Научная статья на тему 'Параметрический прогноз почвенных параметров при дефиците исходных данных'

Параметрический прогноз почвенных параметров при дефиците исходных данных Текст научной статьи по специальности «Математика»

CC BY
73
27
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по математике, автор научной работы — Чепасов В. И., Русанов А. М., Кайкова Т. В., Курякова Т. А.

Рассматривается методика параметрического прогноза почвенных параметров с использованием ранжированных нормализованных матриц исследования, построенных для различных временных отсчетов. Приведены результаты с использованием однотипного и смешанного ранжирования нормализованных матриц исследования.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Параметрический прогноз почвенных параметров при дефиците исходных данных»

Чепасов В.И., Русанов А.М., Кайкова Т.В., Курякова Т.А.

ГОУ ВПО «Оренбургский государственный университет»

ПАРАМЕТРИЧЕСКИЙ ПРОГНОЗ ПОЧВЕННЫХ ПАРАМЕТРОВ ПРИ ДЕФИЦИТЕ ИСХОДНЫХ ДАННЫХ

Рассматривается методика параметрического прогноза почвенных параметров с использованием ранжированных нормализованных матриц исследования, построенных для различных временных отсчетов. Приведены результаты с использованием однотипного и смешанного ранжирования нормализованных матриц исследования.

На сегодняшний день мы не имеем значений почвенных параметров, полученных в результате длительных непрерывных наблюдений.

Как правило, эти значения получают через большие промежутки времени: 20, 30 и т. д. лет.

В связи с этим обычные методы прогноза почвенных параметров здесь не могут быть использованы.

Поэтому нами была разработана методика параметрического прогноза почвенных параметров при большой временной дискретности и дефиците исходных данных.

Рассмотрим эту методику на данных совхоза Свердлова Тоцкого района Оренбургской области.

Для построения моделей были взяты данные по пахотному слою (глубина взятия образца 0-27 см) для чернозема южного малогумус-ного среднемощного тяжелосуглинистого в 1983 году и данные по пахотному слою (глубина взятия образца 0-22 см) для чернозема южного ср/ мощного глинистого в 1963 году.

После построения двух нормализованных матриц исследования по 1963 году и по 1983 году была построена модель параметрического прогноза [2, 3] для гумуса на матрице 1963 года и по ней сделан прогноз гумуса на 1983 год.

Параметрами-аргументами в этой модели были параметры:

(Поглощенный кальций в мг-экв) (Поглощенный магний в мг-экв) (Фракция 1-0,25 мм в %)

(Фракция 0,25-0,05 мм в %)

(Фракция 0,05-0,01 мм в %)

(Фракция 0,01-0,005 мм в %)

(Фракция 0,005-0,001 мм в %)

(Фракция менее 0,001 мм в %)

Результат прогноза на 1-5 наблюдения в нормализованной исходной матрице на1983 год:

исход= 4.6050 прогноз= -153.6457 ошибка= 158.2506

исход= 4.6129 прогноз= -708.2022 ошибка= 712.8151

исход= 4.6020 прогноз= -867.5933 ошибка= 872.1953

исход= 4.5886 прогноз= -1602.7580 ошибка= 1607.3470

исход= 4.5996 прогноз= -1217.5330 ошибка= 1222.1330

cредняя абсолютная ошибка прогноза= 914.54820

Поскольку средняя абсолютная ошибка прогноза велика, то такая методика для параметрического прогноза не годится.

Но если значения элементов столбцов в нормализованных матрицах упорядочить по возрастанию, то результат прогноза на 1-5 наблюдения в нормализованной исходной матрице на 1983 год будет:

исход= 4.5831 прогноз= 6.9373 ошибка= 2.3542 исход= 4.5850 прогноз= 6.8847 ошибка= 2.2997 исход= 4.5863 прогноз= 6.8550 ошибка= 2.2687 исход= 4.5879 прогноз= 6.8487 ошибка= 2.2608 исход= 4.5885 прогноз= 6.8456 ошибка= 2.2571 cредняя абсолютная ошибка прогноза= 2.28812

Результат прогноза на 6-10 наблюдения в нормализованной исходной матрице на 1983 год будет:

исход= 4.5886 прогноз= 6.8383 ошибка= 2.2497 исход= 4.5895 прогноз= 6.8315 ошибка= 2.2420 исход= 4.5895 прогноз= 6.8313 ошибка= 2.2418 исход= 4.5897 прогноз= 6.8142 ошибка= 2.2244 исход= 4.5903 прогноз= 6.8108 ошибка= 2.2205 cредняя абсолютная ошибка прогноза= 2.23566

Результат прогноза на 11-15 наблюдения в нормализованной исходной матрице на 1983 год будет:

исход= 4.5906 прогноз= 6.8067 ошибка= 2.2161 исход= 4.5909 прогноз= 6.8031 ошибка= 2.2122 исход= 4.5914 прогноз= 6.7941 ошибка= 2.2027 исход= 4.5922 прогноз= 6.7932 ошибка= 2.2009 исход= 4.5950 прогноз= 6.7883 ошибка= 2.1933 средняя абсолютная ошибка прогноза= 2.20505

То есть при прогнозе гумуса на 1983 год необходимо упорядочить элементы столбцов нормализованной матрицы исследования по данным 1963 года по возрастанию, построить модель прогноза на ранжированной нормализованной матрице исследования 1963 и сделать про-

гноз на ранжированной по возрастанию нормализованной матрице исследования 1983 года.

Как видно из результатов прогноза, средняя абсолютная ошибка прогноза есть постоянная подобия, которую нужно вычитать из результатов прогноза для получения достоверного прогноза.

Можно ранжировать элементы столбцов нормализованной матрицы согласно их временному изменению (временные точки отсчета 1963 год, 1983 год).

Как показали результаты прогноза по моделям, построенным на нормализованных матрицах смешанного ранжирования, средняя абсолютная ошибка прогноза, постоянная подобия, оставалась небольшой и практически одинаковой для всех интервалов прогноза.

Список использованной литературы:

1. Бендат Д. Ж., Пирсол А. Измерение и анализ случайных процессов. - М.: Мир, 1974.

2. Драйпер Н., Смит Г. Прикладной регрессионный анализ. - М.: Статистика, 1973.

3. Brandon D. B. Developing Mathematical Models for Computer Control, USA Journal, 1959, V.S,N7.

i Надоели баннеры? Вы всегда можете отключить рекламу.