Научная статья на тему 'Параоксоназа: универсальный фактор антиоксидантной защиты организма человека'

Параоксоназа: универсальный фактор антиоксидантной защиты организма человека Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
1025
164
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПАРАОКСОНАЗА / АТЕРОСКЛЕРОЗ / ОКИСЛИТЕЛЬНЫЙ СТРЕСС / ЭНДОМЕТРИОЗ / ИНФЕКЦИОННЫЕ ЗАБОЛЕВАНИЯ

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Боровкова Екатерина Игоревна, Антипова Надежда Викторовна, Корнеенко Татьяна Васильевна, Шахпаронов Михаил Иванович, Боровков Иван Максимович

Параоксоназы (PON) это семейство ферментов, обладающих широкой специфичностью и каталитической универсальностью. В настоящее время открыты три представителя семейства PON1, PON2, PON3. Первые и третьи связаны с липопротеинами высокой плотности и циркулируют в плазме крови. Основной их функцией является предотвращение окисления липопротеинов, уменьшение образования липидных пероксидов и снижение риска развития атеросклероза. PON2 является внутриклеточным ферментом: обнаружен во многих тканях организма, включая печень, легкие, трахею, почки, сердце, поджелудочную железу, тонкий кишечник, мышцы, семенники и эндотелиальные клетки. PON2 также присутствует в дофаминергических областях головного мозга и в астроцитах. На субклеточном уровне PON2 локализуется в митохондриях, в которых предотвращает накопление триглицеридов и тем самым 5 препятствует развитию окислительного стресса. PON3 последняя из открытых параоксоназ обладает самой выраженной антиксидантной активностью. PON3 обнаружена в клетках кожи, слюнных железах, железистом эпителии желудка и кишечника, в эндометрии, гепатоцитах, клетках поджелудочной железы, сердце, жировой ткани и в легочном эпителии. Доказано антиокси-дантное, противовоспалительное и противомикробное действие PON3. Экспрессия PON3 уменьшает образование атеросклеротических бляшек и препятствует развитию ожирения. Концентрация PON3 увеличивается при онкологических заболеваниях, повышая сопротивление опухолевых клеток к оксидативному стрессу и апоптозу. В обзоре представлена информация о физиологической роли параоксоназ, а также их участии в развитии заболеваний, ассоциированных с окислительным стрессом (атеросклероз, эндометриоз, болезнь Паркинсона, цирроз печени, бактериальные, вирусные инфекции и опухолевые процессы).

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по фундаментальной медицине , автор научной работы — Боровкова Екатерина Игоревна, Антипова Надежда Викторовна, Корнеенко Татьяна Васильевна, Шахпаронов Михаил Иванович, Боровков Иван Максимович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Параоксоназа: универсальный фактор антиоксидантной защиты организма человека»

DOI: 10.15690/угашп764

Е.И. Боровкова1, Н.В. Антипова2, 4, Т.В. Корнеенко2, М.И. Шахпаронов2, И.М. Боровков3

1 Российский национальный исследовательский медицинский университет им. Н.И. Пирогова,

Москва, Российская Федерация 2 Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН,

Москва, Российская Федерация 3 Первый Московский государственный медицинский университет им. И.М. Сеченова,

Москва, Российская Федерация 4 Российский университет дружбы народов, Москва, Российская Федерация

Параоксоназы (PON) — это семейство ферментов, обладающих широкой специфичностью и каталитической универсальностью. В настоящее время открыты три представителя семейства — PON1, PON2, PON3. Первые и третьи связаны с липопротеинами высокой плотности и циркулируют в плазме крови. Основной их функцией является предотвращение окисления липопротеинов, уменьшение образования липидных пероксидов и снижение риска развития атеросклероза. PON2 является внутриклеточным ферментом: обнаружен во многих тканях организма, включая печень, легкие, трахею, почки, сердце, поджелудочную железу, тонкий кишечник, мышцы, семенники и эндотелиальные клетки. PON2 также присутствует в дофаминергических областях головного мозга и в астроцитах. На субклеточном уровне PON2 локализуется в митохондриях, в которых предотвращает накопление триглицеридов и тем самым 5

препятствует развитию окислительного стресса. PON3 — последняя из открытых параоксоназ — обладает самой выраженной антиксидантной активностью. PON3 обнаружена в клетках кожи, слюнных железах, железистом эпителии желудка и кишечника, в эндометрии, гепатоцитах, клетках поджелудочной железы, сердце, жировой ткани и в легочном эпителии. Доказано антиокси-дантное, противовоспалительное и противомикробное действие PON3. Экспрессия PON3 уменьшает образование атеросклероти-ческих бляшек и препятствует развитию ожирения. Концентрация PON3 увеличивается при онкологических заболеваниях, повышая сопротивление опухолевых клеток к оксидативному стрессу и апоптозу. В обзоре представлена информация о физиологической роли параоксоназ, а также их участии в развитии заболеваний, ассоциированных с окислительным стрессом (атеросклероз, эндометриоз, болезнь Паркинсона, цирроз печени, бактериальные, вирусные инфекции и опухолевые процессы). Ключевые слова: параоксоназа, атеросклероз, окислительный стресс, эндометриоз, инфекционные заболевания.

(Для цитирования: Боровкова Е.И., Антипова Н.В., Корнеенко Т.В., Шахпаронов М.И., Боровков И.М. Параоксоназа: универсальный фактор антиоксидантной защиты организма человека. Вестник РАМН. 2017;72(1):5—10. doi: 10.15690/vramn764)

E.I. Borovkova1, N.V. Antipova2, 4, T.V. Korneenko1, M.I. Shakhparonov1, I.M. Borovkov3

1 Pirogov Russian National Research Medical University, Moscow, Russian Federation 2 M.M. Shemyakin and Yu.A. Ovchinnikov Institute of bioorganic chemistry of the Russian Academy of Sciences,

Moscow, Russian Federation 3 Sechenov First Moscow State Medical University, Moscow, Russian Federation 4 RUDN University, Moscow, Russian Federation

The paraoxonase (PON) gene family includes three members: PON1, PON2, and PON3 aligned in tandem on chromosome 7 in humans. All PON proteins share considerable structural homology and have the capacity to protect cells from oxidative stress; therefore, they have been implicated in the pathogenesis of several inflammatory diseases, particularly atherosclerosis. Increased production of reactive oxygen species as a result of decreased activities of mitochondrial electron transport chain complexes plays a role in the development of many inflammatory diseases, including atherosclerosis. PON1 and PON3 proteins can be detected in plasma and reside in the high-density lipoprotein fraction and protect against oxidative stress by hydrolyzing certain oxidized lipids in lipoproteins, macrophages, and atherosclerotic lesions. Paraoxonase 2 (PON2) possesses antiatherogenic properties and is associated with lower ROS levels. PON2 is involved in the antioxidative and anti-inflammatory response in intestinal epithelial cells. In contrast to PON1 and PON3, PON2 is cell-associated and is not found in plasma. It is widely expressed in a variety of tissues, including the kidney, and protects against cellular oxidative stress. Overexpression of PON2 reduces oxidative status, prevents apoptosis in vascular endothelial cells, and inhibits cell-mediated low density lipoprotein oxidation. PON2 also inhibits the development of atherosclerosis, via mechanisms involving the reduction of oxidative stress. In this review we explore the physiological roles of PON in disease development and modulation of PONs by infective (bacterial, viral) agents.

Key words: paraoxonase, atherosclerosis, oxidative stress, endometriosis, infectious diseases.

(For citation: Borovkova EI, Antipova NV, Korneenko TV, Shakhparonov MI, Borovkov IM. Paraoxonase: The Universal Factor of Antioxidant Defense in Human Body. Annals of the Russian Academy of Medical Sciences. 2017;72(1):5-10. doi: 10.15690/vramn764)

универсальный фактор антиоксидантной защиты организма человека

Paraoxonase: The Universal Factor of Antioxidant Defense in Human Body

Введение

Свободно-радикальное окисление — это универсальный механизм, необходимый для осуществления физиологических процессов в организме, таких как апоптоз, элиминация ксенобиотиков, предупреждение злокачественной трансформации клеток, моделирование активности ферментов дыхательной цепи в митохондриях, пролиферация, дифференцировка клеток и транспорт ионов. Состояние тканей, которое характеризуется избыточным образованием свободных радикалов, называется окислительным стрессом. Регулирует активность процессов окислительного стресса система антиоксидантной защиты, одним из факторов которой является фермент параоксоназа [1].

Параоксоназы — это семейство ферментов, представленное тремя членами — PON1, PON2 и PON3 [1-3]. PON регулирует клеточные процессы за счет воздействия на рецепторы, активируемые пероксисомными проли-фераторами (PPAR — ядерные рецепторы, играющие роль в регуляции клеточной дифференцировки, развития и обмена веществ). Гены PON1 и PON3 присутствуют практически во всех клетках организма человека, а сами ферменты циркулируют в плазме в состоянии, связанном с липопротеинами высокой плотности (ЛПВП). PON2 является внутриклеточным ферментом и не обнаруживается в плазме [4, 5].

Семейство параоксоназ: структура и функции

PON1

В настоящее время лучше всего изучена параоксона-за 1 (PON1), которая представляет собой белок, состоящий из 354 аминокислот с молекулярной массой 43 кДа [5]. PON1 гидролизует широкий спектр субстратов, включая сложные эфиры, лактоны, фосфорорганические соединения, липопероксиды, эфиры эстрогена, многочисленные экзогенные и эндогенные сложные эфиры и циклические карбонаты [6-8].

PON1 синтезируется в печени и секретируется в кровоток, где почти полностью находится в связанном с ЛПВП состоянии благодаря N-концевому гидрофобному сигнальному пептиду [8]. Связь с ЛПВП необходима для стабильности фермента и моделирования его активности [9].

PON1 играет важную физиологическую роль в метаболизме липидов и профилактике атеросклероза. Она заключается в защите липопротеинов высокой и низкой плотности от окисления и в снижении риска развития атеросклеротических повреждений.

PON1 может обратимо связываться с фосфорорга-ническими субстратами и гидролизовать их, тем самым предотвращая их действие на органические эстеразы (псевдохолинэстераза и ацетилхолинэстераза в синапсах и нервно-мышечных соединениях), являясь таким образом основным средством защиты эндотелия сосудов и клеток нервной системы от органофосфатов и радикалов кислорода [8].

PON1 защищает от перекисного окисления липи-дов путем разрушения специфических холестериновых эфиров и фосфолипидов, содержащихся в окисленных липопротеинах [9]. Экспериментальные исследования на животных показали, что PON1 гидролизует окисленные липиды и выступает в качестве фермента-антиокси-данта. Снижение в сыворотке крови активности PON1

сопровождается увеличением окислительного стресса и риска развития атеросклероза. PON1, в свою очередь, инактивируется окисленными липидами [10].

ЛПВП способны защитить эндотелиальные клетки от цитотоксических эффектов липопротеинов низкой плотности (ЛПНП) за счет подавления процессов перекисного окисления последних благодаря ферментативному гидролизу фосфолипидных гидроксидов. Именно за счет активности PON снижается поглощение макрофагами ЛПНП и предотвращается их цитотоксическое действие на клетки [10, 11].

В сыворотке концентрация PON1 коррелирует с уровнем холестерина в составе ЛПВП и концентрацией апо-липопротеина 1 [12], поэтому достаточная продукция па-раоксоназы ассоциирована со снижением риска развития сердечно-сосудистых заболеваний [13].

Активность PON1 снижается под действием негенетических (курение, употребление алкоголя, диета) и генетических факторов (полиморфизм гена). Выявлена корреляционная зависимость частоты развития атеросклероза и ишемической болезни сердца с курением, а также с употреблением жирной пищи за счет снижения концентрации и активности PON1 [12].

PON 2

PON2 по свойствам является лактоназой, обладает ан-тиоксидантными и противовоспалительными свойствами и в отличие от других параоксоназ обнаруживается в тканях головного мозга. Самые высокие концентрации PON2 выявлены в дофаминергических нейронах и в астроцитах. PON1 и PON3 синтезируются главным образом в клетках печени и циркулируют в крови с ЛПВП, но PON2 является внутриклеточным ферментом и не присутствует в плазме [4, 14, 15].

На субклеточном уровне PON2 локализуется главным образом в митохондриях, в которых предотвращает развитие окислительного стресса [16].

PON2 обнаружена во многих тканях организма, включая печень, легкие, почки, сердце, поджелудочную железу, тонкий кишечник, мышцы, семенники, эндотелиаль-ные клетки [17]. В желудочно-кишечном тракте PON2 способствует сохранению целостности эпителиальной стенки за счет подавления процессов окисления и воспаления [18]. Отсутствие или снижение уровня PON2 значительно повышает восприимчивость тканей к действию радикалов кислорода. Было показано, что продукция PON2 отличается в мужском и женском организме [19]. Выявлено, что у самок мышей во всех тканях отмечается более высокая концентрация PON2, чем у самцов [20]. Возможным объяснением является стимулирующее действие эстрадиола на экспрессию PON2 и в связи с этим большая устойчивость женского организма к окислительному стрессу.

PON2 поддерживает важнейшие клеточные функции, однако до сих пор не известны физиологические субстраты и молекулярные механизмы, посредством которых он обеспечивает защиту от окислительного стресса. Выдвинуто предположение, что это происходит за счет лактоназной активности фермента, регулирующего апоп-тоз и выраженность окислительного стресса. В ряде экспериментальных исследований на мышах было доказано, что изменение продукции и активности PON2 увеличивает вероятность развития болезни Паркинсона [19-21], а нормализация лактоназной активности может привести к снижению окислительного стресса [4, 22].

PON2 является антагонистом окислительного стресса в эндотелиальных клетках [23, 24], клетках карциномы

6

легких [25], эпителиальных клетках кишечника и макрофагах [26]. Эти антиоксидантные эффекты РО№ играют важную роль в предотвращении атеросклеротического процесса и апоптоза [27-29]. В ряде клеток РОШ находится в связанном с коэнзимом Q10 состоянии и препятствует развитию митохондриальной дисфункции [30-32].

РОЮ

РОЮ обладает более выраженной антиоксидантной активностью, чем РОШ [7, 14, 33]. РО№ обнаружена в коже, слюнных железах, железистом эпителии желудка и кишечника, эндометрии, гепатоцитах, клетках поджелудочной железы, сердце, жировой ткани и в легочном эпителии [34-38]. В настоящее время доказано антиок-сидантное, противовоспалительное и противомикробное действие РО№, осуществляемое за счет блокирования кворумзависимых систем бактерий [30].

Избыточное образование РОЮ происходит при опухолевой трансформации клеток, что обеспечивает их устойчивость к оксидативному стрессу и снижает апоптоз атипичных клеток [39-41].

PON в женском организме

В процессе исследования функций параоксоназ, было отмечено, что у самок мышей продукция данного фермента достоверно выше, нежели у самцов. Очередное исследование в этом направлении позволило доказать, что экспрессия PON2 в женском организме стимулируется эстрадиолом. Именно с этим связаны большая устойчивость организма женщин к оксидативному стрессу и меньшая частота развития у них сердечно-сосудистых и неврологических заболеваний [7, 36].

В настоящее время именно оксидативный стресс рассматривается в качестве пускового механизма развития таких заболеваний, как эндометриоз, спаечный процесс, миома матки и преэклампсия [36, 37].

Согласно последним публикациям, наибольший интерес представляет изучение процессов оксидативного стресса в развитии эндометриоза и преэклампсии.

Наибольшее количество работ посвящено эндоме-триозу. При наружном генитальном эндометриозе происходит активация макрофагов в брюшной полости, что способствует увеличению производства активных форм кислорода, развитию окислительного стресса, активации перекисного окисления липидов и увеличению количества продуктов их деградации. В процессе расщепления окисленных липидов образуется малоновый диальдегид, запускающий антигенный ответ с выработкой антител. Этот процесс приводит к окислительному повреждению эритроцитов и перитонеальных клеток эндометрия, которые в свою очередь активируют мононуклеарные фагоциты и способствуют дальнейшему окислительному повреждению брюшины и органов малого таза. Окислительный стресс также повреждает мезотелиальные клетки, способствуя образованию адгезионных участков, прогрессированию эндометриоза и развитию спаечного процесса [38].

У пациенток с эндометриозом сывороточный уровень PON1 значительно превышает показатели у здоровых женщин. Однако не выявлено корреляции уровня PON1 с тяжестью и распространенностью процесса [37, 38, 42].

Преэклампсия — это осложнение второй половины беременности, основы развития которой закладываются с самых ранних этапов гестационного периода. Основной теорией патогенеза преэклампсии является недо-

статочность инвазии цитотрофобласта в спиральные артерии с неполной их гестационной трансформацией. Данное состояние приводит к нарушению формирования плацентарного ложа и циркуляторно-гипоксиче-ским изменениям в нем. Снижение притока кислорода активирует процессы перекисного окисления липидов и интенсивности окислительного стресса в плацентарной ткани [28].

Повышенное образование в ткани плаценты супероксидных анионов сопровождается активацией в макрофагах и нейтрофилах ферментов и значительным увеличением мощного прооксиданта — пероксинитри-та. Пероксинитрит в высоких концентрациях обладает цитотоксическим действием и может быть причиной окислительного повреждения белков, липидов и ДНК. Взаимодействие пероксинитрита с липидами приводит к образованию пероксидов, малондиальдегида и продуктов перекисного окисления липидов, а неферментная пероксидация арахидоновой кислоты — к образованию Fj-изопростаноидов, уровень которых может служить индикатором активности процессов перекисного окисления липидов [23, 28]. Повышение продукции малондиальдегида и Fj-изопростана отмечено как в плацентарной ткани, так в плазме крови и моче женщин с преэклампсией.

Прямое повреждающее действие окислительного стресса на белки приводит к образованию избыточного количества протеиновых карбонилов, которые служат дополнительными биомаркерами окислительного стресса. Высокие уровни протеиновых карбонилов в плаценте и децидуальной ткани выявлены у женщин с умеренной и тяжелой преэклампсией, а также при развитии HELLP-синдрома (от ^mo^sis — гемолиз; ЕLеvated liver enzymes — повышение активности ферментов печени; Lоw Рlаtelet соиП — тромбоцитопения) [28].

Образование продуктов перекисного окисления липидов при преэклампсии, как полагают, начинается в плаценте вследствие сверхпродукции супероксидных анионов, которые после быстрой реакции с NO образуют пероксинитриты. Выраженность процессов оксида-тивного стресса коррелирует со снижением активности системы антиоксидантной защиты, в частности со снижением продукции параоксоназ [24, 28]. В настоящее время разрабатываются диагностические панели, на основании которых возможно было бы прогнозировать развитие преэклампсии по результатам исследования в первом триместре беременности.

PON и инфекционные заболевания

Одной из интересных физиологических функций всех трех PON является их способность к гидролизу и инактивации кворумзависимых систем бактерий с помощью лактоназной активности. Молекулы (ацилированные лактоны гомосерина) кворумзависимых систем бактерий, секретируемые грамотрицательными бактериями, необходимы для регуляции образования бактериальной биопленки и секреции факторов вирулентности [34]. PON2 обладает самой высокой активностью против факторов кворумзависимых систем [25, 34, 43]. Блокируя образование биопленок, PON препятствует хронизации инфекционного процесса и способствует антигенному распознаванию и элиминации бактериальных агентов. PON2 выполняет эти функции на клеточном уровне, в то время как PON1 и PON3 действуют в системе кровообращения [44, 45].

7

Экспериментальные исследования показали, что активность PON1 изменяется при развитии острой фазы воспаления. Введение мышам липополисахарида клеточной стенки грамотрицательных бактерий на 50% снижает продукцию PON1 путем ингибирования PPAR-альфа и увеличения уровней фактора некроза опухоли а, интер-лейкинов 1ß и 6 [25, 34].

При развитии сепсиса концентрация PON1 в крови прогрессивно снижается в течение 24 ч, имеет прямую корреляцию с тяжестью заболевания и обратную — с уровнем С-реактивного белка [42]. Подобные изменения концентрации PON были выявлены у людей на фоне сепсиса, туберкулеза, при инфицировании Helicobacter pylori и Chlamydia [42-44].

Параоксоназа напрямую не приводит к гибели бактерий, но создает условия для их распознавания и лизиса клетками иммунной системы [45]. При воздействии вирусных агентов концентрация и активность параоксо-наз в сыворотке резко снижается. Экспериментальные исследования показали, что интраназальное введение вируса гриппа приводит к значительному снижению активности параоксоназы с пиком на 7-й день после заражения [45, 46].

Высказываются предположения, что PON1 необходима для защиты клеток печени от цитотоксического действия 8 вирусных частиц и свободных радикалов. При поражении

печени вирусом гепатита С у 80% пациентов заболевание переходит в хроническую форму с потенциальной возможностью прогрессирования до цирроза печени и гепато-целлюлярной карциномы [47]. Данные процессы связаны с развитием окислительного стресса, накоплением окислителей, индукцией образования активных форм кислорода и азота, митохондриальной дисфункцией и снижением антиоксидантной способности клеток [48].

Исследование, проведенное E.M. Ali и соавт. [49], подтвердили, что у больных с хроническим вирусным гепатитом и циррозом печени значительно снижен уровень PON1 и повышена активность миелопероксидазы. С другой стороны, у больных с хроническим вирусным гепатитом C концентрация в сыворотке PON3 значительно превышает показатели у здоровых людей и коррелирует с выраженностью перипортальных изменений и уровнем маркеров антиапоптоза [50].

При заражении вирусом гепатита В снижение параок-соназной активности отмечено только у пациентов с его хроническим активным течением и объясняется изменением синтеза и концентрации в крови ЛПВП [51-53].

Интересные и противоречивые данные получены при исследовании концентрации параоксоназ на фоне ВИЧ-инфекции. В крови у пациентов было отмечено повышение уровня С-реактивного белка, молекул клеточной адгезии, ЛПНП, холестерина и триглицеридов на фоне значительного снижения активности и концентрации PON1 [54-56]. Кроме того, доказана положительная корреляция между сывороточным уровнем PON1, количеством CD4+ Т-лимфоцитов и уровнем ß2-микроглобулина [57].

В отличие от PON1, у пациентов с ВИЧ-инфекцией активность PON2 и PON3 возрастает примерно в 3 раза, что отражает общую напряженность системы антиокси-дантной защиты на фоне системной вирусной инфекции [58, 59].

Заключение

Согласно имеющимся знаниям, в основе развития большинства заболеваний лежит оксидативный стресс, который связан с избыточным образованием свободных радикалов и их повреждающим действием на клетки. Активность свободных радикалов ограничивается анти-оксидантами, разрывающими цепи молекул при реакциях свободно-радикального окисления и разрушающими молекулы перекисей. Одним из ферментов, способных нейтрализовать свободные радикалы кислорода, является параоксоназа.

Доказано, что семейство параоксоназ играет важную физиологическую роль в метаболизме липидов и профилактике атеросклероза. Снижение в сыворотке крови активности PON сопровождается увеличением выраженности окислительного стресса и повышением риска развития не только сосудистых и обменных нарушений, но и ряда гинекологических, акушерских и опухолевых заболеваний.

Наиболее изучен механизм оксидативного стресса и реализации антиоксидантной защиты на уровне эндо-телиальной клетки в процессе развития атеросклероза. На основании полученных экспериментальных данных становится все более очевидным, что сывороточная параоксона-за участвует в процессе ангиопротекции за счет снижения перекисного окисления липидов при различных заболеваниях с воспалительным компонентом. Физиологическая роль параоксоназы связана с ее способностью ингибиро-вать окисление ЛПНП и стимулировать удаление холесте-рола из макрофагов. Снижение продукции параоксоназ, по аналогии с атеросклерозом, было продемонстрировано при ожирении, сахарном диабете и ряде инфекционных и гинекологических заболеваний, косвенно подтверждая значимость оксидативного стресса в их патогенезе.

Опубликовано достаточно информации о роли генетических факторов, особенностях питания, образа жизни и воздействии ряда фармакологических препаратов на модулирование продукции и активности PON в лабораторных условиях. Но практически нет исследований ре-гуляторных путей, которые функционируют в организме человека и приводят к активации или подавлению выработки PON. Требуется проведение базовых и правильно спланированных клинико-эпидемиологических исследований для уточнения всех возможных функций PON. Разработка методов моделирования активности системы антиоксидантной защиты позволит внедрить эффективные методы первичной профилактики и терапии обменных, пролиферативных и хронических заболеваний.

Источник финансирования

Работа выполнена в рамках реализации научной программы, поддержанной грантом Российского научного фонда (грант №16-14-10335).

Конфликт интересов

Авторы данной статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.

ЛИТЕРАТУРА

1. Jaouad LC, de Guise C, Berrougui H, et al. Age-related decrease alteration in the PONl's free sulfhydyl groups. Atherosclerosis.

in high-density lipoproteins antioxidant activity is due to an 2006;185(1):191-200. doi: 10.1016/j.atherosclerosis.2005.06.012

2. Rodriguez-Sanabria F, Rull A, Beltrfn-Deb6n R, et al. Tissue distribution and expression of paraoxonases and chemokines in mouse: the ubiquitous and joint localisation suggest a systemic and coordinated role. J Mol Histol. 2010;41(6):379-386. doi: 10.1007/ sl0735-010-9299-x

3. Furlong CE. Paraoxonases: an historical perspective. In: Mackness B, Mackness M, Aviram M, Paragh G, editors. The paraoxonases: their role in disease development and xenobiotic metabolism. Dordrecht, The Netherlands: Springer; 2008. p. 3-31.

4. Teiber JF, Draganov DI, La Du BN, et al. Lactonase and lac-tonizing activities of human serum paraoxonase (PON1) and rabbit serum PON3. Biochem Pharmacol. 2003;66(6):887-896. doi: 10.1016/s0006-2952(03)00401-5.

5. Rosenblat M, Gaidukov L, Khersonsky O, et al. The catalytic histidine dyad of high density lipoprotein-associated serum paraox-onase-1 (PON1) is essential for PON1-mediated inhibition of low density lipoprotein oxidation and stimulation of macrophage cholesterol efflux. J Biol Chem. 2006;281(11):7657-7665. doi: 10.1074/ jbc.m512595200.

6. Fuhrman B, Volkova N, Aviram M. Paraoxonase 1 (PON1) is present in postprandial chylomicrons. Atherosclerosis. 2005;180(1):55— 61. doi: 10.1016/j.atherosclerosis.2004.12.009.

7. Rajkovi6 Grdi6 M, Rumora L, Barisi6 K. The paraoxonase 1,2, and 3 in humans. Biochem Med (Zagreb). 2011;21(2):122-30. doi: 10.11613/bm.2011.020.

8. Fuhrman B, Gantman A, Aviram M. Paraoxonase 1 (PON1) deficiency in mice is associated with reduced expression of macrophage SR-BI and consequently the loss of HDL cytoprotection against apoptosis. Atherosclerosis. 2010;211(1):61 —68. doi: 10.1016/j. atherosclerosis.2010.01.025.

9. Bhattacharyya T, Nicholls SJ, Topol EJ, Zhang R. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA. 2008;299(11):1265—1267. doi: 10.1001/jama.299.11.1265

10. Rosenblat M, Volkova N, Ward J, et al. Paraoxonase 1 (PON1) inhibits monocyte-to-macrophage differentiation. Atherosclerosis. 2011;219(1):49—56. doi: 10.1016/j.atherosclerosis.2011.06.054.

11. Coombes RH, Crow JA, Dail MB, et al. Relationship of human paraoxonase-1 serum activity and genotype with atherosclerosis in individuals from the Deep South. Pharmacogenet Genomics. 2011;21(12):867—875. doi: 10.1097/fpc.0b013e32834cebc6.

12. Costa LG, Vitalone A, Cole TB, Furlong CE. Modulation of paraoxonase (PON1) activity. Biochem Pharmacol. 2005;69(4):541—550. doi: 10.1016/j.bcp.2004.08.027.

13. Marchegiani F, Marra M, Olivieri F, et al. Paraoxonase 1: genetics and activities during aging. Rejuvenation Res. 2008;11(1):113—127. doi: 10.1089/rej.2007.0582.

14. Reddy ST, Wadleigh DJ, Grijalva V, et al. Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to para-oxonase-1 protein but is not regulated by oxidized lipids. Arterioscler Thromb Vasc Biol. 2001;21(4):542—547. doi: 10.1161/01.atv.21.4.542.

15. Giordano G, Cole TB, Furlong CE, Costa LG. Paraoxonase 2 (PON2) in the mouse central nervous system: a neuroprotective role? Toxicol Appl Pharmacol. 2011;256(3):369—378. doi: 10.1016/j. taap.2011.02.014.

16. Rosenblat M, Coleman R, Reddy ST, et al. Paraoxonase 2 attenuates macrophage triglyceride accumulation via inhibition of diac-ylglycerol acyltransferase 1. J Lipid Res. 2009;50(5):870—879. doi: 10.1194/jlr.m800550-jlr200.

17. Meilin E, Aviram M, Hayek T. Paraoxonase 2 (PON2) decreases high glucose-induced macrophage triglycerides (TG) accumulation, via inhibition of NADPH-oxidase and DGAT1 activity: studies in PON2-deficient mice. Atherosclerosis. 2010;208(2):390—395. doi: 10.1016/j.atherosclerosis.2009.07.057.

18. Marsillach J, Mackness B, Mackness M, et al. Immunohistochemi-cal analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med. 2008;45(2): 146—157. doi: 10.1016/j. freeradbiomed.2008.03.023.

19. Precourt LP, Seidman E, Delvin E, et al. Comparative expression analysis reveals differences in the regulation of intestinal paraoxonase family members. Int J Biochem Cell Biol. 2009;41(7):1628— 1637. doi: 10.1016/j.biocel.2009.02.013.

20. Levy E, Trudel K, Bendayan M, et al. Biological role, protein expression, subcellular localization, and oxidative stress response of paraoxonase 2 in the intestine of humans and rats. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1252-1261. doi: 10.1152/ ajpgi.00369.2007.

21. Godeiro C Jr, Aguiar PM, Felicio AC, et al. PINK1 polymorphism IVS1-7 A^ G, exposure to environmental risk factors and anticipation of disease onset in Brazilian patients with early-onset Parkinson's Disease. Neurosci Lett. 2010;469(1):155-158. doi: 10.1016/j. neulet.2009.11.064.

22. Sanyal J, Chakraborty DP, Sarkar B, et al. Environmental and familial risk factors of Parkinsons disease: case-control study. Can J Neurol Sci. 2010;37(5):637-642. doi: 10.1017/s0317167100010829.

23. Altenhofer S, Witte I, Teiber JF, et al. One enzyme, two functions: PON2 prevents mitochondrial superoxide formation and apoptosis independent from its lactonase activity. J Biol Chem. 2010;285(32):24398-24403. doi: 10.1074/jbc.m110.118604.

24. Horke S, Witte I, Wilgenbus P, et al. Paraoxonase-2 reduces oxida-tive stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation. 2007;115(15):2055-2064. doi: 10.1161/circulationaha.106.681700.

25. Horke S, Witte I, Altenhöfer S, et al. Paraoxonase 2 is down-regulated by the Pseudomonas aeruginosa quorumsensing signal N-(3-oxododecanoyl)-L-homoserine lactone and attenuates oxidative stress induced by pyocyanin. Biochem J. 2010;426(1):73—83. doi: 10.1042/bj20091414.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

26. Devarajan A, Bourquard N, Hama S, et al. Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development 9 of atherosclerosis. Antioxid Redox Signal. 2011;14(3):341-351. doi: 10.1089/ars.2010.3430.

27. Higgins GC, Beart PM, Shin YS, et al. Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J Alzheimers Dis. 2010;20 Suppl 2:S453-473. doi: 10.3233/ JAD-2010-100321.

28. Burton G, Jauniaux E. Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig. 2004;11(6):342-352. doi: 10.1016/j.jsgi.2004.03.003.

29. Bourquard N, Ng CJ, Reddy ST. Impaired hepatic insulin signalling in PON2-deficient mice: a novel role for the PON2/ apoE axis on the macrophage inflammatory response. Biochem J. 2011;436(1):91—100. doi: 10.1042/bj20101891.

30. Schweikert EM, Amort J, Wilgenbus P, et al. Paraoxonases-2 and -3 are important defense enzymes against pseudomonas aeruginosa virulence factors due to their anti-oxidative and anti-inflammatory properties. J Lipids. 2012;2012:1-9. doi: 10.1155/2012/352857.

31. Costa LG, de Laat R, Dao K, et al. Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection. Neurotoxicology. 2014;43:3-9. doi: 10.1016/j.neuro.2013.08.011.

32. Ng CJ, Bourquard N, Hama SY, et al. Adenovirus-mediated expression of human paraoxonase 3 protects against the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2007;27(6): 1368-1374. doi: 10.1161/ATVBA-HA.106.134189.

33. Marsillach J, Mackness B, Mackness M, et al. Immunohistochemi-cal analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med. 2008;45(2):146-157. doi: 10.1016/j. freeradbiomed.2008.03.023.

34. Camps J, Pujol I, Ballester F, et al. Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in Gram-negative bacteria. Antimicrob Agents Chemother. 2011;55(4):1325-1331. doi: 10.1128/AAC.01502-10.

35. Butorac D, Celap I, Kackov S, et al. Paraoxonase 1 activity and phenotype distribution in premenopausal and postmenopausal women. Biochem Med (Zagreb). 2014;24(2):273-280. doi: 10.11613/ bm.2014.030.

36. Andrade AZ, Rodrigues JK, Dib LA, et al. [Serum markers of oxidative stress in infertile women with endometriosis. (In Portuguese).] Rev Bras Ginecol Obstet. 2010;32(6):279-285. doi: 10.1590/s0100-72032010000600005.

37. Augoulea A, Mastorakos G, Lambrinoudaki I, et al. The role of the oxidative-stress in the endometriosis-related infertility. Gynecol Endocrinol. 2009;25(2):75-81. doi: 10.1080/09513590802485012.

38. Bragatto FB, Barbosa CP, Christofolini DM, et al. There is no relationship between Paraoxonase serum level activity in women with endometriosis and the stage of the disease: an observational study. ReprodHealth. 2013;10:32. doi: 10.1186/1742-4755-10-32.

39. Draganov DI, Teiber JF, Speelman A, et al. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res. 2005;46(6):1239—1247. doi: 10.1194/jlr.M400511-JLR200.

40. Rosenfeld ME, Campbell LA. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost. 2011;106(5):858— 867. doi: 10.1160/TH11-06-0392.

41. Han CY, Chiba T, Campbell JS, et al. Reciprocal and coordinate regulation of serum amyloid A versus apolipoprotein A-1 and paraoxonase-1 by inflammation in murine hepatocytes. Arterioscler Thromb Vasc Biol. 2006;26(8):1806—1813. doi: 10.1161/01. ATV.0000227472.70734.ad.

42. Draganov D, Teiber J, Watson C, et al. PON1 and oxidative stress in human sepsis and an animal model of sepsis. Adv Exp Med Biol. 2010;660:89-97. doi: 10.1007/978-1-60761-350-3_9.

43. Novak F, Vavrova L, Kodydkova J, et al. Decreased paraoxonase activity in critically ill patients with sepsis. Clin Exp Med. 2010;10(1):21—25. doi: 10.1007/s10238-009-0059-8.

44. Campbell LA, Yaraei K, Van Lenten B, et al. The acute phase reactant response to respiratory infection with Chlamydia pneumoniae: implications for the pathogenesis of atherosclerosis. Microbes Infect. 2010;12(8—9):598—606. doi: 10.1016/j.micinf.2010.04.001.

10 45. Choi J, Ou JH. Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol. 2006;290(5):G847—G851. doi: 10.1152/ajpgi.00522.2005.

46. Kim JB, Xia YR, Romanoski CE, et al. Paraoxonase-2 modulates stress response of endothelial cells to oxidized phospholipids and a bacterial quorum-sensing molecule. Arterioscler Thromb Vasc Biol. 2011;31(11):2624—2633. doi: 10.1161/ATVBAHA.111.232827.

47. Tang H, Grisé H. Cellular and molecular biology of HCV infection and hepatitis. Clin Sci (Lond). 2009;117(2):49—65. doi: 10.1042/ CS20080631.

48. González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Hepatitis C virus, oxidative stress and steatosis: current status and perspectives. Curr Mol Med. 2011 ;11(5): 373—390. doi: 10.2174/156652411795976592.

49. Ali EM, Shehata HH, Ali-Labib R, Esmail Zahra LM. Oxidant and antioxidant of arylesterase and paraoxonase as biomarkers

in patients with hepatitis C virus. Clin Biochem. 2009;42(13-14):1394-1400. doi: 10.1016/j.clinbiochem.2009.06.007.

50. García-Heredia A, Marsillach J, Aragonés G, et al. Serum paraoxonase-3 concentration is associated with the severity of hepatic impairment in patients with chronic liver disease. Clin Biochem. 2011 ;44(16): 1320-1324. doi: 10.1016/j. clinbiochem.2011.08.003.

51. Duygu F, Tekin Koruk S, Aksoy N. Serum paraoxonase and arylesterase activities in various forms of hepatitis B virus infection. J Clin Lab Anal. 2011;25(5):311-316. doi: 10.1002/jcla.20473.

52. Schulpis KH, Barzeliotou A, Papadakis M, et al. Maternal chronic hepatitis B virus is implicated with low neonatal paraoxonase/ arylesterase activities. Clin Biochem. 2008;41(4-5):282-287. doi: 10.1016/j.clinbiochem.2007.10.013.

53. Fernández-Irigoyen J, Santamaría E, Sesma L, et al. Oxidation of specific methionine and tryptophan residues of apolipoprotein A-I in hepatocarcinogenesis. Proteomics. 2005;5(18):4964-4972. doi: 10.1002/pmic.200500070.

54. Dubé MP, Lipshultz SE, Fichtenbaum CJ, et al. Effects of HIV infection and antiretroviral therapy on the heart and vasculature. Circulation. 2008;118(2):36-40. doi: 10.1161/ CIRCULATI0NAHA.107.189625.

55. Rose H, Woolley I, Hoy J, et al. HIV infection and high-density lipoprotein: the effect of the disease vs the effect of treatment. Metabolism. 2006;55(1):90-95. doi: 10.1016/j.metabol.2005.07.012.

56. Parra S, Alonso-Villaverde C, Coll B, et al. Serum paraoxonase-1 activity and concentration are influenced by human immunodeficiency virus infection. Atherosclerosis. 2007;194(1):175-181. doi: 10.1016/j.atherosclerosis.2006.07.024.

57. Rosenblat M, Vaya J, Shih D, Aviram M. Paraoxonase 1 (P0N1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: a possible role for lysophosphatidylcholine. Atherosclerosis. 2005; 179( 1):69-77. doi: 10.1016/j. atherosclerosis.2004.10.028.

58. Yuan J, Devarajan A, Moya-Castro R, et al. Putative innate immunity of antiatherogenic paraoxanase-2 via STAT5 signal transduction in HIV-1 infection of hematopoietic TF-1 cells and in SCID-hu mice. J Stem Cells. 2010;5(1):43-48. doi: jsc.2010.5.1.43.

59. Aragonés G, García-Heredia A, Guardiola M, et al. Serum paraoxonase-3 concentration in HIV-infected patients. Evidence for a protective role against oxidation. J Lipid Res. 2012;53(1):168-174. doi: 10.1194/jlr.P018457.

КОНТАКТНАЯ ИНФОРМАЦИЯ

Боровкова Екатерина Игоревна, доктор медицинских наук, доцент, профессор кафедры акушерства и гинекологии лечебного факультета ФГБОУ ВО «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Минздрава России

Адрес: 117997, Москва, ул. Островитянова, д. 1, e-mail: Katyanikitina@mail.ru, ORCID: http://orcid.org/0000-0001-7140-262X, SPIN-код: 8897-8605

Антипова Надежда Викторовна, кандидат биологических наук, научный сотрудник ФГБУН «Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН», доцент кафедры фармацевтической и токсикологической химии РУДН

Адрес: 117997, Москва, ГСП-7, ул. Миклухо-Маклая, д. 16/10, тел.: +7 (495) 330-65-74, e-mail: nadine.antipova@gmail.com, ORCID: http://orcid.org/0000-0002-5799-7767

Корнеенко Татьяна Васильевна, кандидат биологических наук, научный сотрудник ФГБУН «Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН»

Адрес: 117997, Москва, ГСП-7, ул. Миклухо-Маклая, д. 16/10, тел.: +7 (495) 330-65-56, e-mail: tvkorn@gmail.com, ORCID: http://orcid.org/0000-0002-5899-6168

Шахпаронов Михаил Иванович, доктор химических наук, ведущий научный сотрудник ФГБУН «Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН»

Адрес: 117997, Москва, ГСП-7, ул. Миклухо-Маклая, д. 16/10, тел.: +7 (495) 330-65-74, e-mail: shakhparonov@gmail.com, ORCID: http://orcid.org/0000-0001-5965-8067

Боровков Иван Максимович, студент лечебного факультета ФГБОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России

Адрес: 119991, Москва, ул. Большая Пироговская, д. 2, стр. 2, тел.: +7 (495) 609-14-00, e-mail: bigchanc97@gmail.ru, ORCID: http://orcid.org/0000-0002-2017-8047, SPIN-код: 4744-1115

i Надоели баннеры? Вы всегда можете отключить рекламу.