Научная статья на тему 'Reactions of tri( ortho-tolyl)and tri( meta-tolyl)antimony with oximes in the presence of an oxidant. The structures of tri( ortho-tolyl)and tri( meta-tolyl)antimony dioximates'

Reactions of tri( ortho-tolyl)and tri( meta-tolyl)antimony with oximes in the presence of an oxidant. The structures of tri( ortho-tolyl)and tri( meta-tolyl)antimony dioximates Текст научной статьи по специальности «Химические науки»

CC BY
194
48
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
TRI(ORTHO-TOLYL)ANTIMONY / TRI(META-TOLYL)ANTIMONY / BIS[4-N / N(DIMETHYLAMINO)-BENZALDOXIMATO]TRI(ORTHO-TOLYL)ANTIMONY / BIS(ACETOPHENONOXIMATO)_TRI(ORTHO-TOLYL)ANTIMONY / BIS(FURFURADLOXIMATO)TRI(META-TOLYL) ANTIMONY / ТРИ-ОРТО-ТОЛИЛСУРЬМА / ТРИ-МЕТА-ТОЛИЛСУРЬМА / ОКСИМЫ / ТРЕТ-БУТИЛГИДРОПЕРОКСИД / ПЕРОКСИД ВОДОРОДА / ОКИСЛЕНИЕ / БИС(4-ДИМЕТИЛАМИНО-БЕНЗАЛЬДОКСИМАТО)ТРИ-ОРТО-ТОЛИЛСУРЬМА / БИС(АЦЕТОФЕНОНОКСИМАТО)ТРИ-ОРТО-ТОЛИЛСУРЬМА / БИС(ФУРФУАЛЬДОКСИМАТО)ТРИ(МЕТА-ТОЛИЛ)СУРЬМА / МОЛЕКУЛЯРНЫЕ СТРУКТУРЫ / РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ / OXIMES / TERT-BUTYL HYDROPEROXIDE / HYDROGEN PEROXIDE / OXIDIZING REACTIONS / MOLECULAR STRUCTURES / X-RAY ANALYSIS

Аннотация научной статьи по химическим наукам, автор научной работы — Sharutin V. V., Sharutina O. K., Artem'eva E. V., Makerova M. S.

The triarylantimony dioximates: ( о-СH 3C 6H 4) 3Sb(ON=CHC 6H 4N(CH 3) 2-4) 2 (1), ( о-СH 3C 6H 4) 3Sb(ON=CMePh) 2 (2), ( m-СH 3C 6H 4) 3Sb(ON=CHC 4H 3O) 2 (3) were obtained from the reactions of tri( ortho-tolyl)antimony and tri( meta-tolyl)antimony with appropriate oximes in the presence of hydrogen peroxide and tert-butyl hydroperoxide. According to the X-ray analysis data, antimony atoms are bound to oxygen atoms of axial oximate ligands in the trigonal bipyramidal coordination in molecules 1-3. The peculiarities of molecular structures are short intramolecular contact Sb∙∙∙N, which is 1 Å less than the sum of Van der Waals radiuses.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Sharutin V. V., Sharutina O. K., Artem'eva E. V., Makerova M. S.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Reactions of tri( ortho-tolyl)and tri( meta-tolyl)antimony with oximes in the presence of an oxidant. The structures of tri( ortho-tolyl)and tri( meta-tolyl)antimony dioximates»

REACTIONS OF TRI(ORTHO-TOLYL)-AND TRI(META-TOLYL)ANTIMONY WITH OXIMES IN THE PRESENCE OF AN OXIDANT. THE STRUCTURES OF TRI(ORTHO-TOLYL)- AND TRI(META-TOLYL)ANTIMONY DIOXIMATES

V. V. Sharutin, South Ural State University, Chelyabinsk, Russian Federation, vvsharutin@rambler. ru O.K. Sharutina, South Ural State University, sharutinao@mail. ru

E.V. Artem'eva, South Ural State University, katriona_dr@mail. ru

M.S. Makerova, South Ural State University, marina.mms74@mail. ru

The triarylantimony dioximates: (o-CH3C6H4)3Sb(ON=CHC6H4N(CH3)2-4)2 (1), (o-CH3C6H4)3Sb(ON=CMePh)2 (2), (rn-CH3C6H4)3Sb(ON=CHC4H3O)2 (3) were obtained from the reactions of tri(ortho-tolyl)antimony and tri(meta-tolyl)antimony with appropriate oximes in the presence of hydrogen peroxide and tert-butyl hydroperoxide. According to the X-ray analysis data, antimony atoms are bound to oxygen atoms of axial oximate ligands in the trigonal bipyramidal coordination in molecules 1-3. The peculiarities of molecular structures are short intramolecular contact Sb—N, which is 1 A less than the sum of Van der Waals radiuses.

Keywords: tri(ortho-tolyl)antimony, tri(meta-tolyl)antimony, oximes, tert-butyl hydroperoxide, hydrogen peroxide, oxidizing reactions, bis[4-N,N(dimethylamino)-benzaldoximato]tri(ortho-tolyl) antimony, bis(acetophenonoximato)_tri (ortho-tolyl) antimony, bis(furfuradloximato)tri(meta-tolyl) antimony, molecular structures, X-ray analysis.

Introduction

Triarylantimony oxidative addition reaction (reagent is an acid with the general formula HA, the oxidizing agent is peroxide) is of interest as an effective single-stage reaction to synthetize antimony (V) aryl derivatives Ar3SbX2. However, using oxime in such reaction, even with 1:2:1 mole ratio of the reactants, led to the formation of two different product: Ar3Sb(ONCRR')2 and (Ar3Sb0NCRR')20 [1, 2]. This resulted in a necessity for product separation. It was found that the interaction of triphenylantimony with oxime in the presence of hydrogen peroxide (1:1:1 molar ratio of the reactants) led to the formation of oxo-derivatives of triarylantimony (Ph3Sb0NCRR')20 [3]. One further peculiarity of oxidative addition reaction between triarylantimony and oximes is the dependence of the product molecular structure on the nature of aryl ligands, situated at antimony atom. Thus, furfuraloxime ligands are bidentate bridging ligands in the molecule of bis(^2-furfuraloximato)-(^2-oxo)-bis[triphenylantimony]. These ligands are coordinated by the oxygen atom to the first antimony atom and by the nitrogen atom to the second antimony atom. This fact increases antimony coordination number to six [3]. However, the molecule of ^2-oxo-bis[(furfuraldoximato)tri(o-tolyl)antimony] is of the regular molecular structure type which includes monodentate ligands [4]. 2-Hydroxybenzaldoxim reacts with triphenylantimony and tri(o-tolyl)antimony in the presence of an oxidizing agent to form triarylantimony dioximates [5, 6], whereas its reaction with tri(m-tolyl)antimony and tris(5-bromo-2-methoxyphenyl)antimony leads to the formation of binuclear complex with Sb-O-Sb bond in which every ligand is tridentate chelating-bridging one [6, 7].

To improve oxidative synthesis method of organoantimony compounds with oxime ligands the present paper continuates investigating reactions of tri(o-tolyl)antimony and tri(m-tolyl)antimony with oximes in the presence of hydrogen peroxide or tert-butyl hydroperoxide (1:2:1 and 1:1:1 mole ratio of the reactants) in various solvents.

Chelyabinsk, Russian Federation, Chelyabinsk, Russian Federation, Chelyabinsk, Russian Federation,

Experimental

Synthesis of èïs[4-N,N(dimethylamino)benzaldoximato]tri(o-tolyl)antimony (1).

a) Tri(o-tolyl)antimony (100 mg, 0.25 mmol) was dissolved in diethyl ether (30 mL). Then 4-N,N-(dimethylamino)benzaldoxime (82 mg, 0.50 mmol) and hydrogen peroxide (28 mg, 30 % aqueous, 0.25 mmol) were added. The solution was left to stand for 24 hours at temperature 20 °C. When the solvent evaporated, the product was a light green crystalline substance; yield 156 mg (85 %), MP: 154 °C.

b) Tri(o-tolyl)antimony (150 mg, 0.40 mmol) was dissolved in diethyl ether (30 mL). Then 4-N,N(dimethylamino)benzaldoxime (125 mg, 0.80 mmol) and tert-butyl hydroperoxide (49 mg, 70 % aqueous, 0.40 mmol) were added. The solution was left to stand for 24 hours at temperature 20 °C. The fine-cristalline substance were obtained; the product yield 267 mg (97 %), MP: 155 °C.

c) Tri(o-tolyl)antimony (100 mg, 0.25 mmol) was dissolved in diethyl ether (30 mL). Then 4-N,N(dimethylamino)benzaldoxime (41 mg, 0.25 mmol) and hydrogen peroxide (32 mg, 30 % aqueous, 0.25 mmol) were added. The solution was left to stand for 24 hours. The solid precipitate was washed with small portions of heated toluene. The fine white toluene insoluble precipitate powder with decomposition heat more than 300 °C weighted 17 mg (16 %). Substance 1 (yield 79 mg (87 %), MP: 154 °C) was isolated from toluene solution.

IR spectrum (v, cm"1): 3045, 3006, 2949, 2922, 2801, 1608, 1525, 1479, 1444, 1412, 1366, 1329, 1232, 1178, 1122, 1066, 1032, 1006, 945, 878, 817, 797, 744, 703, 609, 524, 485, 438, 412.

For C39H43N4O2Sb anal. calcd. (%): C 64.86, H 5.96. Found, %: C 64.80, H 6.07.

Synthesis of bis(acetophenonoximato)tri(o-tolyl)antimony (2).

a) Tri(o-tolyl)antimony (150 mg, 0.40 mmol) was dissolved in diethyl ether (30 mL). Then acetophenonoxime (103 mg, 0.80 mmol) and hydrogen peroxide (43 mg, 30 % aqueous, 0.4 mmol) were added. The solution was left to stand for 24 hours at temperature 20 °C. When the solvent evaporated, solid precipitate was crystallized from toluene. A colorless needle-shaped crystals were obtained; yield 232 mg (87 %), MP: 161 °C.

b) Tri(o-tolyl)antimony (150 mg, 0.40 mmol) was dissolved in tetrachloromethane (30 mL). Then acetophenonoxime (103 mg, 0.80 mmol) and tert-butyl hydroperoxide (49 mg, 70 % aqueous, 0.40 mmol) were added. The solution was left to stand for 24 hours. When the solvent evaporated, fine-cristalline precipitate was crystallized from toluene to give a colorless crystalline substance (248 mg, 98 %, MP: 162 °C).

c) Tri(o-tolyl)antimony (100 mg, 0.25 mmol) was dissolved in diethyl ether (30 mL). Then acetophenonoxime (34 mg, 0.25 mmol) and tert-butyl hydroperoxide (32 mg, 70 % aqueous, 0.25 mmol) were added. The solution was left to stand for 24 hours. When the solvent evaporated, fine-cristalline precipitate was crystallized from toluene to give a colorless crystals (248 mg, 98 %, MP: 162 °C). After 24 hours the product was washed with small portions of heated toluene. Fine solid toluene insoluble precipitate powder with decomposition heat more than 300 °C weighted 37 mg (35 %). The substance 2 (yield 75 mg, 90 %, MP: 160 °C) was isolated from toluene solution.

IR spectrum (v, cm"1): 3053, 3006, 2928, 1588, 1494, 1471, 1442, 1364, 1306, 1280, 1206, 1163, 1121, 1029, 994, 927, 761, 748, 693, 679, 554, 518, 487, 437, 411.

For C37H37N2O2Sb anal. calcd. (%): C 66.92, H 5.58. Found, %: C 66.87, H 5.69.

Synthesis of bis(furfuraloximato)tri(m-tolyl)antimony (3).

a) Tri(m-tolyl)antimony (100 mg, 0.25 mmol) was dissolved in hexane (15 mL). Then furfuraloxime (56 mg, 0.50 mmol) and tert-butyl hydroperoxide (23 mg, 70 % aqueous, 0.25 mmol) were added. The solution was left to stand for 24 hours at temperature 20 °C. When the solvent evaporated, white crystalline substance were obtained. The product yield 153 mg (98 %), MP: 133 °C.

b) Tri(rn-tolyl)antimony (100 mg, 0.25 mmol) was dissolved in diethyl ether (20 mL). Then furfuraloxime (28 mg, 0.25 mmol) and tert-butyl hydroperoxide (23 mg, 70 % aqueous, 0.25 mmol) were added. Obtained solid precipitate was crystallized from toluene to give a white crystals 3 (67 mg (87 %), MP: 134 °C). Amorphous toluene insoluble powder had decomposition heat more than 300 °C.

IR spectrum (v, cm _1): 3234, 3137, 2910, 2804, 2361, 2343, 1609, 1557, 1526, 1477, 1445, 1428, 1361, 1302, 1225, 1186, 1170, 1126, 1066, 957, 868, 813, 736, 571, 528, 493, 442, 424.

For C31H29N2O4Sb anal. calcd. (%): C 60.46, H 4.71. Found, %: C 60.28, H 4.83.

IR spectra were recorded on the Bruker Tensor 27 FT-IR (KBr pellets; 4000-400 cm-1).

The X-ray diffraction analyses of crystalline substances 1-3 were made on the Bruker D8 QUEST automatic four-circle diffractometer (Mo Ka- emission, X = 0.71073 A, graphite monochromator).

The data were collected and analyzed, the unit cell parameters were refined, and the absorption correction was applied using the SMART and SAINT-Plus programs [8]. All calculations for structure determination and refinement were performed using the SHELXL/PC programs [9]. The structures 1, 2 and 3 were determined by the direct method and refined by the least-squares method in the anisotropic approximation for non-hydrogen atoms. The main crystallographic data and refinement results for structures 1, 2 and 3 are listed in Table 1. The selected bond lengths and bond angles are given in Table 2.

The full tables of atomic coordinates, bond lengths, and bond angles were deposited with the Cambridge Crystallographic Data Centre (CCDC 1012010, 1013407, 1009237 for compounds 1, 2 and 3, respectively; [email protected]; http://www.ccdc.cam.ac.uk).

Table 1

Crystallographic data and the experimental and structure refinement parameters for compounds 1-3

Parameter Value

1 2 3

Empirical formula C39H43N4O2Sb C37H37N2O2Sb C31H29N2O4Sb

Formula weight 721.53 663.45 615.32

T, K 298 273 296

Crystal system Monoclinic Triclinic Monoclinic

Space group Cc P1 Сс

a, A 14.5074(5) 10.2151(3) 20.8574(6)

b, A 10.9331(3) 10.4979(4) 10.3011(3)

c, A 22.7362(7) 15.9822(5) 15.3511(5)

a, deg 90.00 99.295(1) 90.00

P, deg 93.198(1) 102.960(1) 119.721(1)

Y, deg 90.00 91.749(1) 90.00

V, A3 3600.59(19) 1644.32(9) 2864.36(135

Z 4 2 4

P(calcd.), g/cm3 1.331 1.340 1.427

1, mm1 0.804 0.872 1.000

F(000) 1488.0 680.0 1248.0

Crystal size, mm 0.50x0.49x0.22 0.40x0.36x0.23 0.75x0.38x0.13

3 Range of data collection, deg 2.9 - 26.098 2.94 - 26.096 3.06 - 26.44

Range of refraction indices -17 < h < 17, -13 < k < 13, -28 < l < 28 -12 < h < 12, -12 < k < 12, -19 < l < 19 -26 < h < 26, -12 < k < 12, -19 < l < 19

Measured reflections 47631 50217 18330

Independent reflections 7107 12975 5902

Rint 0.0237 0.0211 Rmt = 0.0216

Refinement variables 422 768 346

GOOF 1.119 1.089 1.122

R factors for F2 > 2ct(F2) Rl = 0.0259, wR2 = 0.0651 Rl = 0.0268, wR2 = 0.0673 Rl = 0.0272, wR2 = 0.0618

R factors for all reflections Rj = 0.0289, wR2 = 0.0665 Rj = 0.0306, wR2 = 0.0702 Rj = 0.0343, wR2 = 0.0655

Residual electron density (min/max), e/A3 0.44/-0.30 0.66/-0.42 0.71/-0.49

Table 2

Selected bond lengths and bond angles in the structures of compounds 1-3

Bond d, Â Angle ra, deg

1

Sb(1)-C(1) 2.1108(17) O(1)Sb(1)O(4) 168.92(5)

Sb(1)-C(11) 2.119(2) C(1)Sb(1)C(21) 118.90(12)

Sb(1)-C(21) 2.149(3) C(11)Sb(1)C(21) 115.04(7)

Table 2 (end)

Bond d, Ä Angle ra, deg

Sb(1)-0(1) 2.1047(18) C(1)Sb(1)C(11) 126.02(12)

Sb(1)-O(4) 2.0395(19) N(1)O(1)Sb(1) 112.93(13)

0(1)-N(1) 1.407(3) O(1)N(1)C(37) 107.4(2)

O(2)-N(3) 1.361(3) N(3)O(2)Sb(1) 114.86(15)

N(1)-C(37) 1.246(3) O(2)N(3)C(47) 117.7(2)

N(3)-C(47) 1.334(4) C(44)N(4)C(48) 117.8(3)

2

Sb(1)-C(1) 2.114(3) O(1)Sb(1)O(2) 172.14(6)

Sb(1)-C(11) 2.106(2) C(1)Sb(1)C(21) 116.68(10)

Sb(1)-C(21) 2.138(3) C(11)Sb(1)C(21) 126.22(9)

Sb(1)-0(1) 2.0615(14) C(1)Sb(1)C(11) 117.09(10)

Sb(1)-O(2) 2.0600(13) N(1)O(1)Sb(1) 115.31(11)

0(1)-N(1) 1.431(2) O(1)N(1)C(37) 111.02(17)

O(2)-N(2) 1.384(2) N(2)O(2)Sb(1) 115.19(12)

N(1)-C(37) 1.326(2) O(2)N(2)C(47) 116.30(19)

N(2)-C(47) 1.289(3) O(3)Sb(2)O(4) 174.29(7)

Sb(2)-C(61) 2.131(2) C(61)Sb(2)C(71) 116.03(10)

Sb(2)-C(71) 2.099(3) C(61)Sb(2)C(81) 116.33(9)

Sb(2)-C(81) 2.154(3) C(81)Sb(2)C(71) 127.63(10)

Sb(2)-0(3) 2.1000(17) N(3)O(3)Sb(2) 113.88 (14)

Sb(2)-O(4) 2.0841(15) O(3)N(3)C(97) 111.8(2)

0(3)-N(3) 1.393(3) N(4)O(4)Sb(2) 115.98(13)

O(4)-N(4) 1.351(3) 0(4)N(4)C(107) 113.7(2)

N(3)-C(97) 1.226(3) N(3)C(97)C(91) 114.0(3)

N(4)-C(107) 1.219(3) N(3)C(97)C(98) 124.3(3)

3

Sb(1)-C(1) 2.106(9) O(1)Sb(1)O(2) 174.30(9)

Sb(1)-C(11) 2.106(3) C(1)Sb(1)C(21) 112.02(10)

Sb(1)-C(21) 2.110(10) C(11)Sb(1)C(21) 123.3(5)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Sb(1)-0(1) 2.058(6) C(1)Sb(1)C(11) 124.6(5)

Sb(1)-O(2) 2.107(7) C(1)Sb(1)0(1) 84.6(3)

0(1)-N(1) 1.358(13) N(1)O(1)Sb(1) 110.3(6)

O(2)-N(2) 1.374(11) O(1)N(1)C(37) 117.9(10)

N(1)-C(31) 1.310(14) N(2)O(2)Sb(1) 109.2(6)

N(2)-C(36) 1.241(15) O(2)N(2)C(47) 107.4(8)

Results and Discussion

The reactions of tri(o-tolyl)antimony with 4-N,N-dimethylbenzaldoxime and acetophenonoxime have been investigated in the present study. The variable factors: the oxidizing agent (hydrogen peroxide or fert-butylhydroperoxide), solvent (diethyl ether, heptane, carbon tetrachloride), the molar ratio of the reactants (1:2:1 or 1:1:1). It has been found that the interaction of tri(o-tolyl)antimony with oximes at the molar ratio 1:2:1, irrespective of the oxidizing agent nature (hydrogen peroxide or fert-butyl hydroperoxide), proceeds as the oxidative addition reaction with the formation of high-yield tri(o-tolyl)antimony dioximates.

o-Tol3Sb + 2 HON=CRR' + R''OOH ^ o-Tol3Sb(ON=CRR')2 + R''OOH + H2O

R = H, R' = C6HN(CH3)2 (1); R = Me, R' = Ph (2); R'' = H or i-Bu.

Tri(o-tolyl)antimony dioximates 1 and 2 are crystalline substances which are resistant to the effect of moisture and air oxygen, they are freely soluble in aromatic and aliphatic hydrocarbons. It has been found that the solvent nature does not affect the yield, which remains consistently high.

Previously it was shown that the oxidative addition reaction of triphenyl- or tri(p-tolyl)antimony and oxime at the molar ratio 1:1 led to the binuclear organoantimony compound with the bridging oxygen atom of the general formula (Ar3Sb0NCRR')20 [3].

We have found that the reaction of tri(o-tolyl)antimony and 4-N,N-dimethylbenzaldoxime or acetophenone oxime in the presence of hydrogen peroxide or tert-butyl hydroperoxide at the molar ratio 1:1:1 leads to the formation of the mixture of products: tri(o-tolyl)antimony dioximate and tri(o-tolyl)antimony oxide with a polymeric structure.

o-TobSb + HON=CRR' + R''OOH ^ o-TobSb(ON=CRR')2 + o-TobSbO + 2 R''OOH + H2O

R = H, R' = C6H4N(CH3)2 (1); R = Me, R' = Ph (2); R'' = H или t-Bu.

The interaction of tri(m-tolyl)antimony and furfuraldoxime at the molar ratios of 1:2:1 and 1:1:1 in the presence of hydrogen peroxide in diethyl ether results in the formation of ¡u2-oxo-bis [(furfuraldoximato)tri(m-tolyl)antimony] with the melting point 235 °С.

2 m-TobSb + 2 H0N=CHC4H30 + 2 H2O2 ^ (m-TobSbON^K^ObO + 3 H2O

At the ratio of tri(m-tolyl)antimony to oxime to hydrogen peroxide of 1:2:1 (mol.) an oxime is in excess. Therefore, the fixed residue is the mixture of an organoantimony compound and unreacted oxime. After separation of the mixture by fractional recrystallization method, the desired product yield inevitably decreases, it turns out lower than the yied at the molar ratio 1:1:1 (75 % and 96 % respectively).

But in the presence of tert-butyl hydroperoxide, irrespective of the mole ratio of the reactants, b7s(furfuraldoximato)tri(m-tolyl)antimony (3) is obtained.

m-Tol3Sb + 2 HON=CHC4H3O + t-BuOOH ^ m-Tol3Sb(ON=CHC4H3O)2 + t-BuOH + H2O

At the molar ratio 1:2:1, the yield is 90-98 %, irrespective of the solvent (diethyl ether, hexane, carbon tetrachloride).

Decrease of the oxime concentration (1: 1: 1 mol.) is followed by the formation of high melting co-product, which, we believe, is the polymeric oxide of tri(m-tolyl)antimony [(m-Tol)3SbO]n.

Triarylantimony dioximates have been identified by infrared spectroscopy and X-ray analysis.

The molecules of all compounds contain the same structure fragments, so their IR spectra are similar to each other. The presence of three aryl fragments in this organoantimony compounds does complicate determination of characteristic bands belonging to the stretching vibrations of C=N and N-O, which are detected in oximes at intervals 1685-1650 and 960-930 cm-1, respectively, because it is the area which contains aryl groups vibrational bands [10, 11].

To assign the absorption bands in the IR spectra of triarylantimony dioximates, we have obtained spectra of oximes, which have been used for synthesis. The absorption bands with frequencies at intervals of 3650-3500 cm-1 (OH-groups), 1568-1643 cm-1 (C=N bonds), 926-968 cm-1 (N-O bonds) have been found in the IR spectra of oximes.

The spectra of the compounds contain the intensive absorption band at 440 cm-1, which, according to the literature, refers to vibrations of SbC3 fragment, having С3 symmetry [12]. The absorption bands at 410-425 cm-1 characterize the vibrations of the Sb-O [13].

The stretching vibrations of C = N bonds in triarylantimony dioximates (1608, 1588, 1557 cm-1 in 1, 2 and 3, respectively) slightly shift to the low frequency region of the spectrum compared to the same absorption band in the corresponding oximes.

The absorption band, characterizing N-O bonds vibrations, also shifts to the low frequency region of the spectrum (945, 927, 957 cm-1 in 1, 2 and 3 respectively). This indicates, it seems, that the C=N and N-O bond lengths in triarylantimony dioximates increase compared to oximes.

According to X-ray diffraction data, the molecules of compounds 1, 2 (the crystal contains two types of crystallographically independent molecules a and b) and 3, the antimony atoms have trigonal-bipyramidal coordination with the oximate ligands oxygen atoms in axial positions (Fig. 1-3).

Fig. 1. The structure of compound 1

Fig. 2. The structure of compound 2 (molecule a)

The sum of CeqSbCeq bond angles is equal to 360° (within experimental error), at that the values of the individual angles differ from the theoretical angle not more than 8°. The axial OSbO angles are equal to 168.92(5)° (1), 172.14(6)° (2 a), 174.29(7)° (2 b), 174.30(9)° (3). The SbC3 fragments are almost flat. Antimony atoms are deflected from the C3 plane through 0.024, 0.007, 0.008, 0.010 A in 1, 2 a, 2 b, 3 respectively. The OSbC angles vary within the ranges 83.55(11)°-96.07(9)° (1), 83.74(7)°-94.55(7)° (2 a), 83.95(8)°-993.71(9)° (2 b), 84.6(3)°-93.5(5)° (3).

The Sb-C bond intervals are 2.111(2)-2.149(3) A (the mean value is 2.126(3) A) (1), 2.106(2)-2.138(3) A (2.119(3) A) (2 a), 2.099(3)-2.154(3) A (2.129(3) A) (2 b, 2.106(3)-2110(10) A (2.107(9) A) (3). Sb-O bond lengths are equal to 2.039(2), 2.105(2) A (1), 2.060(1), 2.061(1) A (2 a),

2.084(2), 2.100(2) A (2 b), 2.058(6), 2.107(7) A (3). It may be noted that Sb-O distances are significantly different in the molecules (except of molecule 2 a). The average equatorial bond lengths in all the molecules are greater than the average axial bond lengths.

Fig. 3. The structure of compound 3

There are intramolecular contacts between Sb atom and N atoms of oxime groups in molecules 1-3. The Sb--N distances are 2.952(2), 2.889(2) Á (1), 2.970(1), 2.931(2) Á (2 a), 2.952(2), 2.939(2) Á (2 b), 2.83(1), 2.87(1) Á (3) and considerably less than the sum of Van der Waals radiuses of Sb and N atoms (3.8 Á [14]). Obviously, there is no correlation between Sb-O bond lengths and strength of Sb-N contacts. Decrease of Sb- • N distances does not result in the expected N-O bond lengthening [(1.407(3), 1.361(3) Á (1), 1.431(2), 1.384(2) Á (2 a), 1.393(3), 1.351(3) Á (2 ff), 1.358(13), 1.374(11) Á (3)], however, it causes a reduction of NOSb valence angles. Thus, in molecule 3, which has the shortest Sb- • N distances, these angles are equal to 109.2(6)° and 110.3(6)°, whereas in molecules 1, 2 this angles are changed in the range of 112.9(1)°-116.0(1)°.

Note that heteroatoms do not participate in the crystal-packing formation of molecules 1-3. The structure is formed due to C-H- •rc intermolecular interactions.

Conclusions

It has been found that the oxidative addition reaction of tri(o-tolyl)antimony and 4-N,N-dimethylbenzaldoxime and acetophenonoxime proceed with the formation of tri(o-tolyl)antimony dioximates irrespective of the oxidizing agent nature and the molar ratio of the reactants. The direction of the similar reaction of tri(m-tolyl)antimony with furfuraldoxime is determined by the type of an oxidizing agent.

57s[4-N,N(dimethylamino)benzaldoximato]tri(o-tolyl)antimony, 6/5(acetophenonoximato)tri(o-

tolyl)antimony and te(furfuraloximato)tri(iw-tolyl)antimony molecules have close geometrical parameters. The peculiarity of trigonal bipyramidal polyhedron of antimony atoms is that the equatorial substituents are farther from it than axial ones. The significant reduction of intramolecular distances Sb-N, which we have observed, does not cause significant distortion of bond angles at the central atom, which are close to the theoretical values.

References

1. Sharutin V.V., Molokova O.V., Sharutina O.K., Gerasimenko A.V., Pushilin M.A. [Synthesis and Structure of Triarylantimony Dioximates]. Russian Journal of General Chemistry, 2004, vol. 74, no. 10, pp.1485-1491.

2. Dodonov V.A., Gushhin A.V., Gor'kaev D.A., Fukin G.K., Starostina T.I., Zaharov L.N., Kurskij Ju.A., Shavyrin A.S. [Synthesis and Structure of Triphenylantimony Oximates]. Russian Chemical Bulletin, 2002, no. 6, pp. 1051-1057.

3. Sharutin V.V., Sharutina O.K., Molokova O.V., Pakusina A.P., Bondar' E.A., Krivolapov D.B., Gubajdullin A.T., Litvinov I.A. [Synthesis and Structure of ^-Oxo-bis[triphenyl(furfuraloximato) antimony]. Russian Journal of General Chemistry, 2001, vol. 71, no. 9, pp. 1426-1430.

4. Sharutin V.V., Molokova O.V., Sharutina O.K., Smirnova S.A. [Oxidative Addition Reactions of Tri(2-methylphenyl)antimony]. Russian Journal of Inorganic Chemistry, 2012, vol. 57, no. 9, pp. 12521258.

5. Sharutin V.V., Sharutina O.K., Molokova O.V. [Synthesis and Structure of Tetra- and Triphenylantimony Salicylaldoximates]. Russian Journal of Inorganic Chemistry, 2012, vol. 57, no. 6, pp. 832-837.

6. Sharutin V.V., Sharutina O.K., Artem'eva E.V., Makerova M.S. The Peculiarities of Tri(o-tolyl)antimony and Tri(m-tolyl)-antimony Reactions with 2-Hydroxybenzaldoxime. The Molecular Structures of Tri(o-tolyl)antimony Bis(2-hydroxybenzaldoximate) and Bis(^3-2-hydroxy-benzaldoximato-O,O',N)-(^2-oxo)-6is[di(m-tolyl)antimony]. Bulletin of the South Ural State University, Ser. Chemistry, 2014, vol. 6, no. 2, pp. 5-14.

7. Sharutin V.V., Sharutina O.K. [The Peculiarities of 7>is(5-bromo-2-methoxyphenyl)antimony Reactions with 2-oxybenzaldoxime. The Structure of Bis(^3-2-oxybenzaldoximato-O,O',N)-(^2-oxo)-6is [di(5-bromo-2-methoxyphenyl)antimony]. Russian Journal of Inorganic Chemistry, 2014, vol. 59, no. 11, pp. 1263-1267.

8. Bruker (2000) SMART. Bruker Molecular Analysis Research Tool, Versions 5.625 Bruker AXS, Madison, Wisconsin, USA.

9. Bruker (2000) SAINTPlus Data Reduction and Correction Program Versions 6.02a, Bruker AXS, Madison, Wisconsin, USA.

10. Gordon A., Ford R. Sputnik himika. [The Chemist's Companion]. Moscow, Mir Publ., 1976, 437 p.

11. Mironov V.A. Spektroskopiya v organicheskoj himii [The Spectroscopy in Organic Chemistry]. Moscow, Himiya, 1985, pp. 29-55.

12. Doak G.O., Long G.G., Freedman L.D. The infrared spectra of some phenylsubstituted pentavalent antimony compounds. J. Organomet. Chem., 1965, vol. 4, no. 1, pp. 82-91.

13. Gupta A., Sharma R.K., Bohra R., Jain V.K., Drake J.E., Hursthouse M.B., Light M.E. Syntetic, spectroscopic and structural aspects of Triphenylantimony(V) complexes with internally functionaalized oxsimes: Crystal and molecular structure of [Ph3Sb(ON=C(Me)C5H4N-2}2]. Polyhedron, 2002, vol. 21, pp.2387-2392.

14. Bacanov S.S. [Atomic Radii of the Elements]. Russian Journal of Inorganic Chemistry, 1991, vol. 36, no. 12, pp. 3015-3037. (in Russ.)

Received 24 February 2015

УДК 546.863+546.865+547.53.024+548.312.5

РЕАКЦИИ ТРИ(ОРТО-ТОЛИЛ)- И ТРИ(МЕТА-ТОЛИЛ)СУРЬМЫ С ОКСИМАМИ В ПРИСУТСТВИИ ОКИСЛИТЕЛЯ. СТРОЕНИЕ ДИОКСИМАТОВ ТРИ(ОРТО-ТОЛИЛ)-И ТРИ(МЕТА-ТОЛИЛ)СУРЬМЫ

B.В. Шарутин, O.K. Шарутина, Е.В. Артемьева, М.С. Макерова

Южно-Уральский государственный университет, г. Челябинск

Bзaимодействием три-орто-толил- или три-мета-толилсурьмы с оксимами в присутствии трет -бутилгидропероксида или пероксида водорода синтезированы диоксиматы триарилсурьмы (о-СHзC6H4)зSb(0N=CHC6H4N(CHз)2-4)2 (1), (о-СHзC6H4)зSb(0N=CMePh)2 (2), (m-СHзC6H4)зSb(0N=CHC4Hз0)2 (3). По данным РСА, в молекулах 1-3 атомы сурьмы имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода оксиматных лигандов в аксиальных положениях. Особенностью структур является наличие коротких внутримолекулярных расстояний Sb-"N, которые примерно на 1 Â меньше суммы ван-дер-ваальсовых радиусов.

Ключевые слова: три-орто-толилсурьма, три-мета-толилсурьма, оксимы, трет-бутилгидропероксид, пероксид водорода, окисление, бис(4-диметиламино-бензальдоксимато)три-орто-толилсурьма, бис(ацетофеноноксимато)три-орто-толилсурьма, бис(фурфуальдоксимато)три(мета-толил)сурьма, молекулярные структуры, рентгеноструктурный анализ.

Литература

1. Синтез и строение диоксиматов триарилсурьмы / B.B. Шарутин, 0.B. Молокова, О.К. Шарутина и др. // Журн. общ. химии. - 2004. - Т. 74. - Bbm. 10. - С. 1600-1607.

2. Синтез и строение оксиматов трифенилсурьмы / B.A. Додонов, A.B. Гущин, Д.А. Горькаев и др. // Изв. РАН. Сер. хим. - 2002. - № 6. - С. 965-971.

3. Синтез и строение ц-оксобис[трифенил(фурфуральоксимато)сурьмы] / B.B. Шарутин, О.К. Шарутина, 0.B. Молокова и др. // Журн. общ. химии. - 2001. - Т. 71. - Bbm. 9. - С. 1507 -1510.

4. Реакции окислительного присоединения три(2-метилфенил)сурьмы / B.B. Шарутин, 0.B. Молокова, О.К. Шарутина, С.А. Смирнова // Журн. неорган. химии. - 2012. - Т. 57. - № 9. -

C. 1334-1340.

5. Синтез и строение салицилальдоксиматов тетра- и трифенилсурьмы / B.B. Шарутин, О.К. Шарутина, 0.B. Молокова // Журн. неорган. химии. - 2012. - Т. 57. - № 6. - С. 902-907.

6. The Peculiarities of Tri(o-tolyl)antimony and Tri(m-tolyl)-antimony Reactions with 2-Hydroxybenzaldoxime. The Molecular Structures of Tri(o-tolyl)antimony Bis(2-hydroxybenzaldoximate) and Bis(^3-2-hydroxybenzaldoximato-O,O',N)-(^2-oxo)-bis[di(m-tolyl)antimony] / V.V. Sharutin, O.K. Sharutina, E.V. Artem'eva, M.S. Makerova // Bестник ЮУрГУ. Серия «Химия». - 2014. - Т. 6, № 2. - С. 5-14.

7. Шарутин, B.B. Особенности взаимодействия трис(5-бром-2-метоксифенил)сурьмы с 2-оксибензальдоксимом. Строение бис^^-оксибензальдоксимато-О^'^Н^-бис^-бром^-метоксифенил)сурьмы / B.B. Шарутин, О.К. Шарутина // Журнал неорганической химии. - 2014. - Т. 59. - № 11. - С. 1507-1510.

8. Bruker (2000) SMART. Bruker Molecular Analysis Research Tool, Versions 5.625 Bruker AXS, Madison, Wisconsin, USA.

9. Bruker (2000) SAINTPlus Data Reduction and Correction Program Versions 6.02a, Bruker AXS, Madison, Wisconsin, USA.

10. Гордон, А. Спутник химика / А. Гордон, Р. Форд. - М.: Мир, 1976. - 437 с.

11. Миронов, BA. Спектроскопия в органической химии / BA. Миронов. - М.: Химия.-1985. - С. 29-55.

12. The Infrared Spectra of Some Phenyl-substituted Pentavalent Antimony Compounds / G.O. Doak, G.G. Long, L.D. Freedman // J. Organometal Chem. - 1965. - N. 4. - P. 82-91.

13. Syntetic, Spectroscopic and Structural Aspects of Triphenylantimony(V) Complexes with Internally Functionalized Oximes: Crystal and Molecular Structure of [Ph3Sb{ON=C(Me)C5H4N-2}2] /

A. Gupta, R.K. Sharma, R. Bohra et al. // Polyhedron. - 2002. - V. 21. - P. 2387-2392.

14. Бацанов, С.С. Атомные радиусы элементов / С.С. Бацанов // Журн. неорган. химии. -1991. - Т. 36. - Вып. 12. - С. 3015-3037.

Шарутин Владимир Викторович - доктор химических наук, профессор, старший научный сотрудник УНИД, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им.

B.И. Ленина, 76. E-mail: [email protected].

Шарутина Ольга Константиновна - доктор химических наук, профессор, кафедра аналитической химии, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: [email protected].

Артемьева Екатерина Владимировна - студент химического факультета, ЮжноУральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: [email protected]

Макерова Марина Сергеевна - студент химического факультета, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: [email protected]

Поступила в редакцию 24 февраля 2015 г.

БИБЛИОГРАФИЧЕСКОЕ ОПИСАНИЕ СТАТЬИ

REFERENCE TO ARTICLE

Reactions of tri(oriho-tolyl)- and tri(meta-tolyl)-antimony with oximes in the presence of an oxidant. The structures of tri(ortho-tolyl)- and tri(meta-tolyl)antimony dioximates / V.V. Sharutin, O.K. Sharutina, E.V. Artem'eva, M.S. Makerova // Вестник ЮУрГУ. Серия «Химия». - 2015. - Т. 7, № 2. - С. 17-26.

Sharutin V.V., Sharutina O.K., Artem'eva E.V., Makerova M.S. Reactions of Tri(ortho-tolyl)- and Tri(meta-tolyl)antimony with Oximes in the Presence of an Oxidant. The structures of Tri(ortho-tolyl)- and Tri(meta-tolyl)antimony Dioximates. Bulletin of the South Ural State University. Ser. Chemistry. 2015, vol. 7, no. 2, pp. 17-26.

i Надоели баннеры? Вы всегда можете отключить рекламу.