Научная статья на тему 'ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ ТРИ( ОРТО-ТОЛИЛ) И ТРИ( МЕТА-ТОЛИЛ)СУРЬМЫ С 2-ГИДРОКСИБЕНЗАЛЬДОКСИМОМ. МОЛЕКУЛЯРНЫЕ СТРУКТУРЫ БИС(2-ГИДРОКСИБЕНЗАЛЬДОКСИМАТА) ТРИ( ОРТО-ТОЛИЛ)СУРЬМЫ И БИС( µ 3-2-ГИДРОКСИБЕНЗАЛЬДОКСИМАТО-О,О',N)-( µ 2-ОКСО)-БИС[ДИ(МЕТА-ТОЛИЛ)СУРЬМЫ]'

ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ ТРИ( ОРТО-ТОЛИЛ) И ТРИ( МЕТА-ТОЛИЛ)СУРЬМЫ С 2-ГИДРОКСИБЕНЗАЛЬДОКСИМОМ. МОЛЕКУЛЯРНЫЕ СТРУКТУРЫ БИС(2-ГИДРОКСИБЕНЗАЛЬДОКСИМАТА) ТРИ( ОРТО-ТОЛИЛ)СУРЬМЫ И БИС( µ 3-2-ГИДРОКСИБЕНЗАЛЬДОКСИМАТО-О,О',N)-( µ 2-ОКСО)-БИС[ДИ(МЕТА-ТОЛИЛ)СУРЬМЫ] Текст научной статьи по специальности «Химические науки»

CC BY
564
53
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
TRI(O-TOLYL)ANTIMONY / TRI(M-TOLYL)ANTIMONY / TRI(O-TOLYL)-ANTIMONY BIS(2-HYDROXYBENZALDOXIMATE) / BIS(µ 3-2-HYDROXYBENZALDOXIMATO-О / O'' / N)-(µ 2-OXO)-BIS[DI(M-TOLYL)ANTIMONY] / ТРИ-О-ТОЛИЛСУРЬМА / ТРИ-М-ТОЛИЛСУРЬМА / 2-ГИДРОКСИ-БЕНЗАЛЬДОКСИМ / ТРЕТБУТИЛГИДРОПЕРОКСИД / ПЕРОКСИД ВОДОРОДА / ОКИСЛЕНИЕ / БИС(2ГИДРОКСИБЕНЗАЛЬДОКСИМАТ) ТРИ-О-ТОЛИЛСУРЬМЫ / МОЛЕКУЛЯРНЫЕ СТРУКТУРЫ / РЕНТГЕНО-СТРУКТУРНЫЙ АНАЛИЗ / БИС(µ 3-2-ГИДРОКСИБЕНЗАЛЬДОКСИМАТО-О / N)-(µ 2-ОКСО)-БИС[ДИ(М-ТОЛИЛ)СУРЬМЫ] / 2-HYDROXYBENZALDOXIME / TERT-BUTYLHYDROPEROXIDE / HYDROGEN PEROXIDE / MOLECULAR STRUCTURES / X-RAY ANALYSIS

Аннотация научной статьи по химическим наукам, автор научной работы — Шарутин Владимир Викторович, Шарутина Ольга Константиновна, Артемьева Екатерина Владимировна, Макерова Марина Сергеевна

Взаимодействием триорто-толили тримета-толилсурьмы с 2-гидроксибензальдоксимом в присутствии окислителя (пероксида водорода или трет-бутилгидропероксида) синтезированы бис (2-гидроксибензальдоксимат) триорто-толилсурьмы (1) и бис(µ 3-2-гидроксибензальдоксимато-О,О',N)-(µ 2-оксо)бис[ди( мета-толил)сурьма] (2). По данным РСА, в двух типах кристаллографически независимых молекул (а, б) соединения 1 атомы сурьмы имеют тригонально-бипирамидальную координацию с атомами кислорода оксиматных лигандов в аксиальных положениях. В биядерном комплексе 2 атомы сурьмы связаны двумя тридентатно-мостиковыми лигандами и атомом кислорода и имеют искаженную октаэдрическую координацию с окружением С 2О 3N.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Шарутин Владимир Викторович, Шарутина Ольга Константиновна, Артемьева Екатерина Владимировна, Макерова Марина Сергеевна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

THE PECULIARITIES OF TRI( O-TOLYL)ANTIMONY AND TRI( M-TOLYL)-ANTIMONY REACTIONS WITH 2-HYDROXYBENZALDOXIME. THE MOLECULAR STRUCTURES OF TRI( O-TOLYL)ANTIMONY BIS(2-HYDROXYBENZALDOXIMATE) AND BIS( µ 3-2-HYDROXYBENZALDOXIMATO-O,O'',N)-( µ 2-OXO) BIS[DI( M-TOLYL)ANTIMONY]1

Tri( o-tolyl)antimony bis(2-hydroxybenzaldoximate) (1) and bis( µ 3-2-hydroxybenzaldoximato-O,O',N)-( µ 2-oxo)-bis [di(m-tolyl)antimony] (2) were obtained by interaction of tri( o-tolyl)antimony and tri( m-tolyl)antimony with 2-hydroxybenzaldoxime in the presence of an oxidizing agent (hydrogen peroxide or tert-butyl hydroperoxide). According to the X-ray analysis data, antimony atoms are bound to oxygen atoms of axial oximate ligands in the trigonal bipyramidal coordination in two types of crystallographically independent molecules 1 a, b. In the binuclear complex 2 antimony atoms are connected by two tridentate bridging ligands and an the oxygen atom; they have the deformed octahedral coordination with C 2O 3N surroundings.

Текст научной работы на тему «ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ ТРИ( ОРТО-ТОЛИЛ) И ТРИ( МЕТА-ТОЛИЛ)СУРЬМЫ С 2-ГИДРОКСИБЕНЗАЛЬДОКСИМОМ. МОЛЕКУЛЯРНЫЕ СТРУКТУРЫ БИС(2-ГИДРОКСИБЕНЗАЛЬДОКСИМАТА) ТРИ( ОРТО-ТОЛИЛ)СУРЬМЫ И БИС( µ 3-2-ГИДРОКСИБЕНЗАЛЬДОКСИМАТО-О,О',N)-( µ 2-ОКСО)-БИС[ДИ(МЕТА-ТОЛИЛ)СУРЬМЫ]»

Органическая химия

THE PECULIARITIES OF TRI(0-TOLYL)ANTIMONY AND TRI(M-TOLYL)-ANTIMONY REACTIONS

WITH 2-HYDROXYBENZALDOXIME. THE MOLECULAR STRUCTURES OF TRI(0-TOLYL)ANTIMONY B/S(2-HYDROXYBENZALDOXIMATE) AND B/S(^3-2-HYDR0XYBENZALD0XIMAT0-0,0^N)-(^2-0X0)-B/S[DI(M-TOLYL)ANTIMONY]

V.V. Sharutin, South Ural State University, Chelyabinsk, Russian Federation, [email protected]

O.K. Sharutina, South Ural State University, Chelyabinsk, Russian Federation, [email protected] E.V. Artem’eva, South Ural State University, Chelyabinsk, Russian Federation, [email protected] M.S. Makerova, South Ural State University, Chelyabinsk, Russian Federation, [email protected]

Tri(o-tolyl)antimony bis(2-hydroxybenzaldoximate) (1) and bis(u3-2-

hydroxybenzaldoximato-0,0',N}-(ju2-oxo)-bis[di(m-tolyl)antimony] (2) were obtained by interaction of tri(o-tolyl)antimony and tri(m-tolyl)antimony with 2-hydroxybenzaldoxime in the presence of an oxidizing agent (hydrogen peroxide or tert-butyl hydroperoxide). According to the X-ray analysis data, antimony atoms are bound to oxygen atoms of axial oximate ligands in the trigonal bipyramidal coordination in two types of crystallographically independent molecules 1 a, b. In the binuclear complex 2 antimony atoms are connected by two tridentate bridging ligands and an the oxygen atom; they have the deformed octahedral coordination with C203N surroundings.

Keywords: tri(o-tolyl)antimony, tri(m-tolyl)antimony, 2-hydroxybenzaldoxime, tert-butylhydroperoxide, hydrogen peroxide, tri(o-tolyl)-antimony bis(2-hydroxy-benzaldoximate), bis(^s-2-hydroxybenzaldoximato-0,0',N)-(^2-oxo)-bis[di(m-tolyl)-

antimony], molecular structures, X-ray analysis.

Introduction

Oximes are known as ampolydentate ligands in the chemistry of coordination compounds. A number of articles are dedicated to exploration of synthesis and structures of organic antimony complexes with oximeligands [1-11]. It has been found that the product of oxidative addition reaction between triarilantimony and oximes is either Ar3SbX2 and/or (Ar3SbX)20 (Ar = Ph, p-Tol, o-Tol; X = ONCHR, ONCRR') depending on oxime nature and reaction conditions [6-11]. According to X-ray data analysis, ligand X is characterized by forming only one bond with the antimony atom through an oxygen atom, such molecules have decreased distance between antimony atom and iminoxyl group nitrogen atom, but it doesn’t significantly affect trigonal-bipyramidal coordination of the central atom. At the same time, furfuraloxime ligands are bidentate bridging ligands in the molecule of bis(u2-furfuraloximato)-(u2-oxo)-bis [triphenylantimony]. These ligands are coordinated by an oxygen atom to the first antimony atom and by a nitrogen atom to the second antimony atom. This fact increases antimony coordination number to six [12]. However, the molecule of ^2-oxo-bis[(furfuraloximato) tri(o-tolyl)antimony] is of the regular molecular structure type which includes monodentate ligands [11]. These examples testifie that the structure of bis[(furfuraloximato) tri(o-tolyl)antimony] oxides depends on aryl radical nature.

Systematic investigating oxidative addition reactions of triarilantimony with oximes and molecular structures of the product is of some interest. The present paper studies the reactions of tri(o-tolyl)- and tri(m-tolyl)antimony with 2-hydroxybenzaldoxime in the presence of hydrogen peroxide or tert-butyl hydroperoxide and establishes molecular structures of reaction products.

Experimental

Synthesis of tri(o-tolyl)antimony b/s(2-hydroxybenzaldoximate) (1). Tri(o-tolyl)antimony (150 mg, 0.38 mmol) was dissolved in hexane (10 mL). Then 2-hydroxybenzaldoxime (52 mg, 0.38 mmol)

and tert-butylhydroperoxide (43 mg, 70 % aqueous, 0.38 mmol) were added. The solution was left at temperature 20 °C to stand for 24 hours. The precipitate was washed with small portions of ether and dried. The product was a colourless transparent crystalline substance 1; yield 241 mg (95 %), mp: 173 °C. IR spectrum (v, cm '): 3421, 3053, 3006, 2972, 2925, 1617, 1595, 1562, 1488, 1445, 1381, 1333, 1310, 1266,1238,1194,1152,1112, 1031,1000, 945, 905, 795, 748, 700, 662, 545, 475, 439, 422.

For C35H36N2O4Sb anal. calcd. (%): C C 62.69, H 5.37. Found (%): C 62.57, H 5.48.

Synthesis of 6/s(^5-2-hydroxybenzaldoximato-0,0',N)-(^2-oxo)-6/s[J/(m-tolyl)antimony] solvate with toluene (2). Tri(m-tolyl)antimony (150 mg, 0.38 mmol) was dissolved in ether (10 mL). Then salicylaldehyde oxime (52 mg, 0.38 mmol) and hydrogen peroxide (43 mg, 30 % aqueous, 0.38 mmol) were added. The solution was left at temperature of 20 °C to stand for 24 hours. The precipitate was washed with small portions of ether and dried. The product yield was 121 mg (71 %). After toluene recrystallization a colourless transparent crystalline substance 2 was obtained; mp: 240 °C.

IR spectrum (v, cm1): 3049, 3026, 2918, 2361, 2342, 1597, 1555, 1476, 1440, 1320, 1273, 1252, 1200, 1122, 1100, 1044, 1027, 992, 952, 916, 815, 777, 759, 733, 704, 692, 663, 618, 598, 518, 511, 453, 426. For C49H46N2O5Sb2 anal. calcd. (%): C 59.63, H 4.66. Found (%): 59.47, H 4.75.

IR spectra were recorded on the Bruker Tensor 27 FT-IR spectrometer (pellets with KBr).

X-ray diffraction of crystal I was carried out on the diffractometer Bruker AXS Smart Apex (Mo Ka-radiation, X = 0.71073 A, graphite monochromator). Collection, data editing and refinement of the unit cell parameters, and the accounting for absoprtion were conducted with the use of programs SMART and SAINT-Plus [13]. All calculations for structure determination and refinement were carried out by the program SHELXL/PC [14]. Structure I was determined by the direct method and refined by the least squares method in the anisotropic approximation for non-hydrogen atoms. The main crystallographic data and structure refinement are given in Table 1, the main bond lengths and angles are in Table 2. Atomic coordinates and their isotopic equivalent temperature factors are given in Table 3.

Table 1

Crystallographic data, parameters of X-ray diffraction experiment, and refinement details for the structures

of substances 1-2

Parameter Compound

1 2

Crystal system Triclinic Triclinic

Space group P 1 P 1

a, A 11.5082(4) 10.7997(3)

b, A 11.9666(3) 11.8171(4)

c, A 13.3321(4) 17.5720(5)

a, deg 97.028(1) 97.474(1)

P, deg 111.508(1) 98.084(1)

Y, deg 107.117(1) 95.415(1)

V, A3 1576.82(8) 2186.86(11)

Z 2 2

Pcalc^ g/cm 1.406 1.496

|a, mm1 0.915 1.283

F(000) 680.0 990.0

Crystal shape (size, mm) 0.22x0.20x0.18 0.35x0.27x0.18

9 Data collection range, deg 2.94-26.07 3.24-26.16

Refraction index ranges -14 < h < 14, -14 < k < 14, -16 < l < 16 -13 < h < 13, -14 < k < 14, -21 < l < 21

Measured reflections 35358 54142

Independent reflections 12530 8746

Rint 0.0456 0.0506

Refinement variables 767 521

GOOF 1.044 1.032

R factors for F2> 2ct(F2) R1 = 0.0368, wR2 = 0.0711 Ri = 0.0300, wR2 = 0.0686

R factors for all reflections R1 = 0.0593, wR2 = 0.0782 R1 = 0.0458, wR2 = 0.0753

Residual electron density (min/max), e/A3 0.51/-0.31 0.82/-0.56

Шарутин В.В., Шарутина O.K. Артемьева Е.В., Макерова М.С.

Table 2

Selected bond lengths and bond angles in the structures of substances 1-2

Bond d, А Angle ю, град. Bond d, А Angle ю, град.

1 2

sb(l)-o;l) 2.152(13) O(1)Sb(1)O(2) 173.5(4) Sb(1)-C(1) 2.129(3) O(1)Sb(1)O(2) 162.86(9)

sb(l)-o(ll) 2.G79(13) C(1)Sb(1)C(21) 115.4(7) ib(1)-C(11) 2.123(3) O(3)Sb(1)C(1) 167.61(11)

Sb(1)-0(21) 2.21(2) C(11)Sb(1)C(21) 128.2(7) Sb(1)-O(1) 1.95G(2) C(11)Sb(1)N(1) 165.27(11)

Sb(1)-0(1) 2.G76(9) C(1)Sb(1)C(11) 116.1(5) Sb(1)-O(2) 2.G14(2) C(1)Sb(1)C(11) 1G5.G7(13)

Sb(1)-O(2) 2.G86(1G) N(1)O(1)Sb(1) 116.G(7) ;b(l)-O(3) 2.G94(2) 0(1)Sb(1)0(3) 85.G7(13)

0(1)-N(1) 1.419(15) O(1)N(1)C(37) 115.6(11) Sb(1)-N(1) 2.276(3) 0(2)Sb(1)0(3) 82.45(9)

O(2)-N(2) 1.32G(15) N(2)O(2)Sb(1) 121.5(8) O(4)-N(1) 1.374(3) 0(1)Sb(1)С(1) 94.67(11)

N(1)-C(37) 1.259(17) O(2)N(2)C(47) 112.8(1G) N(1)-0(27) 1.277(4) 0(5)Sb(2)С(41) 94.33(11)

N(2)-C(47) 1.287(14) O(5)Sb(2)O(6) 172.1(4) Sb(2)-C(31) 2.128(3) 0(5)Sb(2)0(4) 83.73(9)

Sb(2)-0(51) 2.G9G(1G) C(51)Sb(2)C(61) 116.2(5) Sb(2)-C(41) 2.137(3) С(31)Sb(2)С(41) 1G3.G4(12)

Sb(2)-0(61) 2.139(1G) C(51)Sb(2)C(71) 122.1(4) Sb(2)-O(1) 1.959(2) 0(1)Sb(2)С(41) 93.38(11)

Sb(1)-0(71) 2.G75(7) C(61)Sb(2)C(71) 121.8 (4) Sb(1)-O(5) 2.G23(2) Sb(1)O(1)Sb(2) 119.25(1G)

Sb(2)-0(5) 2.G57(1G) N(3)O(5)Sb(2) 121.7(8) Sb(1)-O(4) 2.G98(2) N(1)O(4)Sb(2) 113.85(16)

Sb(2)-O(6) 2.G79(1G) O(5)N(3)C(87) 111.3(11) Sb(2)-N(2) 2.256(2) N(2)O(3)Sb(1) 114.55(16)

0(5)-N(3) 1.43G(14) N(4)O(6)Sb(2) 113.4(7) O(3)-N(2) 1.374(3) O(4)N(1)C(27) 115.5(3)

O(6)-N(4) 1.341(16) O(6)N(4)C(97) 113.2(1G) N(2)-0(57) 1.282(4) O(3)N(2)C(57) 115.7(2)

N(3)-C(87) 1.283(14)

N(4)-C(97) 1.267(16)

Table 3

Atomic coordinates (x104) and isotropic equivalent thermal factors (A2x103) in the structures of substances 1-2

1 2

Atom x у z U(eq) Atom x у z U(eq)

Sb(1) 3851.2(2) 79G.3(2) 21G5.7(2) 44.1(2) Sb(1) 82.3G(18) 2619.31(18) 1933.21(12) 3G.G4(7)

Sb(2) 64G6.7(2) -676.2(2) -2G6G.2(2) 44.7(2) Sb(2) 25GG.48(17) 4195.98(17) 3156.62(11) 28.25(7)

0(1) 4755(8) 1947(9) 3696(7) 55(3) 0(2) -16GG(2) 3GG3(2) 1446.1(14) 41.8(6)

0(3) 1612(1G) 1898(9) 4273(1G) 77(3) 0(3) -413.3(19) 3518.4(19) 2932.6(13) 36.2(5)

0(7) 8246(11) 384G(8) -128(1G) 84(3) N(2) 491(2) 437G(2) 3324.6(15) 31.1(6)

C(61) 6541(12) -2141(9) -13G8(11) 42(3) C(41) 2757(3) 3446(3) 42G2.5(18) 32.G(7)

N(l) 3879(11) 2266(1G) 4G94(1G) 51(3) C(42) 22G9(3) 234G(3) 4217(2) 38.7(8)

C(51) 81G2(11) 3G3(11) -2262(11) 44(3) C(43) 2366(4) 1839(3) 4894(2) 44.9(9)

C(1) 2G83(13) -2GG(11) 2292(1G) 5G(3) C(44) 3G9G(4) 2475(4) 555G(2) 53.2(1G)

C(6) 899(14) -345(12) 1434(1G) 55(4) C(45) 3646(4) 3561(4) 5544(2) 53.4(1G)

C(5) -289(13) -952(11) 1436(11) 74(4) C(46) 3474(3) 4G57(3) 4872(2) 43.8(8)

C(4) -164(16) -1423(14) 2342(16) 84(5) C(47) 1731(5) 652(4) 49G1 (3) 79.7(15)

C(3) 9G2(12) -1324(11) 3166(11) 63(4) 0(5) 2783(2) 5831 .G(19) 3711.7(14) 39.5(5)

C(2) 214G(13) -695(1G) 3226(9) 47(3) C(52) 2196(3) 6329(3) 4269.2(19) 34.3(7)

C(7) 3336(14) -6G6(13) 41G2(11) 75(5) C(51) 921(3) 6G35(3) 4318.2(19) 35.3(7)

0(2) 2972(11) -196(9) 441(9) 63(3) C(56) 384(4) 6663(3) 4898(2) 43.G(8)

N(2) 2412(12) -1388(11) 149(1G) 54(3) C(55) 1G78(4) 7523(3) 5424(2) 52.1(1G)

C(47) 1539(12) -1813(1G) -876(11) 56(4) C(54) 2336(4) 7789(3) 5385(2) 5G.3(9)

C(41) 827(14) -3124(13) -139G(13) 65(4) C(53) 2887(3) 72G2(3) 4812(2) 43.5(8)

C(42) 992(15) -4G54(12) -923(12) 61(4) C(57) 111(3) 5113(3) 3812.1(19) 35.2(7)

C(43) 3G3(15) -5239(12) -1368(18) 94(5) 0(4) 1853.6(19) 4964.7(19) 2187.4(13) 36.9(5)

C(44) -66G(2G) -55G1(15) -251G(2G) 114(8) N(l) 7G1(2) 4466(2) 1793.6(15) 31.5(6)

C(45) -1GG5(17) -464G(14) -3161(16) 85(4) C(27) 134(3) 5G68(3) 1332.5(19) 35.8(7)

C(46) -135(15) -3438(12) -2479(13) 72(4) C(21) -1G73(3) 4686(3) 842.7(19) 37.9(8)

0(4) 1879(13) -3715(11) 157(1G) 114(4) C(22) -1478(3) 5366(3) 283(2) 47.7(9)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

C(37) 4435(14) 3156(12) 4936(12) 67(4) C(23) -26G9(4) 5G79(4) -2G6(2) 61.9(12)

C(31) 3651(13) 3542(12) 5476(12) 49(3) C(24) -3366(4) 4118(4) -129(3) 69.2(13)

C(36) 4242(19) 4549(14) 6332(17) 85(5) C(25) -3GG3(4) 3431(4) 419(2) 57.6(11)

C(35) 3688(19) 493G(16) 6929(16) 1G2(6) C(26) -1852(3) 37G1(3) 913(2) 39.8(8)

C(34) 228G(2G) 43GG(17) 652G(16) 1G8(6) C(31) 4344(3) 4356(3) 2855.5(18) 31.3(7)

Table 3 (end)

1 2

Atom X y z U(eq) Atom X y z U(eq)

C(33) 1664(15) 3311(13) 5616(14) 85(5) C(36) 5206(3) 3688(3) 3173(2) 45.1(9)

C(32) 2399(14) 2921(11) 5134(9) 57(4) C(35) 6437(3) 3815(4) 3021(2) 53.6(10)

C(11) 3742(12) 2195(11) 1344(11) 47(3) C(34) 6794(3) 4614(4) 2572(2) 47.9(9)

C(16) 3003(13) 2807(11) 1575(11) 60(4) C(33) 5953(3) 5304(3) 2258(2) 40.0(8)

C(15) 2781(13) 3730(12) 1104(11) 71(4) C(32) 4710(3) 5153(3) 2398.6(19) 36.1(7)

C(14) 3379(17) 4023(15) 374(16) 84(5) C(37) 6368(4) 6191(4) 1778(3) 64.6(12)

C(13) 4113(15) 3428(13) 156(14) 70(5) O(1) 1775.6(19) 2738.2(18) 2517.4(12) 32.0(5)

C(12) 4258(12) 2483(10) 628(11) 47(3) C(11) -734(3) 1105(3) 2286.4(19) 37.6(8)

C(17) 5039(15) 1867(14) 263(13) 78(4) C(12) 40(4) 288(3) 2498(2) 43.8(8)

C(52) 8116(11) 786(11) -3077(10) 61(4) C(13) -448(5) -705(3) 2747(2) 58.7(11)

C(53) 9341(14) 1460(10) -3128(12) 68(4) C(14) -1718(5) -849(4) 2785(3) 70.7(14)

C(54) 10606(14) 1623(14) -2260(14) 58(3) C(15) -2491(4) -48(4) 2577(3) 70.9(14)

C(57) 6827(13) 676(12) -4135(9) 69(4) C(16) -2009(4) 943(4) 2325(3) 55.2(10)

O(5) 7237(10) 304(9) -425(8) 55(3) C(17) 378(6) -1609(4) 2967(4) 97.0(19)

N(3) 7904(11) 1590(9) -101(11) 53(3) C(1) 633(3) 2063(3) 841.7(19) 36.8(7)

C(81) 9506(13) 3216(10) 1508(11) 48(3) C(6) -259(4) 1619(3) 203(2) 50.8(9)

C(86) 10473(15) 3597(13) 2605(13) 80(5) C(5) 118(5) 1262(4) -504(2) 66.1(12)

O(6) 5482(10) -1874(9) -3635(9) 62(3) C(4) 1363(5) 1331(4) -571(2) 64.7(12)

N(4) 6351(11) -2127(10) -3987(10) 51(3) C(3) 2268(4) 1766(4) 52(3) 57.6(11)

C(97) 5788(13) -3002(11) -4853(10) 52(3) C(2) 1899(3) 2127(3) 762(2) 45.5(9)

C(91) 6484(14) -3404(11) -5377(12) 61(4) C(7) 3650(5) 1849(6) -30(3) 101(2)

C(92) 7986(12) -2766(11) -5056(12) 61(4) C(1E) 3505(14) -543(17) 1567(16) 264(10)

O(8) 8635(10) -1753(8) -4224(10) 65(3) C(1C) 3866(12) 98(18) 2370(11) 234(11)

C(93) 8595(15) -3200(15) -5659(15) 82(5) C(1T) 3955(7) -1606(6) 2941(7) 140(4)

C(94) 7850(20) -4226(14) -6536(14) 96(6) C(1Q) 4290(8) -542(8) 3510(9) 204(6)

C(95) 6570(20) -4829(16) -6804(16) 124(7) C(1R) 4186(11) 356(8) 3255(16) 351(15)

C(96) 5810(20) -4436(17) -6312(16) 83(5) C(1U) 3592(12) -1750(12) 2144(9) 192(6)

C(62) 5951(13) -2409(12) -529(11) 54(3)

C(67) 5112(14) -1761(12) -280(13) 64(4)

C(63) 6217(15) -3338(12) -50(12) 59(4)

C(64) 6928(12) -3981(12) -305(14) 62(4)

C(65) 7454(14) -3711(11) -1048(13) 70(5)

C(66) 7277(11) -2803(11) -1566(12) 50(3)

C(77) 3013(13) -2405(11) -3188(13) 124(5)

C(55) 10556(12) 1072(11) -1428(11) 73(5)

C(56) 9348(15) 420(14) -1393(13) 62(4)

C(72) 3429(10) -1117(11) -3017(10) 72(3)

C(76) 4750(8) 954(6) -2560(6) 53.3(19)

C(27) 7141(14) 1890(20) 3138(12) 175(12)

C(71) 4690(9) -256(7) -2559(7) 39.2(19)

C(22) 6440(40) 650(30) 2902(17) 250(20)

C(21) 5480(15) 60(30) 2602(14) 155(9)

C(75) 3630(30) 1400(18) -2961(15) 152(10)

C(24) 7340(20) -618(14) 3251(16) 122(7)

C(26) 4712(12) -1502(16) 2378(7) 132(5)

C(84) 11010(20) 5662(16) 2587(19) 100(5)

C(83) 10080(20) 5289(15) 1580(18) 97(5)

C(82) 9256(16) 4052(14) 892(17) 87(5)

C(87) 8716(14) 1970(12) 939(10) 55(4)

C(25) 6050(30) -1560(30) 2738(18) 237(18)

C(85) 11133(18) 4821(16) 3025(16) 100(6)

C(73) 2216(18) -900(20) -3385(19) 160(11)

C(74) 2630(30) 280(30) -3210(20) 194(17)

C(23) 8000(20) 520(30) 3437(18) 139(9)

UapymuH B.B., UlapymuHa O.K. ApmeMbeBa E.B., MaKepoBa M.C.

Oco6eHHocmu B3auModeucmBua mpu(opmo-monun)-u mpu(Mema-monun)cypbMbi c 2^udp0Kcu6eH3anbd0KcuM0M...

Results and Discussion

Previously it has been found that the interaction of triphenylantimony with 2-hydroxybezaldoxime, having two functional groups containing mobile hydrogen atoms, in the presence of hydrogen peroxide (1:2:1 mol, diethyl ether) proceeds with the participation of oxime group and the formation of triphenylantimonybis(2-hydroxybenzaldoximate) (95 %) [7]. The antimony atom in the molecule of the complex is bound to the ligand via an oxygen atom (Sb-O 2.0768(11) A), the intramolecular distances Sb---N are equal to 2.882(14) A, the oximate ligand aromatic ring hydroxy groups are involved in the formation of intramolecular O-H- • N hydrogen bonds.

To study the possible ways of 2-hydroxybenzaldoxime coordination we investigated its interaction with tri(o-tolyl) and tri(m-tolyl) antimony in the presence of an oxidizing agent. The structures of the obtained products were determined by IR spectroscopy and X-ray diffraction analysis.

The reactions of tri(o-tolyl)antimony with 2-hydroxybenzaldoxime, going at room temperature in diethyl ether in the presence of 30 % aqueous hydrogen peroxide solution or in heptane in the presence of tert-butilhydroperoxide, resulted in the formation of tri(o-tolyl)antimony dioximates, as in the case of triphenylantimony.

(o-CH3C6H4)3Sb + 2 HON=CHC6H4OH-2 + H2O2 ^ (o-CH3C6H4)3Sb(ON=CHC6H4OH-2)2 + 2 H2O

1

(2-CH3C6H4)3Sb + 2 HON=CHC6H4OH-2 + t-BuOOH ^ 1 + t-BuOH +H2O

As it has been found out, the interaction of tri(m-tolyl)antimony with hydroxybenzaldoxime in the presence of an oxidizing agent (hydrogen peroxide or tert-butilhydroperoxide), irrespective of the mole ratio of the reactants (1:2:1 or 1:1:1), proceeds by another scheme - with the formation of a binuclear organoantimony compound 2 with the bridging oxygen atom:

2 A^Sb + 2 HON=CHC6H4(OH-2) + 2 H2O2

Ar = C6H4CH3-m

In papers [9, 10] it is reported that the oxides with the general formula (Ar3SbX)20 were obtained instead of the expected triaryl antimony dioximates Ar3SbX2. Thus, the reaction of triphenylantimony with diacetylmonooxime in the presence of tert-butilhydroperoxide, irrespective of the mole ratio of the reactants, led to the formation of ^2-oxo-bis(oximato)triarylantimony with the yield of 86 % [9]. The mixture of products with different structures - (Ar3SbX)2O and Ar3SbX2 - was prepared by the oxidative addition reaction of triarylantimony with oximes (hydrogen peroxide was the oxidizing agent) in 1:2 molar ratio, whereas sometimes ^2-oxo-bis(oximatotriarylantimony) prevailed [10]. The singularity of our results is in the fact that 2-hydroxybenzaldoxime reacts as a bifunctional compound and both oxidation and dearylation of tri-m-tolylantimony take place.

In the IR-spectrum of the compound 1 there is an absorption band at 475 cm-1 due to the Sb-C(Ar) vibration of the C3-symmetric SbC3 fragment [15], in the IR spectrum of the compound 2 there is the band at 453 cm-1 due to the same vibrations. The band at 700 cm-1 is related to the stretching Sb-0 vibration in the compound 1, the IR-spectrum of the compound 2 has the bands at 692 and 704 cm-1 which are related to the same stretching vibrations. The characteristic bands assigned to C=N (1595 and 1596 cm-1 for 1 and 2 compounds, respectively), are lower than the band of pure 2-hydroxybenzaldoxime. The broad absorption band of OH-groups of pure oxime with the maximum at 3380 cm-1 is absent in the spectrum of the compound 2 and it is shifted to higher frequencies (3421 cm-1) in the spectrum of the compound 1.

According to the X-ray diffraction data, the crystal of the compound 1 includes two types of crystallographically independent molecules (a and b), in which the antimony atoms have trigonal-bipyramidal coordination with the oximate ligand oxygen atoms in axial positions (Fig. 1). The sum of CeqSb(1, 2)Ceq bond angles is equal to 359.7(7)° (a) and 360.0(4)° (b), at that the value of the individual angles has small difference with the theoretical 120°. The axial angles OSb(1, 2)O are equal to 173.5(4)° and 172.1(4)°, respectively. The SbC3 fragments are flat. The Sb(1, 2)-Ceq bond length intervals are 2.08(1)-2.15(1) A (a) and 2.08( 1)-2.14(1) A (b). The Sb(1, 2)-O bond lengths are equal to 2.076(9), 2.086(10) A (a) and 2.057(10), 2.079(10) A (b). There are intramolecular contacts between Sb atom and N atoms of oxime groups in a and b molecules, the intramolecular distances Sb(1, 2)---N are equal to (2.98(1), 2.99(1) A and 2.89(1), 3.06(1) A) which are considerably less than the sum of Van der Waals radiuses of Sb and N atoms (3.8 A) [16]. Note that all basic geometric characteristics of the molecules 1 a and b are close to analogous parameters of the triphenylantimonyfe(2-hydroxybenzaldoximate) [7].

Fig. 1. The structure of the compound 1 (molecule a)

In the crystal 2 there is the solvated toluene, the molecules of which are disordered. Binuclear complex has the Sb-O-Sb bridge bond. Every ligand is a tridentate chelating-bridging one, it is coordinated to one antimony atom by the oxygen atom of iminoxy group and to another atom of antimony by the oxygen atom of hydroxyl group and nitrogen atom (Fig. 2). Sb(1,2) atoms have octahedral C203N surrounding.

Trans angles of octahedron are skewed - CSb(1,2)O 167.6(1)°, 167.5(1)°; CSb(1,2)N 165.3(1)°, 168.3(1)°; OSb(1,2)O 162.86(9)°, 164.27(9)°. Sb(1,2)-C bond lengths change in the interval 2.123(3)-2.137(3) A. There are three types of Sb(1,2)-O distances in the molecule: with the bridging atom of oxygen 1.950(2), 1.959(2) A, with oxygen atoms of hydroxyl groups 2.014(2), 2.023(2) A, with oxygen atoms of oxime groups 2.094(2), 2.098(2) A, which do not differ very much and are comparable with the sum of covalent radiuses of antimony and oxygen atoms (2.07 A[16]). The coordination bond Sb(1,2)-N (2.276(3), 2.256(2) A) is rather short and it indicates high binding stability.

The angle Sb(1)O(1)Sb(2) is equal to 119.3(1)° and this is the minimal value of the angle at bridging atom of oxygen, which has been found in the structures of the general formula (Ar3SbX)20 [17]. For example, the analogous angle of the fe(M2-furfuraloximato)-(M2-oxo)-fe(triphenylantimony) is equal to 125.5(3)° [12]. The rigid structure of bicyclo[2.2.1]heptane fragment causes the approaching of antimony atoms up to the distance 3.373 A, which is considerably less than doubled Van der Waals radius of an atom (4.4 A [16]).

Fig. 2. The structure of the compound 2 (solvating toluene molecule are not shown)

Conclusions

Thus, it has been found that the direction of the oxidative addition reaction of 2-tritolylantimony with 2-hydroxybenzaldoxime in the presence of oxidizing agent is determined by the position of the methyl groups in phenyl radicals at antimony atom.

2-Hydroxybenzaldoxime exhibits structural diversity in tolyl derivatives of antimony due to changes its denticity, acting as the terminal or bridging ligand.

References

1. Gupta A., Sharma R.K., Bohra R., Jain V.K., Drake J.E., Hursthouse M.B., Light M.E. Syntetic, spectroscopic and structural aspects of Triphenylantimony(V) complexes with internally functionaalized oxsimes: Crustal and molecular structure of [Ph3Sb(ON=C(Me)C5H4N-2}2]. Polyhedron, 2002, vol. 21, pp. 2387-2392.

2. Dong L., Yin H., Wen L., Wang D. Bis(2-hydroxybenzaldehyde oximato-kO)triphenylantimony (V). Acta Crystallogr., 2009, vol. 65E, no. 11, pp. m1438.

3. J. Fan Bis(1-ferrocenylethanone oximato)triphenylantimony (V). Acta Crystallogr., 2009, vol. 65E, no. 1, pp. m12.

4. Yin H., Quan L., Li L. Synthesis, spectroscopic and structural aspects of triphenylantimony (V) complex with internally functionalized acetylferroceneoxime: Crystal and molecular structures of [C5H5FeC5H4C(CH3)=NO]2SbPh3 and C5H5FeC5H4C(CH3)=NO. Inorg. Chem. Commun., 2008, vol. 11, pp. 1121.

5. Gupta A., Sharma R.K., Bohra R., Jain V.K., Drake J.E., Hursthouse M.B., Light M.E.

Triorganoantimony(V) complexes with internally functionaalized oxsimes: syntetic, spectroscopic and structural aspects of [R3Sb(Br)L],[R3Sb(OH)L],and [R3SbL2], crustal and molecular structures of [Me3Sb{ON=C(Me)C4H3O}2],[Me3Sb{ON=C(Me)C4H3S}2], 2-OC4^C(Me)=NOH and 2-

SC4H3C(Me)=NOH . J. Organometal. Chem., 2002, vol. 645, no. 2, pp. 118-126.

6. Sharutin V.V., Sharutina O.K., Molokova O.V., Pakusina A.P., Gerasimenko A.V., Sergienko

S.S., Bukveckij B.I., Popov D.U. Synthesis and Structure of Tetra- and Triarylantimony Oximates.

[Sintez i stroenie oksimatov tetra- i triarilsur'my]. Koord. Himija [Russian Journal of Coordination

Chemistry], 2002, vol. 28, no. 8, pp. 581-590.

7. Sharutin V.V., Sharutina O.K., Molokova O.V. Synthesis and Structure of Tetra- and

Triphenylantimony salicylaldoximates. [Sintez i stroenie salicilal'doksimatov tetra- i trifenilsur'my]. Zhurn. Neorgan. Himii [Russian Journal of Inorganic Chemistry], 2012, vol. 57, no. 6, pp. 902-907.

S. Sharutin V.V., Sharutina O.K., Molokova O.V., Pakusina A.P., Gerasimenko A.V., Gerasimenko E.A. Synthesis and Structure of Triphenylantimony bis(acetophenoneoxymate). [Sintez i stroenie bis(acetofenonoksimata) trifenilsur'my]. Koord. Himija [Russian Journal of Coordination Chemistry], 2002, vol. 28, no. 7, pp. 497-500.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

9. Dodonov V.A., Gushhin A.V., Gor'kaev D.A., Fukin G.K., Starostina T.I., Zaharov L.N., Kurskij Ju.A., Shavyrin A.S. Synthesis and Structure of Triphenylantimony Oximates. [Sintez i stroenie oksimatov trifenilsur'my]. // Izv. Akad. Nauk, Ser. Khim. [Russian Chemical Bulletin], 2002, no. б, pp.965-971.

10. Sharutin V.V., Molokova O.V., Sharutina O.K., Gerasimenko A.V., Pushilin M.A. Synthesis and Structure of Triarylantimony Dioximates. [Sintez i stroenie dioksimatov triarilsr'my]. Zhurn. Obshh. Himii [Russian Journal of General Chemistry], 2004, vol. 74, no. 10, pp. 1600-1607.

11. Sharutin V.V., Molokova O.V., Sharutina O.K., Smirnova S.A. Oxidative addition reactions of tri(2-methylphenyl)antimony. [Reakcii okislitel'nogo prisoedinenija tri(2-metilfenil)sur'my]. Zhurn. Neorgan. Himii [Russian Journal of Inorganic Chemistry], 2012, vol. 57, no. 9, pp. 1334-1340.

12. Sharutin V.V., Sharutina O.K., Molokova O.V., Pakusina A.P., Bondar' E.A., Krivolapov D.B., Gubajdullin A.T., Litvinov I.A. Synthesis and structure of ^-oxo-bis[triphenyl(furfuraloximato) antimony]. [Sintez i stroenie p-oksobis[trifenil(furfural'oksimato)sur'my]. Zhurn. Obshh. Himii [Russian Journal of General Chemistry], 2001, vol. 71, no. 9, pp. 1507-1510.

13. Bruker (2000) SMART. Bruker Molecular Analysis Research Tool, Versions 5.625 Bruker AXS, Madison, Wisconsin, USA.

14. Bruker (2000) SAINTPlus Data Reduction and Correction Program Versions 6.02a, Bruker AXS, Madison, Wisconsin, USA.

15. Doak G.O., Long G.G., Freedman L.D. The infrared spectra of some phenylsubstituted pentavalent antimony compounds. J. Organomet. Chem., 1965, vol. 4, no. 1, pp. S2-91.

16. Bacanov S.S. Atomic Radii of the Elements [Atomnye radiusy jelementov]. Zhurn. Neorgan. Himii [Russian Journal of Inorganic Chemistry], 1991, vol. 36, no. 12, pp. 3015-3037.

17. Sharutina O.K., Sharutin V.V. Molekuljarnye struktury organicheskih soedinenij sur'my (V). [The molecular structure of organic compounds antimony(V)]. Cheljabinsk, Izdatel'skij centr JuUrGU, 2012, 395 p.

Received 2 February 2014

Bulletin of the South Ural State University

Series “Chemistry” ________________2014, vol. 6, no. 2, pp. 5-14

УДК 546.863+546.865+547.152+547.53.024+548.312.5

ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ ТРИ(ОРТО-ТОЛИЛ)

И ТРИ(МЕТА-ТОЛИЛ)СУРЬМЫ С 2-ГИДРОКСИБЕНЗАЛЬДОКСИМОМ. МОЛЕКУЛЯРНЫЕ СТРУКТУРЫ БИС(2-ГИДРОКСИ-БЕНЗАЛЬДОКСИМАТА) ТРИ(ОРТО-ТОЛИЛ)СУРЬМЫ И БИС(#т2-ГИДРОКСИБЕНЗАЛЬДОКСИМАТО-О,О'^)-(^2-ОКСО)-БИС[ДИ(МЕТА-ТОЛИЛ)СУРЬМЫ]

В.В. Шарутин, О.К. Шарутина, Е.В. Артемьева, М.С. Макерова

Взаимодействием три-орто-толил- и три-мета-толилсурьмы с 2-гидроксибензальдоксимом в присутствии окислителя (пероксида водорода или

Шарутин В.В., Шарутина О.К. Артемьева Е.В., Макерова М.С.

трет-бутилгидропероксида) синтезированы бис(2-гидроксибензальдоксимат) три-орто-толилсурьмы (1) и бис(ц3-2-гидроксибензальдоксимато-О,О'^)-(ц2-оксо)-бис [ди(мета-толил)сурьма] (2). По данным РСА, в двух типах кристаллографически независимых молекул (а, б) соединения 1 атомы сурьмы имеют тригонально-бипирамидальную координацию с атомами кислорода оксиматных лигандов в аксиальных положениях. В биядерном комплексе 2 атомы сурьмы связаны двумя тридентатно-мостиковыми лигандами и атомом кислорода и имеют искаженную октаэдрическую координацию с окружением C203N.

Ключевые слова: три-о-толилсурьма, три-м-толилсурьма, 2-гидрокси-

бензальдоксим, третбутилгидропероксид, пероксид водорода, окисление, бис(2-гидроксибензальдоксимат) три-о-толилсурьмы, бис(цг2-гидроксибензальдоксимато-О,О',Ы)- (ц2-оксо)-бис[ди(м-толил)сурьмы], молекулярные структуры, рентгеноструктурный анализ.

Литература

1. Syntetic, spectroscopic and structural aspects of Triphenylantimony(V) complexes with internally functionaalized oxsimes: Crustal and molecular structure of [Ph3Sb{ON=C(Me)C5H4N-2}2] /

A. Gupta, R.K. Sharma, R. Bohra et al. // Polyhedron. - 2002. - V. 21. - P. 2387-2392.

2. Bis(2-hydroxybenzaldehyde oximato-kO)triphenylantimony (V) / L. Dong, H. Yin, L. Wen et al. // Acta Crystallogr. - 2009. - V. 65E. - N. 11. - P. m1438.

3. Fan, J. Bis(1-ferrocenylethanone oximato)triphenylantimony (V) / J. Fan // Acta Crystallogr. -2009. - V. 65E. - N. 1. - P. m12.

4. Yin, H. Synthesis, spectroscopic and structural aspects of triphenylantimony (V) complex with

internally functionalized acetylferroceneoxime: Crystal and molecular structures of

[C5H5FeC5H4C(CH3)=NO]2SbPh3 and C5^FeC5H4C(CH3)=NO / H. Yin, L. Quan, L. Li // Inorg. Chem. Commun. - 2008. - V. 11. - P. 1121.

5. Triorganoantimony(V) complexes with internally functionaalized oxsimes: syntetic, spectroscopic and structural aspects of [R3Sb(Br)L],[R3Sb(OH)L],and [R3SbL2], crustal and molecular structures of [Me3Sb{ON=C(Me)C4H3O}2],[Me3Sb{ON=C(Me)C4H3S}2], 2-OC^C(Me)=NOH and 2-SC4H3C(Me)=NOH . / A. Gupta, R.K. Sharma, R. Bohra et al. // J. Organometal. Chem. - 2002. -V. 645. - N. 2. - P. 118-126.

6. Синтез и строение оксиматов тетра- и триарилсурьмы / В.В. Шарутин, О.К. Шарутина, О.В. Молокова и др. // Коорд. химия. - 2002. - Т. 28. - № 8. - С. 581-590.

7. Синтез и строение салицилальдоксиматов тетра- и трифенилсурьмы / В.В. Шарутин, О.К. Шарутина, О.В. Молокова // Журн. неорган. химии. - 2012. - Т. 57. - № 6. - С. 902-907.

8. Шарутин, В.В. Синтез и строение бис(ацетофеноноксимата) трифенилсурьмы /

B.В. Шарутин, О.К. Шарутина, О.В. Молокова и др. // Коорд. химия. - 2002. - Т. 28. - № 7. -

C. 497-500.

9. Синтез и строение оксиматов трифенилсурьмы / В.А. Додонов, А.В. Гущин, Д.А. Горькаев и др. // Изв. РАН. Сер. хим. - 2002. - № 6. - С. 965-971.

10. Синтез и строение диоксиматов триарилсурьмы / В.В. Шарутин, О.В. Молокова, О.К. Шарутина и др. // Журн. общ. химии. - 2004. - Т. 74. - Вып. 10. - С. 1600-1607.

11. Реакции окислительного присоединения три(2-метилфенил)сурьмы / В.В. Шарутин, О.В. Молокова, О.К. Шарутина, С.А. Смирнова // Журн. неорган. химии. - 2012. - Т. 57. - № 9. -С. 1334-1340.

12. Синтез и строение ^-оксобис[трифенил(фурфуральоксимато)сурьмы] / В.В. Шарутин, О.К. Шарутина, О.В. Молокова и др. // Журн. общ. химии. - 2001. - Т. 71. - Вып. 9. - С. 15071510.

13. Bruker (2000) SMART. Bruker Molecular Analysis Research Tool, Versions 5.625 Bruker AXS, Madison, Wisconsin, USA.

14. Bruker (2000) SAINTPlus Data Reduction and Correction Program Versions 6.02a, Bruker AXS, Madison, Wisconsin, USA.

15. Doak, G.O. The infrared spectra of some phenylsubstituted pentavalent antimony compounds / G.O. Doak, G.G. Long, L.D. Freedman // J. Organomet. Chem. - 1965. - V. 4. - N. 1. - P. 82-91.

16. Бацанов, С.С. Атомные радиусы элементов / С.С. Бацанов // Журн. неорган. химии. -1991. - Т. 36. - Вып. 12. - С. 3015-3037.

17. Шарутина, О.К. Молекулярные структуры органических соединений сурьмы (V) / О.К. Шарутина, В.В. Шарутин. - Челябинск: Издат. центр ЮУрГУ. - 2012. - 395 с.

Шарутин Владимир Викторович - доктор химических наук, профессор, кафедра органической химии, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: [email protected]

Шарутина Ольга Константиновна - доктор химических наук, профессор, кафедра органической химии, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: [email protected]

Артемьева Екатерина Владимировна - студентка химического факультета, ЮжноУральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76.

E-mail: [email protected]

Макерова Марина Сергеевна - студентка химического факультета, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: [email protected]

Поступила в редакцию 2 февраля 2014 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.