Научная статья на тему 'Sorption properties of a copolymer based on divinyl sulphide and 4-vinylpyridine'

Sorption properties of a copolymer based on divinyl sulphide and 4-vinylpyridine Текст научной статьи по специальности «Химические науки»

CC BY
49
18
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ИОНООБМЕННЫЕ СМОЛЫ / СОПОЛИМЕР ДИВИНИЛСУЛЬФИДА И 4-ВИНИЛПИРИДИНА / БЛАГОРОДНЫЕ МЕТАЛЛЫ / МОДЕЛИ АДСОРБЦИИ ЛЕНГМЮРА / ФРЕЙНДЛИХА / ДУБИНИНА РАДУШКЕВИЧА / ION EXCHANGE RESINS / COPOLYMER OF DIVINYLSULPHIDE AND 4-VINYLPYRIDINE / NOBLE METALS / LANGMUIR / FREUNDLICH / DUBININ-RADUSHKEVICH ADSORPTION MODELS

Аннотация научной статьи по химическим наукам, автор научной работы — Filatova Elena G., Shaglaeva Nina S., Pozhidaev Yuriy N., Baginov Denis B., Stanevich Lyubov M.

Organic polymers with N, S-functional groups are widely used as effective materials for the adsorption of transition metal ions. The adsorption of noble metals by copolymer of divinyl sulphide with 4-vinylpyridine has been studied in solutions of mineral acids. The copolymer under study has displayed high values of static sorption capacities, amounting to 1200, 340, 1040, 520 mg/g in Au (III), Ag (I), Pt (IV) and Pd (II), respectively. A comparative study of the Langmuir, Freundlich and Dubinin-Radushkevich adsorption models has been carried out to describe the experimental adsorption isotherms of noble metal ions on the surface of the copolymer under investigation. Constants and parameters of the considered adsorption models have been identified. Analysis of the values of the coefficients of determination R2 indicates that the adsorption of noble metal ions from sulphuric acid solutions and Ag from nitric acid solutions is most adequately described within the Langmuir model. The obtained results demonstrate that the adsorption of noble metal ions occurs on an energetically heterogeneous surface and represents a monomolecular process.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Сорбционные свойства сополимера на основе дивинилсульфида и 4-винилпиридина

Органические полимеры с N,S-функциональными группами находят широкое применение в качестве эффективных адсорбционных материалов для ионов переходных металлов. Исследована адсорбция благородных металлов сополимером дивинилсульфида с 4-винилпиридином в растворах минеральных кислот. Показано, что исследуемый сополимер характеризуются высокими значениями статических сорбционных емкостей, которые для Au(III), Ag(I), Pt(IV) и Pd(II) достигают 1200, 340, 1040, 520 мг/г, соответственно. Проведено сравнительное исследование адсорбционных моделей Ленгмюра, Фрейндлиха и Дубинина Радушкевича для описания экспериментальных изотерм адсорбции ионов благородных металлов на поверхности исследуемого сополимера. Определены константы и параметры рассмотренных моделей адсорбции. Анализ значений коэффициентов детерминации R2 свидетельствует, что адсорбцию ионов благородных металлов из сернокислых растворов и Ag из азотнокислых растворов наиболее адекватно описывает модель Ленгмюра. Полученные результаты указывают на то, что адсорбция ионов благородных металлов происходит на энергетически неоднородной поверхности и является мономолекулярным процессом.

Текст научной работы на тему «Sorption properties of a copolymer based on divinyl sulphide and 4-vinylpyridine»

ХИМИЧЕСКИЕ НАУКИ/ CHEMICAL SCIENCES Оригинальная статья / Original article УДК 541.64:547.425

DOI: http://dx.doi.org/10.21285/2227-2925-2019-9-1 -13-21

Sorption properties of a copolymer based on divinyl sulphide and 4-vinylpyridine

© Elena G. Filatova*, Nina S. Shaglaeva*, Yuriy N. Pozhidaev*, Denis B. Baginov*, Liubov M. Stanevich **

* Irkutsk National Research Technical University, Irkutsk, Russian Federation ** Irkutsk State Medical University, Irkutsk, Russian Federation

Abstract: Organic polymers with N, S-functional groups are widely used as effective materials for the adsorption of transition metal ions. The adsorption of noble metals by copolymer of divinyl sulphide with 4-vinylpyridine has been studied in solutions of mineral acids. The copolymer under study has displayed high values of static sorption capacities, amounting to 1200, 340, 1040, 520 mg/g in Au (III), Ag (I), Pt (IV) and Pd (II), respectively. A comparative study of the Langmuir, Freundlich and Dubinin-Radushkevich adsorption models has been carried out to describe the experimental adsorption isotherms of noble metal ions on the surface of the copolymer under investigation. Constants and parameters of the considered adsorption models have been identified. Analysis of the values of the coefficients of determination R2 indicates that the adsorption of noble metal ions from sulphuric acid solutions and Ag from nitric acid solutions is most adequately described within the Langmuir model. The obtained results demonstrate that the adsorption of noble metal ions occurs on an energetically heterogeneous surface and represents a monomolecular process. Keywords: ion exchange resins, copolymer of divinylsulphide and 4-vinylpyridine, noble metals, Langmuir, Freundlich, Dubinin-Radushkevich adsorption models

Acknowledgement:The results presented in the article were obtained within the RFBR project (no. 19-08-003420) and the State Contract with the Ministry of Education and Science of Russia no. 4.5867.2017/8.9, 10.5737.2017/6.7.

Information about the article: Received July 9, 2018; accepted for publication March 4, 2019; available online March 29, 2019.

For citation: Filatova E.G., Shaglaeva N.S., Pozhidaev Yu.N., Baginov D.B., Stanevich L.M. Sorption properties of a copolymer based on divinyl sulphide and 4-vinylpyridine. Izvestiya vuzov. Prikladnaya khimiya i bio-tekhnologiya [Proceedings of Universities. Applied Chemistry and Biotechnology]. 2019, vol. 9, no. 1, pp. 13-21. (In Russian). DOI: 10.21285/2227-2925-2019-9-1-13-21

Сорбционные свойства сополимера

на основе дивинилсульфида и 4-винилпиридина

© Е.Г. Филатова*, Н.С. Шаглаева*, Ю.Н. Пожидаев*, Д.Б. Багинов*, Л.М. Станевич**

* Иркутский национальный исследовательский технический университет, г. Иркутск, Российская Федерация ** Иркутский государственный медицинский университет, г. Иркутск, Российская Федерация

Резюме: Органические полимеры с N, S-функциональными группами находят широкое применение в качестве эффективных адсорбционных материалов для ионов переходных металлов. Исследована адсорбция благородных металлов сополимером дивинилсульфида с 4-винилпиридином в растворах минеральных кислот. Показано, что исследуемый сополимер характеризуются высокими значениями статических сорбционных емкостей, которые для Au(III), Ag(I), Pt(IV) и Pd(II) достигают 1200, 340, 1040, 520 мг/г, соответственно. Проведено сравнительное исследование адсорбционных моделей Ленгмюра, Фрейндлиха и Дубинина - Радушкевича для описания экспериментальных изотерм адсорбции ионов благородных металлов на поверхности исследуемого сополимера. Определены константы и параметры рассмотренных моделей адсорбции. Анализ значений коэффициентов де-

терминации R свидетельствует, что адсорбцию ионов благородных металлов из сернокислых растворов и Ag из азотнокислых растворов наиболее адекватно описывает модель Ленгмюра. Полученные результаты указывают на то, что адсорбция ионов благородных металлов происходит на энергетически неоднородной поверхности и является мономолекулярным процессом. Ключевые слова: ионообменные смолы; сополимер дивинилсульфида и 4-винилпиридина; благородные металлы; модели адсорбции Ленгмюра, Фрейндлиха, Дубинина - Радушкевича

Благодарность: Приведенные в статье результаты были получены в рамках выполнения проекта РФФИ (№ 19-08-003420) и государственного задания Минобрнауки России N 4.5867.2017/8.9, 10.5737.2017/6.7.

Информация о статье: Дата поступления 9 июля 2018 г.; дата принятия к печати 4 марта 2019 г.; дата онлайн-размещения 29 марта 2019 г.

Для цитирования: Филатова Е.Г., Шаглаева Н.С., Пожидаев Ю.Н., Багинов Д.Б., Станевич Л.М. Сорб-ционные свойства сополимера на основе дивинилсульфида и 4-винилпиридина // Известия вузов. Прикладная химия и биотехнология. 2019. Т. 9, N 1. С. 13-21. DOI: 10.21285/2227-2925-2019-9-1-13-21.

INTRODUCTION

Divinylsulphide (DVS) is one of the classes of monomers having the potential to create ion exchange resins due to the presence of sulphide sulphur atoms ("soft" easily-polarised centres of basicity and complexation) within the framework of the polymer matrix, which endows the ion exchanger with a highly-selective complexing affinity with respect to transition metals. The combined reaction of DVS with 4-vinylpyridine (4-VP) enables the synthesis of an ion exchanger containing a "pyridine" nitrogen atom and sulphide sulphur in the polymer chain, which ensures high sorption activity of the copolymerisation products with respect to noble metal ions.

The propensity of noble metal ions to form stable complexes with N- and S-donor ligands is commonly used to create sorption materials [1, 2]. Thus, functional resins containing guanylthiourea and 2-mercapto-1-methylimidazole exhibited high selectivity towards gold(I) and silver(I) from ammonium solutions. However, they did not absorb ammonia complexes of copper(II). The kinetics of gold(I) sorption on these resins was improved by immobilising the ligands of N, N-dimethylethanolamine, which were responsible for increasing the hydro-philicity of the polymeric material. The degree of gold sorption was 99.5% [3].

A series of eighteen copolymers of 4-vinylpyri-dine and 4-methyl-4'-vinylpyridine used for the sorption of Ag(I), Au(III), Pd(II) and Pt(IV) ions and having various crosslinking agents in aqueous solutions were investigated. Chelating polymers have a significant sorption selectivity for Au(III) over Ag(I) and for Pd(II) over Pt(IV) [4].

A new chelating resin was synthesised from a macroreticular polystyrene-divinylbenzene copolymer incorporating the ^-hydroxydithiocoric acid functional group. The study of adsorption capacity showed that the synthesised resin was highly selective for Ag(I), Hg(II), Au(III) and Pt(IV) in a strongly acidic aqueous solution [5].

A series of highly effective sorbents of noble metals were obtained by sol-gel synthesis based on organosilicone N,S-functional monomers. A distinc-

tive feature of such polymers, along with outstanding complexing activity, is high chemical and thermal stability [6-8]. In general, N- and S-containing ion-exchange and complexing sorbents dominate in the vast group of polymeric materials proposed for the extraction of noble metal ions.

The aim of this work was to study the adsorption of noble metals by ion exchangers on the basis of the copolymer of divinylsulphide and 4-vinyl-pyridine.

EXPERIMENTAL PART

The copolymers of divinylsulphide and 4-vinyl-pyridine were obtained by free-radical copolymeri-sation in glass ampoule reactors with azobisisobu-tyronitrile at 60 °C [9, 10].

Insoluble copolymers with quantitative yields for all ratios of the monomer mixture were obtained by free-radical copolymerisation of divinylsulphide with vinylpyridine. The compositions of the copolymers, calculated from nitrogen and sulphur contents, are satisfactorily in agreement with each other. The number of DVS units in the copolymer decreases with a decrease of its concentration in the initial mixture. With the increase of the content of divinylsulphide in the initial mixture, a decrease in the yield of the target product is observed.

Since previous experiments had shown that a divinylsulphide-4-vinylpyridine copolymer with a composition ratio of 38,77:61,23 mol.%, containing 8,78% of nitrogen and 12,67% of sulphur, has a higher sorption activity, we studied the sorption properties of this copolymer sample.

The initial solutions of noble metal ions with a concentration of 10 mg/ml were prepared from chemically pure solutions of H2PtCl6 6H2O, PdCl2 2H2O, HAuCl4 4H2O, Ag (NO3).

The sorption characteristics of divinylsulphide-4-vinylpyridine copolymers were studied in a static mode with respect to the acid complexes of plati-num(IV), palladium(II), gold(III) in solutions of hydrochloric and sulphuric acid. The adsorption of silver(I) ions was investigated in nitric acid solutions at the temperature of 298 K.

To construct isotherms, the constant mass

(0,02g) bottle-point method was used. The solutions under study were prepared with a volume of 20 ml. The mass ratio of liquid and solid phases in the adsorption process was 1:1000. Static sorption capacity (A, mg/g,) was calculated by the following formula:

A = ((C0 - Ce)/m)V, (1)

where C0 and Ce are the initial and equilibrium concentrations of metal ion in solution, respectively, mg/dm3; V is the volume of solution, dm3; m is the mass of adsorbent, g.

The content of gold(III) and silver(I) in the solution was monitored using the atomic absorption method on the C-115M1 device (Research and Production Enterprise "Ukrospribor"), that of platinum and palladium was monitored using the photometric method by the reaction of formation of their tin-chloride complexes [11]. To measure the optical density, a «Promecolab PE-5400V» spectrophotometer was used.

RESULTS AND DISCUSSION

The study of the adsorption of silver ions on the divinylsulphide-4-vinylpyridine copolymer in solutions of nitric acid was carried out, where the metal

w, % 00

40 20 0

1 2 3 4 S 6 7 Скислоты, МОЛЬ/ДМ3

has the form of the Ag+ cation. The extraction of Pt, Pd and Au ions was studied in hydrochloric and sulphuric acid solutions, in which these metals are present in the form of acid complexes of different composition [1, 2].

For Pt, Pd, Au chloro-complexes, with an increase in the concentration of acids, a slight decrease in the degree of extraction is observed with the exception of the gold tetrachloride complex in sulphuric acid (Fig. 1).

A decrease in the degree of extraction of chlo-ro-complexes of platinum and gold is more manifested in hydrochloric acid solution (see Fig.1). The given type of the dependence is evidence for the anion exchange at the pyridine nitrogen atom and the effect of competing acid anions, considering their size and mobility. Coordination interaction of metal ions by nitrogen and sulphur atoms, which is more characteristic of the cationic form of silver, cannot be ruled out.

The time needed to establish sorption equilibrium in metal extraction from 1 M acid solutions is 60 minutes at the half-sorption time, t 1/2 : for the silver cation, it is 15 min; for Pt and Pd anionic complexes, it is 30 min; for Au chloro-complexes, it is 5-10 min.

w; %

100

о

1 2 3 4 5 6 7

Скислоты, моль/дм3

Fig. 1. Influence of the nature and concentration of acids on the extraction degree of ions: Au(III) in H2SO4 (1) and HCl (3); Ag(I) in HNO3 (2); Pd(II) in H2SO4 (4) and HCl (5);

Pt(IV) in H2SO4 (6) and HCl (7)

Рис. 1. Влияние природы и концентрации кислот на степень извлечения ионов: Au(III) в H2SO4 (1) и HCl (3); Ag(I) в HNO3 (2); Pd(II) в H2SO4 (4) и HCl (5);

Pt(IV) в H2SO4 (6) и HCl (7)

Since the distribution of metal ions in liquid and solid phases in the equilibrium state is characterised by adsorption isotherms in 1 M acid solutions (Fig. 2), we were able to calculate the values of the sorption capacity and metal phase distribution ratios (Table 1).

Experimental isotherms of noble metal ion adsorption by divinylsulphide-4-vinylpyridine copoly-mer are interpreted by several adsorption models: the Langmuir model for limited adsorption on the monolayer, the Freundlich model of unrestricted adsorption and the Dubinin-Radushkevich model for adsorption on porous microreticular sorbents [12].

The Langmuir monomolecular adsorption equa tion is most often applied to the solid/liquid inter-

face:

A= A„ • (K • C e/ (1+ K Ce)), (2)

where A is the current value of adsorption, mmol/g; A «, is the maximum value of adsorption, mmol/g; K is the adsorption equilibrium constant; Ce. is the equilibrium concentration of metal ion, mmol/dm3.

The experimental data were processed using the Langmuir equation, reduced to linear form:

1/A= (1/A„)+((1/(A„ K)(1/Ce). (3)

The isotherms of noble metal ion adsorption by the considered ion exchanger belong to the monomolecular adsorption isotherms (Fig. 3).

A, ммоль/г

A, ммоль/г

Сравн., м моль/дм a

Сравн., ммоль/дм b

Fig. 2. Adsorption isotherms: of Ag(I) ions in 1 M HNO3, Au(III), Pt(IV), Pd(II) in 1 M HCl (a) and in 1 MH2SO4 (b) (m = 10 mg; V = 20 ml; т = 2 h)

Рис. 2. Изотермы адсорбции: ионов Ag(I) в 1 М HNO3, Au(III), Pt(IV), Pd(II) в 1 М HCl (а) и в 1 М H2SO4 (b) (m = 10 мг; V = 20 мл; т = 2 ч)

Table 1

Values of sorption capacity (A) and metal distribution ratios (D) in 1 M acid solutions

Таблица 1

Значения сорбционной емкости (А) и коэффициентов распределения металлов (D) в 1 М растворах кислот

Me A, mg/g D, cm3 /g Me A, mg/g D, cm3 /g

Ag (HNO3) 330 3,8-105 Au (H2SO4) 1200 1,6-104

Au (HCl) 730 1,5-105 Pd (H2SO4) 520 12,1 -105

Pd (HCl) 410 1,3105 Pt (H2SO4) 570 4,0-104

Pt (HCl) 670 1,1 -105 - - -

1/A, г/ммоль

1/A, г/ммоль

дм /ммоль a

дм /ммоль b

Fig. 3. Adsorption isotherms in the coordinates of the linear Langmuir equation's form: Adsorption isotherms: Ag(I) ions in 1 M HNO3, Au(III), Pt(IV), Pd(II) in 1 M HCl (a)

and in 1 M H2SO4 (b) at 298 K

Рис. 3. Изотермы адсорбции в координатах линейной формы уравнения Ленгмюра: Ag(I) в 1 М HNO3, Au(III), Pt(IV), Pd(II) в 1 М HCl (а) и в 1 М H2SO4 (b) при 298 К

From the graphical linear dependencies shown in Fig. 3, the limiting value of adsorption A« was determined from the value of the straight line

segment intersecting the ordinate axis, and the adsorption equilibrium constant K was determined from the slope of straight line, the values of which

Sorption properties of a copolymer based on divinyl sulphide and 4-vinylpyridine

are presented in tab. 2.

The determination coefficient values given in Table 2 indicate that the adsorption of noble metals from sulphate solutions (R2=0,991) and silver from nitric acid solutions (R2=0,995) is most adequately described by the Langmuir adsorption model.

To the medium loading area of the heterogeneous surface of adsorbents comprising the considered copolymers with localised functional groups, the Freundlich empirical equation is commonly applied. Freundlich's equation in the logarithmic form is:

lgA = lgK+ 1/n lgCe, (4)

where A is the adsorption value, mmol/g; Ce is

equilibrium concentration of metal ions, mmol/dm ; Kf and n are constants.

Freundlich's theory suggests that adsorption on each type of adsorption centres complies with the Langmuir equation. According to the Freundlich model, the adsorption centres have different energy values, with the active adsorption centres having maximum energy being loaded first. Due to the constants Kf and n, the adsorption capacity towards different adsorbates can be compared. When the concentration of metal ions in the solution is 1 mmol/dm3, the adsorption value of these ions is equal to a constant Kf (molar adsorption ratio); the parameter n indicates the intensity of the adsorbent-adsorbate interaction (Table 3).

Parameters of the Langmuir adsorption model

Параметры модели адсорбции Ленгмюра

Table 2

Таблица 2

Me Ammol/g К R2 Me A», mmol/g К R2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ag (HNO3) 4,762 0,742 0,955 Au (H2SO4) 1200 4,000 0,991

Au (HCl) 5,405 11,563 0,983 Pd (H2SO4) 520 1,481 0,991

Pd (HCl) 4,184 2,464 0,939 Pt (H2SO4) 570 2,887 0,991

Pt (HCl) 5,208 1,901 0,971 - - - -

lg А

lg А

■Г

1

>8

-2

• У S

У A4 •• • А? «О

м* /

-0,5

ig с

рЭВи

0,(ж.4

ш/ Г

О *Ag ■ Au ♦ Pd A Pt

Р

0

ig с

PSBH

-2

-0,2 0 bau 1 /А -0,4

-0,6 b

♦ Pd ▲ Pt

Fig. 4. Adsorption isotherms in the coordinates of the linear Freundlich equation form: Adsorption isotherms: Ag(I) ions in 1 M HNO3, Au(III), Pt(IV), Pd(II) in 1 M HCl (a)

and in 1 M H2SO4 (b) at 298 K

Рис. 4. Изотермы адсорбции в координатах линейной формы уравнения Фрейндлиха: Ag(I) в 1 М HNO3, Au(III), Pt(IV), Pd(II) в 1 М HCl (а)и в 1 М H2SO4 (b) при 298 К

Parameters of the Freundlich adsorption model Параметры модели адсорбции Фрейндлиха

Table 3

Таблица 3

a

Me Kf n R2 Me Kf n R2

Ag (HNO3) 2,612 0,942 0,986 Au (H2SO4) 23,442 0,781 0,967

Au (HCl) 14,723 0,881 0,908 Pd (H2SO4) 4,150 1,435 0,975

Pd (HCl) 4,295 1,294 0,969 Pt (H2SO4) 4,507 0,949 0,931

Pt (HCl) 2,553 1,104 0,966 - - - -

The data in Table 3 demonstrate that the maximum value of the molar ratio is achieved through the adsorption of Au ions from sulphate and hydrochloric acid solutions, which agrees with the data in Table 1. According to the intensity of interaction with the ion exchanger under consideration, metal ions form the following series: Pd(II)> Pt(IV)> Ag(I)> Au(III). The values of the determination coefficients indicate that the adsorption of silver ions from nitric acid solutions can be described by the Freundlich adsorption model.

The equilibrium data of the adsorption process were processed using the Dubinin-Radushkevich isotherm model:

A= Amexp (-k£2), (5)

2 2

where kis a constant (mol /kJ ) associated with the energy of adsorption; £ is the Polanyi potential (kJ/mol), reflecting the isothermal transfer of one mole of metal ions from the equilibrium solution to the adsorbent surface and determined from the

expression £ = RT ■ ln(1 + 1/C) where R is the universal gas constant, kJ/mol; T is absolute temperature, K.

Based on the Dubinin-Radushkevich equation in logarithmic form

lnA= lnAm- k£2 (6)

the dependences lnA= f(£ ) (Fig. 5) are plotted.

The constants k and Am (Table 4) were determined from the slope of straight lines and the line segment on the axis of ordinates.

The Dubinin-Radushkevich model, developed to describe the adsorption of gas on microporous solids based on the theory of adsorption potential, is used when considering the adsorption of both complex organic molecules [13] and inorganic ions [14] on solid support. The Dubinin-Radush-kevich model is considered to be a more general model whose assumption is not based on a homogeneous surface or a constant potential of adsorption [15], which coincides with the idea of energetic heterogeneity of synthetic sorbents with chemically active groups localised on the surface.

-In A

2 1,5

<

1 J

0,5 i

о:

-0,5 9 -1 -1,5 -2

/ A ••* A/> ' ♦■'

♦ /У ..•*' лУ

V/ 50

у.

e, кДж2/мопь2 100

• Ag ■ Au

♦ Pd APt

b

Fig. 5. Adsorption isotherms in the coordinates of the linear Dubinin-Radushkevich equation form: Adsorption isotherms: Ag(I) ions in 1 M HNO3, Au(III), Pt(IV), Pd(II) in 1 M HCl (a)

and in 1 M H2SO4 (b) at 298 K

Рис. 5. Изотермы адсорбции в координатах линейной формы уравнения Дубинина - Радушкевича: Ag(I) в 1 М HNO3, Au(III), Pt(IV), Pd(II) в 1 М HCl (а)

и в 1 М H2SO4 (b) при 298 К

Parameters of the Dubinin-Radushkevich adsorption model Параметры модели адсорбции Дубинина - Радушкевича

Table 4

Таблица 4

a

Me Am, mmol/g k, mole2/kJ2 R2 Me ^m, mmol/g k, mole2/kJ2 R2

Ag (HNO3) 1,012 0,214 0,901 Au (H2SO4) 10,431 0,055 0,990

Au (HCl) 6,018 0,042 0,961 Pd (H2SO4) 4,477 0,048 0,942

Pd (HCl) 3,888 0,031 0,928 Pt (H2SO4) 3,884 0,075 0,987

Pt (HCl) 3,849 0,049 0,992 - - - -

Analysing the values of the determination coefficients in hydrochloric acid solutions of all the three considered adsorption models, we can conclude that the Dubinin-Radushkevich model is adequate under the adsorption of Pt ions from hydrochloric acid solutions (R2=0,992).

In general, the divinylsulphide-4-vinylpyridine copolymers display high values of static sorption capacities amounting to 1200, 340, 1040, 520 mg/g for Au(III), Ag(I), Pt(IV) and Pd(II), respectively. It is essential that under the sorption of noble metal ions from rich or poor solutions, the value of the exchange capacity of the copolymers remains constant. The high distribution coefficient values (see Table 1) demonstrate the efficiency of sorption and the possibility of group extraction of noble metals.

The adequacy of the adsorption of noble metal ions from sulphuric acid solutions and silver from nitric acid solutions by the divinylsulphide-4-vinylpyridine copolymer of the Langmuir model enables us to characterise the process under study as a monomolecular adsorption on the energetically heterogeneous surface of a porous micro-

reticular sorbent; this result is in full conformity with the structural characteristics of this type of copol-ymers.

CONCLUSIONS

1. The divinylsulphide-4-vinylpyridine copolymer exhibits high static sorption capacities amounting to 1200, 340, 1040, 520 mg/g for Au(III), Ag(I), Pt(IV) and Pd(II), respectively.

2. The adsorption of noble metal ions from sulphuric acid solutions and silver from nitric acid solutions by the divinylsulphide-4-vinylpyridine co-polymer of the Langmuir model is most adequately described within the Langmuir adsorption model, making it possible to characterise the process under study as a monomolecular adsorption on the energetically heterogeneous surface of the porous microreticular sorbent, which is in full conformity with the structural characteristics of this type of copolymers.

3. The adsorption of Pt ions from hydrochloric acid solutions is most adequately described within the Dubinin-Radushkevich adsorption model.

1. Massey A.G., Thompson N.R., Johnson B.F.G. The Chemistry of Copper, Silver and Gold. Oxford, New York: Pergamon Press, 1973, 197 p.

2. Livingstone S.E. The Chemistry of Ruthenium, Rhodium, Palladium, Osmium, Iridium and Platinum. Oxford, New York: Pergamon Press, 1973, 224 p.

3. Pilsniak-Rabiega M., Trochimczuk A.W. Selective recovery of gold on functionalized resins. Hydrometallurgy. 2014, vol. 146, pp. 111-118.

4. Talanova G.G., Zhong, L., Kravchenko O.V., Yatsimirskii K.B., Bartsch R.A. Noble metal ion sorption by pyridyl and bipyridyl group-containing chelating polymers. Journal of Applied Polymer Science. 2011, vol. 80, no. 2, pp. 207-213.

5. Liu C.Y., Lih J.J.Z. Synthesis, characterization and complexation properties of a polystyrene resin containing hydroxydithiocinnamic acid. Fresenius' Zeitschrift für analytische Chemie. 1988, vol. 332, no. 2, pp. 171-175.

6. Vlasova N.N., Pozhidaev Yu.N., Raspopina O.Yu., Belousova L.I., Voronkov M.G. Polyor-ganylsilsesquioxanes containing carbofunctional groups (NH)2C(SO2). Synthesis and sorption properties. Russian Journal of General Chemistry. 1999, vol. 69, no. 9, pp. 1391-1394.

7. Pozhidaev Y., Vlasova N., Voronkov M., Va-silyeva I. Determination of noble metals in rocks and ores using adsorbent PSTM-3T. Advanced Science Letters. 2013, vol. 19, no. 2, pp. 615-618.

8. Pozhidaev Yu.N., Oborina E.N., Belousova L.I., Vlasova N.N., Voronkov M.G. An organosil-icon sorbent with dithiocarbamate groups. Doklady Chemistry. 2004, vol. 399, no. 4-6, pp. 250-252.

9. Shaglaeva N.S., Amosova S.V., Sultan-gareev R.G., Fedorov S.V., Pirogova G.A., Shauli-na L.P., Golentovskaya I.P., Zavarzina G.A. Co-

polymerization of divinyl sulfide with vinylpyridines and their derivatives. Polymer Science. Series B. 2004, vol. 46, no. 5-6, pp. 121-125.

10. Shaglaeva N.S., Amosova S.V., Shauli-na L.P., Golentovskaya I.P., Sultangareev R.G., Pinigina O.P. Divinyl sulfide-4-vinylpyridine copolymer as an effective sorbent for mercury. Russian Journal of Applied Chemistry. 2005, vol. 78, no. 8, pp. 1273-1275.

11. Marchenko Z., Bal'tsezhak M.K. Metody spektrofotometrii v UF i vidimoi oblastyakh v neor-ganicheskom analize [Photometry range methods in UV and seen areas in the inorganic analysis]. Moscow: BINOM. Laboratoriya znanii Publ., 2007, 711 p.

12. Zelentsov V.I., Datsko T.Ya. The use of adsorption models for description of equilibrium in the aluminum oxyhydroxide fluorine system. El-ektronnaya obrabotka materialov. 2012, vol. 48, no. 6, pp. 65-73. (In Russian)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

13. Balarak D., Mostafapour F.K., Azarpira H., Joghataei A. Langmuir, Freundlich, Temkin and Dubinin - Radushkevich isotherms studies of equilibrium sorption of Ampicilin unto Montmoril-lonite nanoparticles. Journal of Pharmaceutical Research International. 2017, vol. 20, no. 2. Article no. JPRI.38056. DOI : 10.9734/JPRI/2017/38056.

14. Alimohammadi M., Saeedi Z., Akbarpour B., Rasoulzadeh H., Yetilmezsoy K., Al-Ghouti M., Khra-isheh M., McKay G. Adsorptive removal of arsenic and mercury from aqueous solutions by eucalyptus leaves. Water Air and Soil Pollution. 2017, vol. 228, no. 11. ID. 429. DOI: 10.1007/s11270-017-3607-y.

15. Inyinbor A.A., Adekola F.A. Olatunji G.A. Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resources and Industry. 2016, vol. 15, pp. 14-27. DOI: org/10.1016/j.wri.2016.06.001.

1. Massey A.G., Thompson N.R., Johnson B.F.G. The Chemistry of Copper, Silver and Gold. Oxford, New York: Pergamon Press, 1973. 197 p.

2. Livingstone S.E. The Chemistry of Ruthenium, Rhodium, Palladium, Osmium, Iridium and Platinum. Oxford, New York: Pergamon Press, 1973. 224 p.

3. Pilsniak-Rabiega M., Trochimczuk A.W. Selective recovery of gold on functionalized resins // Hydrometallurgy. 2014. Vol. 146. P. 111-118.

4. Talanova G.G., Zhong, L., Kravchenko O.V., Yatsimirskii K.B., Bartsch R.A. Noble metal ion sorption by pyridyl and bipyridyl group-containing chelating polymers // Journal of Applied Polymer Science. 2011. Vol. 80. No. 2. P. 207-213.

5. Liu C.Y., Lih J.J.Z. Synthesis, characterization and complexation properties of a polystyrene resin containing/-hydroxydithiocinnamic acid // Fresenius' Zeitschrift für analytische Chemie. 1988. Vol. 332. No. 2. P. 171-175.

6. Vlasova N.N., Pozhidaev Yu.N., Raspopina O.Yu., Belousova L.I., Voronkov M.G. Polyor-ganylsilsesquioxanes containing carbofunctional groups (NH)2C(SO2). Synthesis and sorption properties // Russian Journal of General Chemistry. 1999. Vol. 69. No. 9. P. 1391-1394.

7. Pozhidaev Y., Vlasova N., Voronkov M., Va-silyeva I. Determination of noble metals in rocks and ores using adsorbent PSTM-3T // Advanced Science Letters. 2013. Vol. 19. No. 2. P. 615-618.

8. Pozhidaev Yu.N., Oborina E.N., Belousova L.I., Vlasova N.N., Voronkov M.G. An organo-silicon sorbent with dithiocarbamate groups // Doklady Chemistry. 2004. Vol. 399. No. 4-6. P. 250-252.

9. Shaglaeva N.S., Amosova S.V., Sultan-gareev R.G., Fedorov S.V., Pirogova G.A., Shauli-na L.P., Golentovskaya I.P., Zavarzina G.A. Copoly-

ЕСКИЙ СПИСОК

merization of divinyl sulfide with vinylpyridines and their derivatives // Polymer Science. Series B. 2004. Vol. 46. No. 5-6. P. 121-125.

10. Shaglaeva N.S., Amosova S.V., Shauli-na L.P., Golentovskaya I.P., Sultangareev R.G., Pinigina O.P. Divinyl sulfide-4-vinylpyridine copolymer as an effective sorbent for mercury // Russian Journal of Applied Chemistry. 2005. Vol. 78. No. 8. P. 1273-1275.

11. Марченко З., Бальцежак М.К. Методы спектрофотометрии в УФ и видимой областях в неорганическом анализе / пер. с польск. М.: БИНОМ. Лаборатория знаний, 2007. 711 с.

12. Зеленцов В.И., Дацко Т.Я. Применение адсорбционных моделей для описания равновесия в системе оксигидроксид алюминия -фтор // Электронная обработка материалов. 2012. Т. 48. N 6. С. 65-73.

13. Balarak D., Mostafapour F.K., Azarpira H., Joghataei A. Langmuir, Freundlich, Temkin and Dubinin - Radushkevich isotherms studies of equilibrium sorption of Ampicilin unto Montmorillonite nanoparticles // Journal of Pharmaceutical Research International. 2017, Vol. 20. No. 2. Article no. JPRI.38056. DOI : 10.9734/JPRI/2017/38056.

14. Alimohammadi M., Saeedi Z., Akbarpour B., Rasoulzadeh H., Yetilmezsoy K., Al-Ghouti M., Khraisheh M., McKay G. Adsorptive removal of arsenic and mercury from aqueous solutions by eucalyptus leaves // Water Air and Soil Pollution. 2017. Vol. 228. No. 11. ID. 429. DOI: 10.1007/s11270-017-3607-y

15. Inyinbor A.A., Adekola F.A. Olatunji G.A. Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp // Water Resources and Industry. 2016. Vol. 15. P. 14-27. DOI: org/10.1016/j.wri.2016.06.001.

Contribution

Elena G. Filatova, Nina S. Shaglaeva, Yuriy N. Pozhidaev, Denis B. Baginov, Liubov M. Stanevich carried out the experimental work, on the basis of the results summarized the material and wrote the manuscript. Elena G. Filatova, Nina S. Shaglaeva, Yuriy N. Pozhidaev, Denis B. Baginov, Liubov M. Stanevich have equal author's rights and bear equal responsibility for plagiarism.

Conflict of interests

The authors declare no conflict of interests regarding the publication of this article.

AUTHORS' INDEX

Elena G. Filatova И

Ph.D. (Engineering), Associate Professor National Research Irkutsk State Technical University e-mail: efila@list.ru

Критерии авторства

Филатова Е.Г., Шаглаева Н.С., Пожидаев Ю.Н., Багинов Д.Б., Станевич Л.М. выполнили экспериментальную работу, на основании полученных результатов провели обобщение и написали рукопись. Филатова Е.Г., Шаглаева Н.С., Пожидаев Ю.Н., Багинов Д.Б., Станевич Л.М. имеют на статью равные авторские права и несут равную ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

СВЕДЕНИЯ ОБ АВТОРАХ

Филатова Елена Генадьевна El,

к.т.н., доцент

Иркутский национальный исследовательский технический университет e-mail: efila@list.ru

Nina S. Shaglaeva

Dr. Sci. (Chemistry), Professor National Research Irkutsk State Technical University e-mail: shaglaevaNS@yandex.ru

Yuriy N. Pozhidaev

Dr. Sci. (Chemistry), Professor National Research Irkutsk State Technical University e-mail: pozhid@istu.edu

Denis B. Baginov

Postgraduate Student National Research Irkutsk State Technical University e-mail: baginov.denis@mail.ru

Lyubov M. Stanevich

Ph.D. (Chemistry), Associate Professor Irkutsk State Medical University e-mail: l.stanevich@ismu.baikal.ru

Шаглаева Нина Савельевна,

д.х.н., профессор

Иркутский национальный исследовательский технический университет e-mail: shaglaevaNS@yandex.ru

Пожидаев Юрий Николаевич,

д.х.н., профессор

Иркутский национальный исследовательский технический университет e-mail: pozhid@istu.edu

Багинов Денис Борисович,

аспирант

Иркутский национальный исследовательский технический университет e-mail: baginov.denis@mail.ru

Станевич Любовь Михайловна,

к.х.н., доцент

Иркутский государственный медицинский университет e-mail: l.stanevich@ismu.baikal.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.