Научная статья на тему 'ОСОБЕННОСТИ ФОРМИРОВАНИЯ НАНОЧАСТИЦ И БИНАРНЫХ НАНОСПЛАВОВ ПРИ ТЕРМИЧЕСКОМ ИСПАРЕНИИ И КОНДЕНСАЦИИ НА ИНЕРТНОЙ ПОВЕРХНОСТИ В ВАКУУМЕ'

ОСОБЕННОСТИ ФОРМИРОВАНИЯ НАНОЧАСТИЦ И БИНАРНЫХ НАНОСПЛАВОВ ПРИ ТЕРМИЧЕСКОМ ИСПАРЕНИИ И КОНДЕНСАЦИИ НА ИНЕРТНОЙ ПОВЕРХНОСТИ В ВАКУУМЕ Текст научной статьи по специальности «Нанотехнологии»

CC BY
39
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
НАНОЧАСТИЦА / НАНОСПЛАВ / ПЛАВЛЕНИЕ / КОАЛЕСЦЕНЦИЯ / ЗОЛОТО / СЕРЕБРО / МЕДЬ / ТЕРМИЧЕСКОЕ ИСПАРЕНИЕ

Аннотация научной статьи по нанотехнологиям, автор научной работы — Громов Д. Г., Дубков С. В., Савицкий А. И., Гаврилов С. А.

В последнее время плазмонные эффекты широко исследуются для различных применений. Благодаря плазмонным эффектам наночастицы усиливают некоторые явления, такие как комбинационное рассеяние света, фотокатализ, фотогенерация. Понимание особенностей формирования наночастиц и наносплавов позволяет добиться их определенного состава и структуры. В работе показаны особенности формирования наночастиц Ag, Au и бинарных наносплавов Ag-Cu, Au-Cu, Cu-Rh путем термического испарения, конденсации и нагрева на инертной поверхности в вакууме. Посредством атомно-силовой микроскопии обнаружено, что быстрые изменения в исходном массиве наночастиц Ag происходят при низкой температуре (75-100 °C), после чего массив переходит в метастабильное состояние. Выявлено, что воздействие электронного луча просвечивающего электронного микроскопа на исходный конденсат приводит к миграции наночастиц и их слиянию, несмотря на их кристаллическое состояние. Продемонстрировано различие в образовании наносплавов Ag-Cu, Au-Cu и Cu-Rh. Показано отклонение в образовании фаз от диаграммы фазовых равновесий объемных материалов, обусловленное размерным эффектом. Установлено, что рассмотренные особенности формирования наночастиц и наносплавов связаны с размерным эффектом снижения температуры плавления и наличием на поверхности твердой фазы слоя жидкости определенной толщины, находящегося в равновесии с твердой фазой.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по нанотехнологиям , автор научной работы — Громов Д. Г., Дубков С. В., Савицкий А. И., Гаврилов С. А.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

FEATURES OF THE NANOPARTICLES AND BINARY NANOALLOYS FORMATION DURING THERMAL EVAPORATION AND CONDENSATION ON AN INERT SURFACE IN VACUUM

In recent times, plasmonic effects are widely used to cover the different application purposes. Due to plasmonic effects the nanoparticles enhance some phenomena, such as Raman scattering, photocatalysis, and photogeneration. The understanding of nanoparticles and nanoalloys formation features makes it possible to obtain their specific composition and structure. In this work, several features of the Ag, Au nanoparticles and Ag-Cu, Au-Cu, Cu-Rh binary nanoalloys formation by thermal evaporation, condensation and heating on an inert surface in vacuum are shown. It is found by atomic force microscope investigation that rapid changes in the initial Ag array take place at a low temperature of 75-100 °C, and after the array enters a metastable state. It was found that the impact of the electron beam of a transmission electron microscope on the initial condensate leads to the migration of nanoparticles and their fusion despite their crystalline state. The difference in the formation of Ag-Cu, Au-Cu and Cu-Rh nanoalloys is demonstrated. The phase formation deviation from phase equilibrium diagram of bulk materials, associated with the size effect, is also demonstrated. It has been established that the considered features of the nanoparticles and nanoalloys formation are associated with the size effect of melting-point depression and existence of liquid layer of a certain thickness on the solid phase surface, which is in equilibrium with the solid phase.

Текст научной работы на тему «ОСОБЕННОСТИ ФОРМИРОВАНИЯ НАНОЧАСТИЦ И БИНАРНЫХ НАНОСПЛАВОВ ПРИ ТЕРМИЧЕСКОМ ИСПАРЕНИИ И КОНДЕНСАЦИИ НА ИНЕРТНОЙ ПОВЕРХНОСТИ В ВАКУУМЕ»

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ И МАРШРУТЫ TECHNOLOGICAL PROCESSES AND ROUTES

Original article

УДК 546.57-022.532.: 620.181.4 doi:10.24151/1561-5405-2023-28-1-49-58

Features of the nanoparticles and binary nanoalloys formation during thermal evaporation and condensation on an inert surface in vacuum

D. G. Gromov1'2, S. V. Dubkov1, A. I. Savitskiy1'3, S. A. Gavrilov1

1National Research University of Electronic Technology, Moscow, Russia 2I. M. Sechenov First Moscow State Medical University under the Ministry of Health of Russian Federation, Moscow, Russia 3SMC "Technological Centre ", Moscow, Russia

[email protected]

Abstract. In recent times, plasmonic effects are widely used to cover the different application purposes. Due to plasmonic effects the nanoparticles enhance some phenomena, such as Raman scattering, photocatalysis, and photogeneration. The understanding of nanoparticles and nanoalloys formation features makes it possible to obtain their specific composition and structure. In this work, several features of the Ag, Au nanoparticles and Ag-Cu, Au-Cu, Cu-Rh binary nanoalloys formation by thermal evaporation, condensation and heating on an inert surface in vacuum are shown. It is found by atomic force microscope investigation that rapid changes in the initial Ag array take place at a low temperature of 75-100 °C, and after the array enters a metastable state. It was found that the impact of the electron beam of a transmission electron microscope on the initial condensate leads to the migration of nanoparticles and their fusion despite their crystalline state. The difference in the formation of Ag-Cu, Au-Cu and Cu-Rh nanoalloys is demonstrated. The phase formation deviation from phase equilibrium diagram of bulk materials, associated with the size effect, is also demonstrated. It has been established that the considered features of the nanoparticles and nanoalloys formation are associated with the size effect of melting-point depression and existence of liquid layer of a certain thickness on the solid phase surface, which is in equilibrium with the solid phase.

Keywords: nanoparticle, nanoalloy, melting, coalescence, gold, silver, copper, thermal evaporation

Funding: the work has been supported by the Russian Science Foundation (project No. 21-19-00761).

© D. G. Gromov, S. V. Dubkov, A. I. Savitskiy, S. A. Gavrilov, 2023

Acknowledgments, the work has been carried out using equipment and with the assistance of specialists from Center for collective use "Diagnostics and Modification of Microstructures and Nanoobjects" (National Research University of Electronic Technology), Center for collective use of Scientific Research Institute of Physical Problems named after F. V. Lukin, and Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences.

For citation. Gromov D. G., Dubkov S. V., Savitskiy A. I., Gavrilov S. A. Features of the nanoparticles and binary nanoalloys formation during thermal evaporation and condensation on an inert surface in vacuum. Proc. Univ. Electronics, 2023, vol. 28, no. 1, pp. 49-58. https://doi.org/10.24151/1561-5405-2023-28-1-49-58

Научная статья

Особенности формирования наночастиц и бинарных наносплавов при термическом испарении и конденсации на инертной поверхности в вакууме

Д. Г. Громов1'2, С. В. Дубков1, А. И. Савицкий1'3, С. А. Гаврилов1

1 Национальный исследовательский университет «МИЭТ», г. Москва, Россия

Первый Московский государственный медицинский университет имени И. М. Сеченова Минздрава России, г. Москва, Россия 3НПК

«Технологический центр», г. Москва, Россия [email protected]

Аннотация. В последнее время плазмонные эффекты широко исследуются для различных применений. Благодаря плазмонным эффектам наноча-стицы усиливают некоторые явления, такие как комбинационное рассеяние света, фотокатализ, фотогенерация. Понимание особенностей формирования наночастиц и наносплавов позволяет добиться их определенного состава и структуры. В работе показаны особенности формирования наночастиц Ag, Au и бинарных наносплавов Ag-Cu, Au-Cu, Cu-Rh путем термического испарения, конденсации и нагрева на инертной поверхности в вакууме. Посредством атомно-силовой микроскопии обнаружено, что быстрые изменения в исходном массиве наночастиц Ag происходят при низкой температуре (75-100 °C), после чего массив переходит в метастабильное состояние. Выявлено, что воздействие электронного луча просвечивающего электронного микроскопа на исходный конденсат приводит к миграции наночастиц и их слиянию, несмотря на их кристаллическое состояние. Продемонстрировано различие в образовании наносплавов Ag-Cu, Au-Cu и Cu-Rh. Показано отклонение в образовании фаз от диаграммы фазовых равновесий объемных материалов, обусловленное размерным эффектом. Установлено, что рассмотренные особенности формирования наночастиц и наносплавов связаны с размерным эффектом снижения температуры плавления и наличием на поверхности твердой фазы слоя жидкости определенной толщины, находящегося в равновесии с твердой фазой.

Ключевые слова: наночастица, наносплав, плавление, коалесценция, золото, серебро, медь, термическое испарение

Финансирование работы: работа выполнена при финансовой поддержке РНФ (проект № 21-19-00761).

Благодарности: работа выполнена с использованием оборудования и при содействии специалистов Центра коллективного пользования «Диагностика и модификация наноструктур и нанообъектов» МИЭТ, Центра коллективного пользования НИИ физических проблем им. Ф. В. Лукина, Института нанотехнологий микроэлектроники РАН.

Для цитирования: Громов Д. Г., Дубков С. В., Савицкий А. И., Гаврилов С. А. Особенности формирования наночастиц и бинарных наносплавов при термическом испарении и конденсации на инертной поверхности в вакууме // Изв. вузов. Электроника. 2023. Т. 28. № 1. С. 49-58. https://doi.org/10.24151/1561-5405-2023-28-1-49-58

Introduction. Nanoparticles of metals and nanoalloys are of interest to researchers due to their extraordinary properties and wide prospects for different applications. In particular, they can be used in biomedical [1, 2], catalytic [3, 4], sensor [5, 6], electronic [7, 8] and probably other applications. As it is known [9, 10], the localized surface plasmon resonance arises in metal nanoparticles under the action of optical radiation. This effect is used for solar cells [11, 12], photocatalysis [13-15] and Raman spectroscopic sensorics [16-19]. There are physical and chemical methods for the formation of nanoparticles on a solid-phase surface. Physical methods include thermal evaporation and condensation on an inert surface in vacuum. This technique makes it possible to obtain arrays of metal nanoparticles with a controlled average size depending on the amount of evaporated substance [17, 20, 21]. In this work, we consider the features that arise in the implementation of this technique both in the formation of elemental metal particles and binary nanoalloys.

Technique of formation. We have been developing nanoparticle arrays formation technique by means of vacuum thermal evaporation and condensation on an inert surface in vacuum. We implement the process in two stages: the first is vacuum thermal evaporation of a weight portion of the metal and condensation on an unheated substrate; and the second is annealing at temperatures ranging from 100 to 400 °C. Thus, we obtain nanoparticle arrays with a very different average size and size distribution close to normal [20, 21], as it can be seen in fig. 1. Interestingly, at small weights, a huge amount of very small particles arise, while for large weights, the particles are much larger and their number is smaller, and small particles are practically not observed.

Thus, we can perform good control of the average particle size in the range from 1 nm to 50 nm in dependence on the evaporated portion weight. The average particle size depends linearly on the evaporated portion of the material (fig. 2). At the same time the number of particles per unit area exponentially decreases with an increase in the evaporated portion of the material. At least, such dependences were observed for Ag and Au [20, 21].

Evolution of nanoparticles upon heating. Fig. 3 shows how the silver nanoparticle array changes at the second stage - during heating. (The measurements were made with an atomic force microscope "Ntegra II" (NT-MDT) equipped with a heated holder.) Interestingly, all changes in the silver array occur at a fairly low temperature: in the range of 25-100 °C (especially in the range of 75-100 °C). After that, raise of temperature to 200 °C did not lead to any noticeable changes [22].

Fig. 1. TEM images and cluster size distribution histograms of arrays of silver nanoparticles with different average diameters: 7 nm (a, b), 17 nm (c, d), 35 nm (e, f), after annealing in vacuum

at a temperature of 230 °C for 30 min

In initial state - after deposition - at room temperature the following features can be seen (fig. 3): a large number of small particles are present; the particles have a shape close to disc: height is 2 nm, but diameter is of the order of 20 nm. After heating up to 100 °C: the number of particles is reduced by 5 times; the particles become noticeably larger and have a shape close to spherical: height is 20 nm, and diameter is of the order of 40 nm. After 100 °C, the array of nanoparticles enters a metastable state: the number of particles and their sizes practically do not change at least up to 200 °C.

Fig. 2. The experimental dependences of Au mean particle diameter (a) and particle surface density (b) on evaporated portion weight after annealing in vacuum at a temperature of 350 °C for 30 min

Fig. 3. Changes in the parameters of silver nanoparti-cle array depending on the heating temperature: a - average planar size of nanoparticles; b - density of nanoparticles in the array; c - average height of nanoparticles

A similar evolution was also observed for a gold condensate. In particular, the impact of the electron beam of a transmission electron microscope on the initial condensate leads to the migration of nanoparticles and their coalescence, as can be seen in fig. 4 (4th page of the cover). It should be noted that the nanoparticles are in a crystalline form, but at the same time, when merged, they change shape, becoming more sphere-like.

Fig. 4 (4th page of the cover) shows transmission electron microscope (TEM) observations of as-deposited gold particle array evolution. The gold particles coalesce under the action of electron beam. It is clearly seen that the particles coalesce in the crystalline state. At the same time, they quickly change shape, as it usually is the case with liquid drops. Initially the particles exist separately. Under the action of an electron beam, they move, at some moment sharply approach each other, and then coalesce being continuously in an ordered crystalline state. Thus, it is very unusual for solid metal crystals.

Formation of nanoparticles and binary nanoalloys. The technique under consideration can form nanoalloys. However, in this case, it is necessary to consider the metallurgical features of the systems.

The Au-Cu binary system is the system with unlimited solid solubility. The results of studies of this system show that solid solution nanoalloys are easily formed during successive deposition of gold and copper and subsequent low heating. TEM investigation has demonstrated that crystal lattice parameter of obtained nanoalloy has the value between pure copper to pure gold (fig. 5). In addition, the composition and lattice parameter can be controlled by setting the weight portions of the components [23].

a b

Fig. 5. TEM image and SADP of Au-Cu nanoalloy formed by successive evaporation of 25.2 mg of Au and 12.5 mg of Cu and subsequent annealing in vacuum at a temperature of 350 °C during 20 min (a); diffraction pattern showing the FCC lattice with the parameter a = 0.387 nm, contrary to 0.362 nm for pure copper

and 0.408 nm for pure gold (b)

The Cu-Rh system is also the system with unlimited solid solubility, but the solid solution decomposition in the solid phase must be observed in it. However, in nanosize state we scarcely observe this decomposition, and the formation of a nanoalloy with a continuous solid solution series is only observed [24]. Three nanoalloy compositions (Cu75Rh25, Cu50Rh50, Cu25Rh75) were investigated using TEM, for which the type and lattice parameter were determined. Fig. 6, a demonstrates the known dependence of the lattice parameter on the concentration of rhodium, which obeys Vegard's law [25]. The experimental values of the lattice constant of alloy 3 of the resulting composition were superimposed on this dependence. As can be seen, the experimental data agree within the error with this known dependence [25] indicating a continuous series of solid solutions in the Cu-Rh system at room temperature. It should be noted that these measurements also showed the absence of a two-phase state, i. e. for all three compositions of the Cu-Rh alloy, only a single-phase state was observed, as it can be seen in the example of the composition Cu50Rh50 in fig. 6, b. Thus, a typical size effect occurs when the phase diagram changes as the size of the system decreases.

Fig. 6. Dependence of the lattice parameter of Cu-Rh alloy on the rhodium content: a - known [25] dependence of the lattice parameter (continuous line) and the TEM data experimental points of the lattice constant of the Cu75Rh25, Cu50Rh50, Cu25Rh75 alloys formed by successive evaporation of Cu and Rh and subsequent heating at 350 °C during 20 min; b - diffraction pattern of Cu25Rh75 composition alloy showing

the single-phase state of this alloy

The Ag-Cu is the system of eutectic type, namely with limited solid solubility. When we first planned the experiment, we expected that, due to limited solubility, we would get an array with two types of monomaterial nanoparticles: the first one based on copper, the second one based on silver. However, in reality, as it turned out, most nanoparticles are composite [26]. The Ag-Cu alloy nanoparticle array was formed by successive evaporation of Ag and Cu and subsequent heating at 300 °C during 20 min. Studying the sample in the scanning transmission electron microscopy mode (STEM) using a high-angle annular dark field detector (HAADF) in combination with EDX method shows that alloy nanoparticles consist of copper and silver parts, as it can be seen in fig. 7, a (4th page of the cover). At the same time, the electron diffraction pattern shows the presence of a combination of the rings of two Ag and Cu crystal lattices (fig. 7, b, 4th page of the cover). Thus, for a system of the eutectic type, even at the nanoscale, the components really tend to be in contact with each other, and not be separated.

We associate the demonstrated features with the size effect, namely, with melting-point depression. It follows from the equilibrium thermodynamics conditions that for a system bounded by a surface, the melting temperature decreases in accordance with the expression:

T = T

r AH(T)+ glAl -GsAs^

AH(TJ V AH (Tx )

J

where T is the phase transition temperature of a system bounded by a surface, in particular, a nanosystem; Tx is the phase transition temperature of a macrosystem; a is the surface energy; A is the surface area; V is the volume; AH(T) is the change in enthalpy as a result of the phase transition at temperature T. Comparison of the calculations of the melting temperature of gold nanoparticles depending on their size with the known experimental data [27] shows that this expression gives a very good agreement. This has been described in detail in [28].

For a macrovolume material, the impact of the surface on the melting temperature is not noticeable. However, when we scale down to the nanometer region, the equilibrium point be-

tween the liquid and solid phases shifts to lower temperatures because of more the contribution of the surface in comparison to the volume.

There are two important implications from this:

- because a surface is the main defect of a three-dimensional crystal lattice, the melting process starts from the surface and requires no energy to create interface between solid and liquid phases;

- at a temperature below the melting point, a liquid layer of a certain thickness exists on the surface of the solid phase, which is in equilibrium with the solid phase. The lower is the temperature, the thinner is the liquid layer on the surface.

Actually, the existence of a liquid layer of a certain thickness on the surface in equilibrium with the rest of the solid crystalline phase is the cause and explanation of the considered features: both the low-temperature evolution of an array of silver nanoparticles, and the coalescence of gold nanoparticles under the action of a TEM beam, the formation of an alloy during the successive evaporation and condensation of components, and subsequent low-temperature annealing, and the absence of some phase regions.

Conclusion. We attribute the unusual behavior of nanoparticles on the solid surface to the size effect of lowering the melting point of the material. This, among other things, determines that for nanoalloys there is a serious deviation from the phase diagram of the bulk material. Ultimately, this allows the formation of nanoparticles and nanoalloys of a specific composition and structure.

References

1. Erathodiyil N., Ying J. Y. Functionalization of inorganic nanoparticles for bioimaging applications. Acc. Chem. Res., 2011, vol. 44, no. 10, pp. 925-935. https://doi.org/10.1021/ar2000327

2. Kl^bowski B., Depciuch J., Parlinska-Wojtan M., Baran J. Applications of noble metal-based nanoparticles in medicine. Int. J. Mol. Sci., 2018, vol. 19 (12), art. no. 4031. https://doi.org/10.3390/ijms19124031

3. Liu L., Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev., 2018, vol. 118, no. 10, pp. 4981-5079. https://doi.org/10.1021/acs.chemrev.7b00776

4. Chang G., Cai Z., Jia H., Zhang Z., Liu X., Liu Z., Zhu R., He Y. High electrocatalytic performance of a graphene-supported PtAu nanoalloy for methanol oxidation. International Journal of Hydrogen Energy, 2018, vol. 43, no. 28, pp. 12803-12810. https://doi.org/10.1016/j.ijhydene.2018.04.116

5. Zeng S., Baillargeat D., Ho H.-P., Yong K.-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev., 2014, vol. 43, iss. 10, pp. 3426-3452. https://doi.org/10.1039/C3CS60479A

6. Zhou Q., Xu L., Umar A., Chen W., Kumar R. Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications. Sensors and Actuators B: Chemical, 2018, vol. 256, pp. 656-664. https://doi.org/ 10.1016/j.snb.2017.09.206

7. Liu K., Bai Y., Zhang L., Yang Z., Fan Q., Zheng H., Yin Y., Gao C. Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis. Nano Lett., 2016, vol. 16, no. 6, pp. 3675-3681. https://doi.org/10.1021/acs.nanolett.6b00868

8. Sonnefraud Y., Leen Koh A., McComb D. W., Maier S. A. Nanoplasmonics: Engineering and observation of localized plasmon modes. Laser and Photon. Rev., 2012, vol. 6, pp. 277-295. https://doi.org/10.1002/ lpor.201100027

9. Willets K. A., Duyne R. P. van. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 2007, vol. 58, pp. 267-297. https://doi.org/10.1146/annurev.physchem. 58.032806.104607

10. Mayer K. M., Hafner J. H. Localized surface plasmon resonance sensors. Chem. Rev., 2011, vol. 111, no. 6, pp. 3828-3857. https://doi.org/10.1021/cr100313v

11. Pillai S., Catchpole K. R., Trupke T., Green M. A. Surface plasmon enhanced silicon solar cells. Journal of Applied Physics, 2007, vol. 101, iss. 9, art. no. 093105. https://doi.org/10.1063/L2734885

12. Shamjid P., Abhijith T., Vivek P., Joel C. S., Reddy V. S. Plasmonic effects of Ag nanoparticles for absorption enhancement in polymer solar cells with MoO3 passivation layer. Physica B: Condensed Matter, 2019, vol. 560, pp. 174-184. https://doi.org/10.1016Zj.physb.2019.01.052

13. Fang M., Tan X., Liu Z., Hu B., Wang X. Recent progress on metal-enhanced photocatalysis: a review on the mechanism. Research, 2021, vol. 2021, art. ID: 9794329. https://doi.org/10.34133/2021/9794329

14. Bingham M., Mills A. Photonic efficiency and selectivity study of M (M = Pt, Pd, Au and Ag)/TiO2 photocatalysts for methanol reforming in the gas phase. Journal of Photochemistry and Photobiology A: Chemistry, 2020, vol. 389, art. no. 112257. https://doi.org/10.1016/j.jphotochem.2019.112257

15. Liao T.-W., Verbruggen S. W., Claes N., Yadav A., Grandjean D., Bals S., Lievens P. TiO2 films modified with Au nanoclusters as self-cleaning surfaces under visible light. Nanomaterials, 2018, vol. 8 (1), art. no. 30. https://doi.org/10.3390/nano8010030

16. Purwidyantri A., Hsu C.-H., Yang C.-M., Prabowo B. A., Tian Y.-C., Lai C.-S. Plasmonic nanomaterial structuring for SERS enhancement. RSC Adv., 2019, iss. 9, pp. 4982-4992. https://doi.org/10.1039/ C8RA10656H

17. Gromov D. G., Dubkov S. V., Savitskiy A. I., Shaman Yu. P., Polokhin A. A., Belogorokhov I. A., Trifonov A. Yu. Optimization of nanostructures based on Au, Ag, Au-Ag nanoparticles formed by thermal evaporation in vacuum for SERS applications. Applied Surface Science, 2019, vol. 489, pp. 701-707. https://doi.org/10.1016/j.apsusc.2019.05.286

18. Moskovits M. Surface-enhanced spectroscopy. Rev. Mod. Phys., 1985, vol. 57, iss. 3, pp. 783-826. https://doi.org/10.1103/RevModPhys.57.783

19. Bandarenka H. V., Girel K. V., Zavatski S. A., Panarin A., Terekhov S. N. Progress in the development of SERS-active substrates based on metal-coated porous silicon. Materials, 2018, vol. 11 (5), art. no. 852. https://doi.org/10.3390/ma11050852

20. Gromov D. G., Pavlova L. M., Savitsky A. I., Trifonov A. Yu. Nucleation and growth of Ag nanoparti-cles on amorphous carbon surface from vapor phase formed by vacuum evaporation. Appl. Phys. A, 2015, vol. 118, iss. 4, pp. 1297-1303. https://doi.org/10.1007/s00339-014-8834-0

21. Gromov D. G., Pavlova L. M., Savitskii A. I., Trifonov A. Yu. Investigation of the early stages of condensation of Ag and Au on the amorphous carbon surface during thermal evaporation under vacuum. Phys. Solid State, 2015, vol. 57, pp. 173-180. https://doi.org/10.1134/S1063783415010126

22. Gromov D. G., Dubkov S. V., Eritsyan G. S., Savitsky A. I., Bykov V. A., Bobrov Yu. A. Thermal stabilization of the geometric parameters of an array of silver nanoparticles obtained by vacuum-thermal evaporation on an unheated substrate. Russ. Microelectron., 2020, vol. 49, iss. 7, pp. 485-488. https://doi.org/ 10.1134/S1063739720070033

23. Dubkov S., Gromov D., Savitskiy A., Trifonov A., Gavrilov S. Alloying effects at bicomponent Au-Cu and In-Sn particle arrays formation by vacuum-thermal evaporation. Materials Research Bulletin, 2019, vol. 112, pp. 438-444. https://doi.org/10.1016/j.materresbull.2018.10.003

24. Sorokina L., Savitskiy A., Shtyka O., Maniecki T., Szynkowska-Jozwik M., Trifonov A., Pershina E., Mikhaylov I., Dubkov S., Gromov D. Formation of Cu-Rh alloy nanoislands on TiO2 for photoreduction of carbon dioxide. Journal of Alloys and Compounds, 2022, vol. 904, art. no. 164012. https://doi.org/10.1016/ j.jallcom.2022.164012

25. Priya S., Jacob K. T. Activities and immiscibility in the system Cu-Rh. JPE, 2000, vol. 21, iss. 4, art. no. 342. https://doi.org/10.1361/105497100770339860

26. Dubkov S. V., Savitskiy A. I., Trifonov A. Yu., Yeritsyan G. S., Shaman Yu. P., Kitsyuk E. P., Tarasov A., Shtyka O., Ciesielski R., Gromov D. G. SERS in red spectrum region through array of Ag-Cu composite nanoparticles formed by vacuum-thermal evaporation. Optical Materials: X, 2020, vol. 7, art. no. 100055. https://doi.org/10.1016/j.omx.2020.100055

27. Buffat Ph., Borel J.-P. Size effect on the melting temperature of gold particles. Phys. Rev. A, 1976, vol. 13, iss. 6, pp. 2287-2298. https://doi.org/10.1103/PhysRevA.13.2287

28. Gromov D. G., Gavrilov S. A. Heterogeneous melting in low-dimensional systems and accompanying surface effects. Thermodynamics - Physical Chemistry of Aqueous Systems, ed. J. C. Moreno-Pirajan. London, InTechOpen, 2011, pp. 157-190. https://doi.org/10.5772/21429

The article was submitted 10.06.2022; approved after reviewing 15.08.2022;

accepted for publication 29.11.2022.

Information about the authors

Dmitry G. Gromov - Dr. Sci. (Eng.), Prof. of the Institute of Advanced Materials and Technologies, National Research University of Electronic Technology (Russia, 124498, Moscow, Zelenograd, Shokin sq., 1), Senior Scientific Researcher, I. M. Sechenov First Moscow State Medical University under the Ministry of Health of Russian Federation (Russia, 119435, Moscow, Bolshaya Pirogovskaya st., 2, bld. 4), [email protected]

Sergey V. Dubkov - Cand. Sci. (Eng.), Assoc. Prof. of the Institute of Advanced Materials and Technologies, National Research University of Electronic Technology (Russia, 124498, Moscow, Zelenograd, Shokin sq., 1), [email protected]

Andrey I. Savitskiy - Cand. Sci. (Eng.), Senior Scientific Researcher of the Institute of Advanced Materials and Technologies, National Research University of Electronic Technology (Russia, 124498, Moscow, Zelenograd, Shokin sq., 1), Junior Scientific Researcher of the Research Laboratory of Advanced Processes, SMC "Technological Centre" (Russia, 124498, Moscow, Zelenograd, Shokin sq., 1, bld. 7), [email protected]

Sergey A. Gavrilov - Dr. Sci. (Eng.), Prof., Director of the Institute of Advanced Materials and Technologies, Vice-Rector for Research, National Research University of Electronic Technology (Russia, 124498, Moscow, Zelenograd, Shokin sq., 1), [email protected]

.VI НИИМИ

Уважаемые авторы и читатели!

Вышел в свет журнал

RUSSIAN MICROELECTRONICS

Vol. 51, No. 7, 2022. - ISSN PRINT: 1063-7397,

ISSN ONLINE: 1608-3415, в котором опубликованы избранные статьи

журнала «Известия вузов. Электроника».

http://pleiades.online http://link.springer.com

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.