev Grigoriy I., Gushchin Andrey A., Grinevich Vladimir I., Filippov Dmitriy V., Izvekova Tatyana V.

The work is devoted to the study of the physico-chemical and adsorption properties of synthetic and natural sorbents contaminated with oil products. The parameters such as sorption capacity for petroleum products, water adsorption and moisture content, bulk density, as well as parameters characterizing the sorption equilibrium in the surface layers (distribution coefficients, maximum adsorption values, Henry constants, Gibbs energy changes, adsorption coefficients and filling degrees) were determined. Adsorption isotherms for all sorbents are almost identical in character with a pronounced linear region in the region of low concentrations of oil products and correspond to isotherms of monomolecular adsorption. The sorption capacity of the sorbents under study varies from 10 to 50 mg of oil products per 1 g of sorbent. The maximum sorption capacity among the sorbents studied the Ol-Ex Hard possesses. This sorbent belongs to sorbents of the silicate group and Ol-Ex 82, based on polyurethane. The lowest moisture content is also characteristic for silicate sorbents and does not exceed 0.5 % of their mass. The maximum moisture adsorption is typical for sorbents of SONET Sorb and MGS Sorb. It was revealed that the surface of Ol-Ex Hard is almost completely filled with oil (q → 1), while for shungite the surface will be filled only by 13%. The most effective for trapping oil products should be considered the sorbent Ol-Ex Hard, for which the highest values of adsorption parameters are characteristic.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Physical and chemical properties of sorbents used for wastewater purification from oil products»

ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. Т 61 (7)_Серия «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ»_2018

IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII V 61 (7) KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 2018

RUSSIAN JOURNAL OF CHEMISTRY AND CHEMICAL TECHNOLOGY

DOI: 10.6060/ivkkt.20186107.5686 УДК: 502.36, 542.81, 628.31

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СОРБЕНТОВ, ИСПОЛЬЗУЕМЫХ В ОЧИСТКЕ ВОДЫ

ОТ НЕФТЕПРОДУКТОВ

Г.И. Гусев, А.А. Гущин, В.И. Гриневич, Д.В. Филиппов, Т.В. Извекова

Григорий Игоревич Гусев *, Андрей Андреевич Гущин, Владимир Иванович Гриневич, Татьяна Валерьевна Извекова

Кафедра промышленной экологии, Ивановский химико-технологический университет, Шереметевский просп., 7, Иваново, Россия, 153000

E-mail: grisha.gusev.05@mail.ru*, a_guschin@bk.ru, grin@isuct.ru, mbimpa@bk.ru Дмитрий Вячеславович Филиппов

Кафедра физической и коллоидной химии, Ивановский государственный химико-технологический университет, Шереметевский просп., 7, Иваново, Россия, 153000 E-mail: dmitryfil@list.ru

Работа посвящена изучению физико-химических и адсорбционных свойств сорбентов искусственного и природного происхождения, загрязненных нефтепродуктами. В работе определены такие параметры, как сорбционная емкость по нефтепродуктам, водопо-глощение и влагосодержание, насыпная плотность, а также параметры, характеризующие сорбционные равновесия в поверхностных слоях (коэффициенты распределения, величины предельной адсорбции, константы Генри, изменения энергии Гиббса, адсорбционные коэффициенты и степени заполнения). Изотермы адсорбции для всех сорбентов имеют практически идентичный характер с ярко выраженным линейным участком в области невысоких концентраций нефтепродуктов и соответствуют изотермам мономолекулярной адсорбции. Сорбционная емкость исследуемых сорбентов варьируется в диапазоне от 10 до 50 мг нефтепродуктов на 1 г сорбента. Максимальной сорбционной емкостью из исследуемых сорбентов обладает Ol-Ex Hard, относящийся к сорбентам силикатной группы и Ol-Ex 82, основой которого составляет полиуретан. Наименьшее влагосодержание характерно также для силикатных сорбентов и не превышает 0,5 % от их массы. Максимальное влагопоглоще-ние характерно для сорбентов марок СОНЕТ Сорб и МГС сорб. Выявлено, что поверхность Ol-Ex Hard практически полностью заполнена нефтепродуктом (в-1), в то время как для шунгита поверхность будет заполнена лишь на 13 %о. Показано, что наиболее эффективным для улавливания нефтепродуктов следует считать сорбент Ol-Ex Hard, для которого характерны максимально высокие значения адсорбционных параметров.

Ключевые слова: нефтепродукты, синтетические сорбенты, природные сорбенты, физико-химические свойства

PHYSICAL AND CHEMICAL PROPERTIES OF SORBENTS USED FOR WASTEWATER PURIFICATION FROM OIL PRODUCTS

G.I. Gusev, A.A. Gushchin, V.I. Grinevich, D.V. Filippov, T.V. Izvekova

Grigoriy I. Gusev *, Andrey A. Gushchin, Vladimir I. Grinevich, Tatyana V. Izvekova

Department of Industrial Ecology, Ivanovo State University of Chemistry and Technology, Sheremetyevskiy

ave., 7, Ivanovo, 153000, Russia

E-mail: grisha.gusev.05@mail.ru *, a_guschin@bk.ru, grin@isuct.ru, mbimpa@bk.ru Dmitriy V. Fillipov

Department of Physical and Colloid Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetyevskiy ave., 7, Ivanovo, 153000, Russia E-mail: dmitryfil@list.ru

The work is devoted to the study of the physico-chemical and adsorption properties of synthetic and natural sorbents contaminated with oil products. The parameters such as sorption capacity for petroleum products, water adsorption and moisture content, bulk density, as well as parameters characterizing the sorption equilibrium in the surface layers (distribution coefficients, maximum adsorption values, Henry constants, Gibbs energy changes, adsorption coefficients and filling degrees) were determined. Adsorption isotherms for all sorbents are almost identical in character with a pronounced linear region in the region of low concentrations of oil products and correspond to isotherms of monomolecular adsorption. The sorption capacity of the sorbents under study varies from 10 to 50 mg of oil products per 1 g of sorbent. The maximum sorption capacity among the sorbents studied the Ol-Ex Hard possesses. This sorbent belongs to sorbents of the silicate group and Ol-Ex 82, based on polyurethane. The lowest moisture content is also characteristic for silicate sorbents and does not exceed 0.5 % of their mass. The maximum moisture adsorption is typical for sorbents of SONET Sorb and MGS Sorb. It was revealed that the surface of Ol-Ex Hard is almost completely filled with oil (0^ 1), while for shungite the surface will be filled only by 13%. The most effective for trapping oil products should be considered the sorbent Ol-Ex Hard, for which the highest values of adsorption parameters are characteristic.

Keywords: oil products, synthetic sorbents, natural sorbents, physico-chemical properties Для цитирования:

Гусев Г.И., Гущин А.А., Гриневич В.И., Филиппов Д.В., Извекова Т.В. Физико-химические свойства сорбентов, используемых в очистке воды от нефтепродуктов. Изв. вузов. Химия и хим. технология. 2018. Т. 61. Вып. 7. С. 137-143 For citation:

Gusev G.I., Gushchin A.A., Grinevich V.I., Filippov D.V., Izvekova T.V. Physical and chemical properties of sorbents used for wastewater purification from oil products. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 7. P. 137-143

INTRODUCTION

One of the environmental problems of our time is the problem of water pollution and deterioration of water quality, which leads to a reduction in amount of available drinking water. Problems of oil pollution aggravate more and more every year and begin to take on a global scale. Therefore, it is becoming urgent to develop technologies for liquidation of oil product (OP) spills, new technological schemes for wastewater treatment from petroleum hydrocarbons, which must meet modern requirements - to be as accessible, convenient, environmentally safe and economically feasible [1, 2].

One of the effective methods of wastewater treatment from organic compounds is the adsorption

method, which allows providing a high degree of purification of industrial wastewater [3, 4]. The advantage of the method is its efficiency (up to 95 %), the possibility of treating wastewater containing several substances, as well as the recovery of adsorbed substances [5, 6].

Traditionally, natural sorbents such as zeolites [7], schungites [8], diatomites, as well as industrial wastes [9-11] and the processing of cellulose-containing agricultural products are used to remove various OP from water. A special category of sorbents is waste wood processing [11-14]. Publications related to the study of the sorption properties of individual sorbents, and also after their modification by a variety of physi-cochemical methods, are quite numerous [9-15]. The

possibility of modifying inorganic sorbents in a dielectric barrier discharge were demonstrated in [15]. However, there are practically no works in which a wide assortment of sorbents well be explored.

Therefore, the objectives of this work were:

Determination and comparison of the properties of sorbents of different composition;

Study of the physical and chemical properties of sorbents (sorption capacity, moisture content and water absorption, bulk density);

Evaluation of the adsorption equilibrium parameters in the surface layers of sorbents under study: distribution coefficient, maximum adsorption values, Henry's constants, changes in Gibbs energy, adsorption coefficient and degree of filling.

EXPERIMENTAL

Eleven sorbents were chosen as the objects of research, the name and chemical composition of which is presented in Table 1.

The choice of sorbent data for the study is due to their availability, as well as relatively wide application in various sectors of the economy. Model OP solution is prepared by mixing a certain volume of M-8B motor oil and distilled water.

Conditions of the experiment were: the initial concentration of oil products (Co) varied in the range of 10-700 mg / l, the volume of the solution of OP (Vo) - 100 ml, the mass of the sorbent (m) was 2 g.

Table 1

Objects of research

Таблица 1. Объекты исследования

Name Composition

SONET Sorb Peat (85 %)

Ol-Ex 82 Polyurethane (90 %)

SCN-Sorb Cellulose (95 %)

ECOLAN Pyrolysis product of wood (92-95 %)

CTR-Sorb SiÜ2 (75-80 %), Al2Ü3 (13.1-15 %)

MGS-Sorb SiÜ2 (47-50 %), A2O3 (22.5 %), Fe2Ü3 (27 %)

SMD-Sorb SiÜ2 (92 %) Al2Ü3 (6 %)

Natural zeolite SiÜ2 (80 %), Al2Ü3 (13.1 %)

Natural schungite C (26-30%), SiÜ2 (40.3 %), Al2Ü3 (2 %), Fe (26.9 %)

Ol-Ex Hard SiÜ2 (80 %), Ca (1.9 %), Fe (2.42 %), Al2Ü3 (10.2 %), C (5 %)

VST-Sorb Vermiculite (SiÜ2 (37.2 %), A^Üs (6.2 %), CaÜ (15.3 %), Fe2Ü3 (19 %), MgÜ (13.1 %))

The concentration of oil products were determined by a fluorometric method, based on the extraction of OP from the sample by a low-polar solvent (hexane) and measuring the fluorescence intensity of the extract with the "Fluorate-02" fluorometer (Russia) [16].

Sorption capacity of sorbents was calculated by the formula:

y^Mica mg/g,

where Ji - sorption capacity, mg/g; V0 - the volume of the sample of the OP model solution, passed through the sorbent, l; C0 and C - the initial and final concentrations of OP, respectively, mg/l; m - the mass of the sorbent sample, g.

The adsorption isotherms were constructed in the following coordinates:

Qx = f (Qy)

where Qx is the equilibrium concentration of OP after passing through the sorbent, mg/l, Qy is the sorption capacity of the sorbent, mg/g.

It should be noted that in the adsorption theory, the sorption capacity can be considered in terms of physical meaning as excess adsorption H, which corresponds to the number of adsorbate moles determined by the excess concentration of the substance in the surface layer as compared to the bulk phase. In this paper, when discussing the experimental data, we used the values of the sorption capacity for OP.

For the correct determination of the thermody-namic equilibrium parameters, a transition to the total adsorption values ai is necessary. Since the adsorption processes were realized in the region of relatively low concentrations of petroleum products, at these conditions the values of excess adsorption will not significantly differ from the total adsorption.

As additional information on the parameters of adsorption interactions, the Kd oil product distribution constants were found from the experimental data as the ratio of the excess adsorption to the equilibrium concentrations of oil in the solution. The statistical analysis carried out has showed that the average errors of excess adsorption are 6-9 % of the measured values [17].

Obviously, OPs will be sorbed on centers of a solid surface, which can be occupied by solvent molecules. Thus, adsorption will proceed along a competitive mechanism by displacing solvent components adsorbed on active sites. The interface is inert at the same time and does not enter into a chemical interaction with petroleum products. The specific surface area of the solid sorbent does not change during the process, therefore adsorption will occur in the monomolecular adsorption layer, and the monolayer capacity remains constant.

Formal processing of the obtained adsorption isotherms for all samples of sorbents was carried out within the framework of the Langmuir monomolecular adsorption model. The numerical values of the adsorption coefficients bi and the limiting adsorptions am, quantitatively characterizing the adsorption equilibria, were determined by the standard method in the linear coordinates of the Langmuir isotherm.

In addition, the values of Henry Hi constants were determined, which according to the physical meaning coincide with the thermodynamic coefficients of the distribution of adsorbate at low concentrations of dissolved substances [18].

Within the framework of formal processing, the maximal fillings of the surface 0i were calculated from the adsorption values ai and the determined limiting adsorption am for every sorbent.

In addition, the known thermodynamic relationships determine the change in the Gibbs energy AaG°(0) during the adsorption under the experimental conditions [18].

Water absorption was determined by the ratio of the mass of absorbed water to the mass of the sorbent spent on sorption.

The moisture content of the sorbents is determined by the procedure when the sample is dried in a drying box to constant weight and the product weight is determined. The mass fraction of water is expressed as a percentage [19].

DISCUSSION

The sorption process under dynamic conditions consists in filtering the sewage through the sorbent bed. This method has great technological, operational and economic advantages over sorption in static conditions. Sorption under dynamic conditions allows more complete use the capacity of the sorption material [18]. Therefore, the study of characteristics and properties of sorbents was the carried out precisely under dynamic conditions.

The results of experiments on the effect of the initial concentration of OP in the model solution on the sorption capacity of the sorbents are the shown in Fig. 1-3.

45-

„30

15

250

500

750

Fig. 1. The dependence of sorption capacity of SONET Sorb sorbents, ECOLAN and SCN-Sorb on the initial concentration of OP (oil products) in the model solution; 1 - SCN-Sorb, 2 - SONET Sorb, 3 - ECOLAN Рис. 1. Зависимость сорбционной емкости сорбентов Соннет Сорб, Эколан и СЦН-Сорб от начальной концентрации НП в модельном растворе; 1 - СЦН Сорб, 2 - СОНЕТ Сорб, 3 - Эколан

The results of the measurements show that the sorption capacity for sorbents SONET-Sorb, Ecolan, and SCN-Sorb in the range of OP concentrations under study is close and maximum value is 50 mg/g (Fig. 1).

60

ад 40

20

0

250

500

750

C,

op' т§л

Fig. 2. The dependence of the sorption capacity of schungite sorbents, Ol-Ex Hard, VST-Sorb and Ol-Ex 82 on the initial concentration of OP in the model solution; 1 - Ol-Ex Hard, 2 - VST-Sorb, 3 - Ol-Ex 82, 4 - Schungite Рис. 2. Зависимость сорбционной емкости сорбентов шунгита, Ol-Ex Hard, ВСТ-Сорб и Ol-Ex 82 от начальной концентрации НП в модельном растворе; 1 - Ol-Ex Hard , 2 - ВСТ-Сорб, 3 - Ol-Ex 82, 4 - шунгит

30-

20-

10-

0

0

200

600

400 Cop mg/1

Fig. 3. The dependence of the sorption capacity of sorbents MGS-Sorb, CTR-Sorb, zeolite and SMD-Sorb on the initial concentration of OP in the model solution; 1 - CTR-Sorb, 2 - MGS-Sorb,

3 - SMD-Sorb, 4 - Zeolite Рис. 3. Зависимость сорбционной емкости сорбентов МГС-Сорб, ЦТР-Сорб, цеолита и СМД-Сорб от начальной концентрации НП в модельном растворе; 1 - ЦТР-Сорб, 2 - МГС-Сорб, 3 - СМД-Сорб, 4 - Цеолит

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The sorbents Ol-Ex Hard, Ol-Ex 82 and VST-Sorb do not reach the saturation limit in the investigated range of OP concentrations, in contrast to schungite, which at the initial concentration of OP in the model solution of 300 mg/l reaches the saturation limit, ье. at OP concentration above given value, its use for purification of natural and wastewater is not advisable.

Fig. 3 shows the results of experiments on the effect of the initial concentration of OP in the solution on the sorption capacity of sorbents MGS-Sorb, CTR-Sorb,

0

0

0

Cop' mg/1

zeolite and CMD Sorb, belonging to the group of silicate sorbents. The most effective sorbent for waste-water treatment is Sorbent CTR-Sorb, with a maximum sorption capacity of 30 mg/g.

The obtained isotherms for all sorbents have almost identical character with a pronounced linear region in the region of low concentrations and correspond to isotherms of monomolecular adsorption.

The experiments showed that the sorption capacity of the investigated sorbents varies from 10 to 50 mg OP per 1 g of sorbent. Ol-Ex Hard and Ol-Ex 82 the sorbents possessed maximum sorption capacity.

The maximum value of water absorption is the observed for sorbent SCN - Sorb and it was 10 g/g. The hydrophobic sorbents are sorbents of the silicate group. The minimal water adsorption (0.08 g/g) has Ol-Ex Hard.

The moisture content of the sorbents is presented in Table 2.

The lowest moisture content is also characteristic for silicate sorbents and does not exceed 0.5 % of their mass. The maximum moisture adsorption is typical for SONET Sorb and MGS sorb. It should be the noted that the humidity of all the samples studied, in addition to the SONET Sorb sorbent, did not exceed 1 %, which corresponds to the regulatory requirements imposed on them and allows them to be the used as sorbents in water treatment and water treatment processes [19].

The bulk density of sorbents along with the sorption capacity is one of the main characteristics of sorption materials, and was also one of the criteria for choosing the further object of research. It was determined by [20], and the shown in (Table 2).

Table 2

Sorbent properties

Name Bulk sorbent Moisture Water

density, kg/m3 contents, % adsorption, g/g

SONET Sorb 334 1.04 0.69

Ol-Ex 82 150 0.33 0.57

SCN-Sorb 50 0.22 10

ECOLAN 250 0.35 0.75

CTR-Sorb 674 0.4 0.86

MGS-Sorb 1100 0.84 0.5

SMD-Sorb 420 0.06 1.63

Natural zeolite 700 0.39 0.43

Natural schungite 412.5 0.05 0.42

Ol-Ex Hard 1500 0.34 0.08

VST-Sorb 112 0.52 5.61

The results of formal processing of the obtained adsorption isotherms for all sorbent samples are presented in Table 2.

The results of calculations show that the distribution coefficients for most sorbents are in the range of 0.1-0.7. In the sorbent Ol-Ex Hard, the Kd value is maximal and exceeds the other sorbents. In schungite sorbents and SONET Sorb, the Kd value is minimal.

It is also interesting that a similar regularity can be traced in analyzing the maximum degree of filling of the surface of sorbents. So, the surface of Ol-Ex Hard is almost completely filled with oil product (0 ^ 1), while for shungite the surface will be filled only by 13 %.

It should be noted that for all sorbents, certain values of 0i are consistent with the stated assumption about the monolayer nature of adsorption.

Table 3

The results of calculations of the values of the distribution coefficients, limiting adsorption, adsorption coefficients,

Henry constants, changes in Gibbs energy and maximum degree of filling Таблица 3. Результаты расчетов значений коэффициентов распределения, предельной адсорбции, адсорбци-

Adsorbent Coefficient of distribution Kd Maximum adsorption am, mg/g Adsorption coefficient b Henry's Constant H Gibbs energy change AaG°, kJ / mol Maximum degree of filling 0

Natural zeolite 0.23 8.87 0.005 0.04 13.38 0.58

Natural schungite 0.033 14.68 0.0037 0.054 13.87 0.39

SMD-Sorb 0.56 20.49 0.006 0.123 12.67 0.7

SCN-Sorb 0.44 68.03 0.0091 0.621 11.64 0.52

Ol-Ex 82 0.12 5.72 0.0469 0.269 7.57 0.66

ECOLAN 0.28 13.3 0.0365 0.486 8.2 0.75

SONET Sorb 0.06 23.7 0.003 0.066 14.53 0.13

MGS-Sorb 0.14 20.62 0.0105 0.2165 11.28 0.8

CTR-Sorb 0.31 8.79 0.2065 1.815 3.91 0.87

Ol-Ex Hard 33.27 55.25 0.588 32.47 1.315 0.99

VST-Sorb 0.68 22.37 0.06 1.34 6.98 0.7

The values of the limiting adsorption, calculated from the linear coordinates of the Langmuir isotherm, range from ~6 to ~70 mg/g of the sorbent. The values obtained agree with the experimental data on sorption capacity of sorbents. The maximum value of the limiting adsorption is observed for the SCN-Sorb and is 68 mg/g. But, a high value of am combined with a relatively low value of the adsorption coefficient and the average value of the degree of surface filling do not allow us to consider the SCN-Sorb as the most preferred sorbent for extracting petroleum products.

Adsorption coefficients, which are the meaning of the adsorption equilibrium constants, for most sorbents have relatively low values. The maximum value b = 0.59 belongs to the sorbent Ol-Ex Hard. The changes in the Gibbs energies calculated in terms of the

ЛИТЕРАТУРА

1. Марченко Л.А., Боковикова Т.Н., Белоногов Е.А., Марченко А.А. Новые пути синтеза сорбентов для решения сложных технологических задач. Сорбционные и хро-матографические процессы. 2009. Т. 9. № 6. C. 877-883.

2. Исмагилов Р.Р. Проблема загрязнения воды и ее решения. Молодой ученый. 2012. № 11. C. 127-129.

3. Хаскельберг М.Б., Шиян Л.Н., Корнев Я.И. Повышение эффективности удаления нефтепродуктов из сточных вод. Вестн. Томск. политехнич. ун-та. 2011. Т. 319. № 3. C. 32-35.

4. Митрюшкина К.П. Охрана природы. Справочник. М.: Агропромиздат. 1987. 267 с.

5. Смирнов А.Д. Сорбционная очистка воды. Л.: Химия. 1982. 168 с.

6. Каменщиков Ф.А., Богомольный Е.И. Нефтяные сорбенты. Ижевск: Институт компьютерных исследований. 2003. 268 с.

7. Собгайда Н.А. Сорбционные материалы для очистки сточных и природных вод от нефтепродуктов. Вестн. Харьков. нац. Автомобил.-дорожн. ун-та. 2011. № 52. C. 120-124.

8. Щепакин М.Б., Гафаров И.Г., Мишулин Г.М. Эко-лого-технологический комплекс для очистки гидросферы от нефти и нефтепродуктов. Экология и пром-ть России. 2000. Ноябрь. C. 40-44.

9. Фасхутдинова З.Т., Шайхиев И.Г., Абдуллин И.Ш. Повышение эффективности метода очистки маслосодер-жащих сточных вод модифицированными отходами валяльного производства. Вестн. Казан. технологич. ун-та. 2014. Т. 17. № 21. С. 220-222.

10. Шайхиев И.Г., Фасхутдинова З.Т., Абдуллин И.Ш., Свергузова С.В. Влияние параметров ВЧ плазмы пониженного давления на эффективность удаления угаром с водной поверхности масла ТП-22. Вестн. Белгород. гос. технологич. ун-та им. В.Г. Шухова. 2013. Т. 1. С. 133-137.

11. Chuah L.A., Shean T., Choong Y., Ngaini Z., Nourouzi M. Oil removal from aqueous state by natural fibrous sorbent: An overview. Separat. Purificat. Technology. 2013. V. 113. P. 51-63. DOI: 10.1016/j.seppur.2013.04.015.

magnitude of the coefficients b have positive values during adsorption. The nature of the change in Henry's constants is similar to that for adsorption coefficients.

The reason for this is probably related to the influence of the different degree of dispersion of the sorbents studied on the corresponding parameters of adsorption equilibrium.

CONCLUSION

Thus, by analyzing exclusively the adsorption characteristics of the samples studied, it can be concluded that most of the sorbents can be used to extract petroleum products. However, in our opinion, the most suitable is the sorbent Ol-Ex Hard, for which the highest values of adsorption parameters are observed.

This study was financially supported by the RFBR Grant, Project Number 18-08-01239.

REFERENCES

1. Marchenko L.A., Bokovikova T.N., Belonogov E.A., Marchenko A.A. New ways of synthesis of sorbents to solve complex technological problems. Sorption and chromatography processes. Sorbtsionnye i khromatograficheskie pro-cessy. 2009. V. 9. N 6. P. 877-883 (in Russian).

2. Ismagilov R.R. Problem of water pollution and its solutions. Molodoiy uchenyiy. 2012. N 11. P. 127-129 (in Russian).

3. Haskelberg M.B., Shiyan L.N., Kornev Ya.I. Improving the efficiency of oil products removal from waste waters. Vestn. Tomsk. Polytekhnich. Un-ta. 2011. V. 319. N 3. P. 3235 (in Russian).

4. Mitryushkina K.P. Protection of Nature. M.: Agropromiz-dat. 1987. 267 p. (in Russian).

5. Smirnov A.D. Sorption water purification. L.: Khimiya. 1982. 168 p. (in Russian).

6. Kamenshchikov F.A. Bogomol'niy E.I. Oil sorbents. Izhevsk: Institut Komputerrnykh Issledovaniy. 2003. 268 p. (in Russian).

7. Sobgayda N.A. Sorption materials for the purification of waste and natural waters from oil products. Vestn. Kharkov. Nat. Avto-mobil. Dorozh. Un-ta. 2011. N 52. P. 120-124 (in Russian).

8. Shchepakin M.B., Gafarov I.G., Mishulin G.M. Ecological and technological complex for cleaning the hydrosphere from oil and oil products. Ekologiya iPromyshlennostRossii. 2000. November. P. 40-44 (in Russian).

9. Faskhutdinova Z.T., Shaikhiev I.G., Abdullin I.Sh. Improving the efficiency of the method of cleaning oil-containing wastewater water by modified felt production waste. Vestn. Kazan. Tekhnologich. Un-ta. 2014. V. 17. N 21. P. 220-222 (in Russian).

10. Shaykhiyev I.G., Faskhutdinova Z.T., Abdullin LSh., Sverguzova S.V. Influence of the parameters of HF plasma of low pressure on the efficiency of removal from the water surface of oil TP-22. Vestn. Belgorod. Gos. Tekhnologich. Un-ta im. V.G. Shukhova. 2013. N 1. P. 133-137 (in Russian).

11. Chuah L.A., Shean T., Choong Y., Ngaini Z., Nourouzi M. Oil removal from aqueous state by natural fibrous sorbent: An overview. Separat. Purificat. Technology. 2013. V. 113. P. 51-63. DOI: 10.1016/j.seppur.2013.04.015.

12. Cambiella Б., Ortea E., Rhos G., Benito J.M., Pazos C., Coca J. Treatment of oil-in-water emulsions: performance of a sawdust bed filter. J. Hazard. Materials. 2006. V. 131. N 1-3. P. 195- 199. DOI: 10.1016/j.jhazmat.2005.09.023.

13. S., Bhaskar T., Muto A., Sakata Y. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel. 2005. V. 84. N 7-8. P. 875-884. DOI: 10.1016/j.fuel.2005.01.004.

14. Eliche-Quesada D., Corpas-Iglesias F.A., PmezViUarejo L., Iglesias-Godino F.J. Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing. Construct. Build. Material. 2012. V. 34. P. 275-284. DOI: 10.1016/j.conbuildmat.2012.02.079.

15. Гусев Г.И., Гушин А.А., Гриневич В.И., Ости А.А., Извекова Т.В., Квиткова Е.Ю. Регенерация природных сорбентов, загрязненных нефтепродуктами, в плазме диэлектрического барьерного разряда. Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 6. С. 72-76. DOI: 10.6060/tcct.2017606.5521.

16. Методические указания по измерению массовой концентрации нефтепродуктов в пробах питьевой воды и воды поверхностных и подземных источников водопользования (ПНД Ф 14.1:2:4.129-98).

17. Дерффель К. Статистика в аналитической химии. М.: Мир. 268 с.

18. Улитин М.В., Филиппов Д.В., Федорова А.А. Поверхностные явления. Адсорбция: Учебн. пособ. Иваново: ИГХТУ. 2014. 206 с.

19. ГОСТ 12597-67. Сорбенты. Метод определения массовой доли воды в активных углях и катализаторах на их основе. ГОСТ 16190-70. Сорбенты. Метод определения насыпной плотности.

12. Cambiella E., Ortea E., Rhos G., Benito J.M., Pazos C., Coca J. Treatment of oil-in-water emulsions: performance of a sawdust bed filter. J. Hazard. Materials. 2006. V. 131. N 1-3. P. 195- 199. DOI: 10.1016/j.jhazmat.2005.09.023.

13. Karag^ S., Bhaskar T., Muto A., Sakata Y. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel. 2005. V. 84. N 7-8. P. 875-884. DOI: 10.1016/j.fuel.2005.01.004.

14. Eliche-Quesada D., Corpas-Iglesias F.A., PärezVillarejo L., Iglesias-Godino F.J. Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing. Construct. Build. Material. 2012. V. 34. P. 275-284. DOI: 10.1016/j.conbuildmat.2012.02.079.

15. Gusev G.I., Gushin A.A., Grinevich V.J., Osti A.A., Izvekova T.V., Kvitkova E.Yu. Regeneration of natural sorbents contaminated with oil products in dielectric barrier discharge plasma. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 6. P. 72-76. DOI: 10.6060/tcct.2017606.5521.

16. Guidelines for the measurement of the mass concentration of oil in the samples of drinking water and surface and underground water sources (PND F 14.1: 2: 4.129-98) (in Russian).

17. Derffel K. Statistik in der analytischen Chemie. Leipzig: Deutscher Verlag für Grundstoffindustrie. 1990. 268 p.

18. Ulitin M.V., Filippov D.V., Fedorova A.A. Surface phenomena. Adsorption. Ivanovo: ISUCT. 2014. 206 p. (in Russian).

19. RF State Standard (GOST) 12597-67. Sorbents. Method for determining the mass fraction of water in active coals and catalysts based on them (in Russian).

RF State Standard (GOST) 16190-70. Sorbents. Method for determination the bulk density (in Russian).

Поступила в редакцию 19.09.2017 Принята к опубликованию 30.05.2018

Received 19.09.2017 Accepted 30.05.2018

i Надоели баннеры? Вы всегда можете отключить рекламу.