QPI/in/lHAflHI/1 HAyMHM PAflOBM OPI/in/lHAflbHblE HAyMHblE CTATbll ORIGINAL SCIENTIFIC PAPERS
On the spectral radius of VDB graph matrices
Ivan Gutman
University of Kragujevac, Faculty of Science, Kragujevac, Republic of Serbia, e-mail: [email protected],
ORCID iD: https://orcid.org/0000-0001-9681-1550
DOI: 10.5937/vojtehg71 -41411; https://doi.org/10.5937/vojtehg71-41411
FIELD: mathematics (mathematics subject classification: primary 05C50,
secondary 05C07, 05C09) ARTICLE TYPE: original scientific paper
Abstract:
Introduction/purpose: Vertex-degree-based (VDB) graph matrices form a special class of matrices, corresponding to the currently much investigated vertex-degree-based (VDB) graph invariants. Some spectral properties of these matrices are investigated.
Results: Generally valid sharp lower and upper bounds are established for the spectral radius of any VDB matrix. The equality cases are characterized. Several earlier published results are shown to be special cases of the presently reported bounds.
Conclusion: The results of the paper contribute to the general spectral theory of VDB matrices, as well as to the general theory of VDB graph invariants.
Keywords: Vertex-degree-based matrix, VDB matrix, vertex-degree-based graph invariant, VDB graph invariant, spectral radius (of matrix).
Introduction
This paper concerns simple connected graphs. Let G be such a graph. Its vertex and edges sets are V(G) and E(G), respectively, whereas its order (number of vertices) and size (number of edges) are | V(G) |= n and | E(G) |= m , respectively. By uv e E(G) , we denote the edge of G connecting the vertices u and v.
8 .p
p
,s
a
E
p ar
CO
D
>
f o s ui id a
lra
tr c
e p
s e
n O
a
E
t u
CD
The degree (= number of first neighbors) of a vertex u e V(G) is denoted by du. If du = r for all u e V(G), then G is said to be a regular graph of the degree r. If du = n — 1 for all u e V(G), then G is the
complete graph (of the order n), denoted by Kn.
For other graph-theoretical notions, the readers are referred to standard textbooks (Harary, 1969; Bondy & Murthi, 1976).
In the present-day mathematical and chemical literature, a large number, well over hundred, of degree-based graph invariants of the form
TI(f; G) = X f (du, dv) (1)
uveE (G )
are being studied, where f (x, y) is an appropriately chosen function with the property f (x, y) = f (y, x) and f (x, y) > 0 for all
x, y = du, dv.
In chemistry, molecular physics, pharmacology, and elsewhere, these graph invariants found a great variety of applications, and are usually referred to as „topological indices" or „molecular structure-descriptors" (Gutman, 2013; Todeschini & Consonni, 2009; Kulli, 2020). Instead of „vertex-degree-based" the abbreviation VDB is often used (Rada, 2014; Li et al, 2021; Monsalve & Rada, 2022).
Let the vertices of the graph G be labelled as vl5v2,...,vn. Then, to each VDB graph invariant TI(f; G), a symmetric square matrix M(f; G) of the order n can be associated, whose (i, j) -element is equal to f (dv,d ) if the vertices vt and vj are adjacent, i.e. if
vivj e E(G), and is equal to zero otherwise. In particular,
r/(/;G). = 0 fora\\i = 1,2,...,«.
As it is well known in linear algebra (Brualdi & Cvetkovic, 2008), the eigenvalues of M( f; G) are real-valued numbers, forming the spectrum
of the matrix M(f;G). Further on, they will be denoted by .
so that \ >/l2 >■■■ >\. Then , /=2,3,...,«, and therefore
\ is called the spectral radius of the corresponding VDB graph matrix (Stevanovic, 2015).
CD
In order to prove our main result, Theorem 1, we need an auxiliary lemma.
Lemma 1. Let i2>--->\ be the eigenvalues of the VDB
matrix M (f; G). Then,
n
E4=0 (2)
i=1
and
n
X^ = 2TI(f2;G). (3)
i=1
Proof. By definition of the matrix M(f; G), its diagonal elements are always equal to zero. From this, Eq. (2) follows straightforwardly.
In order to arrive at Eq. (3), note that the sum of k-th powers of the eigenvalues is equal to the trace (sum of diagonal elements) of the k-th power of the respective matrix. Thus,
X = TrM (f; G)2 = X (M (f; G )2 )w
i=1 i=1 11
n n n n 2
= XX M (f; G )M (f; G) ji = XX(M (f; G )j)
1=1 j=1 1=1 j=1
= 2 X (f(du, dv))2 = 2 TI(f; G)
Mvefi (G)
where we used the above specified definition of the elements of the VDB matrix M (f; G).
Note that the above lemma is a direct generalization of Lemma 1 in (Gutman, 2021), stated for a special case of the function f in Eq. (1),
namely for f = y]x2 + y2 .
We are now prepared to state our main result
Theorem 1. Let G be a connected graph of the order n, and let \ be the spectral radius of its VDB matrix M(f; G). Then \ is bounded as:
2 TI (f; G) '
<A<J ^^ TI (fG).
(4)
n V n
The equality on the left-hand side holds if and only if G is regular. The equality on the right-hand side holds if G = .
Proof of Theorem 1
Lower bound. We proceed in an analogous manner as in the proof of Lemma 2 in (Gutman, 2021). Thus, in view of the Rayleigh-Ritz
variational principle, for an n-dimensional column-vector Q = (1,1,...,1)r ,
QT M ( f ; G) Q nT Q
<
(5)
with equality if and only if Q = (1,1,...,1)r is an eigenvector of M ( f ; G ), corresponding to the eiigenvalue \. As it is well known
(Brualdi & Cvetkovic, 2008; Cvetkovic et al, 2010), this happens if and only if the graph G is regular.
The lower bound for the spectral radius follows directly from Eq. (5).
Upper bound. Eq. (2) can be rewritten as
n f n
K i.e., A2 =
i=2
\2
V i=2 y
Using the Cauchy-Schwarz inequality, we get
\2
V i=2
Ik xi <IK2Ii2=(n-
(6)
i=2
i=2
i=2
implying
A < (n - i)
IK -A2
i=i
and nAK < (n -1)IK
i=1
n
n
CD
The upper bound for the spectral radius is followed by Eq. (3). The equality in (6) happens if and only if A2 = A^ = • • • = An, which is
the case only for the complete graph Kn. Recall that the complete graph is an (n-1)-regular graph, and therefore its VDB matrix is equal to f (n —1,n — 1)A(K) where A(G) stands for the ordinary adjacency
matrix of the graph G. Since the ordinary eigenvalues of Kn are n — 1,—1,—1,...,—1 (Cvetkovic et al, 2010), the VDB-eigenvalues of the complete graph satisfy A^ = A^ = ■ ■ ■ = An = —fin -1, n -1) . The
complete graph is the only connected graph whose all eigenvalues, except the spectral radius, are mutually equal.
As already mentioned, the special case of the lower bound in
Theorem 1 for f = x2 + y2 was reported in (Gutman, 2021). The same
special case for the upper bound was recently communicated in (Lin et al, 2023).
References
Bondy, J.A. & Murty, U.S.R. 1976. Graph Theory with Applications. New York: Macmillan Press. ISBN: 0-444-19451-7.
Brualdi, R.A. & Cvetkovic, D. 2008. A Combinatorial Approach to Matrix Theory and Its Applications. New York: Chapman & Hall. Available at. https://doi.org/10.1201/9781420082241. ISBN: 9780429144677.
Cvetkovic, D., Rowlinson, P. & Simic, K. 2010. An Introduction to the Theory of Graph Spectra. Cambridge: Cambridge University Press. ISBN: 9780521134088.
Gutman, I. 2013. Degree-based topological indices. Croatica Chemica Acta, 86(4), pp.351-361. Available at: https://doi.org/10.5562/cca2294.
Gutman, I. 2021. Spectrum and elergy of the Sombor matrix. Vojnotehnicki glasnik/Military Technical Courier, 69(3), pp.551-561. Available at: https://doi.org/10.5937/vojtehg69-31995.
Harary, F. 1969. Graph Theory. Boca Raton: CRC Press. Available at: https://doi.org/10.1201/9780429493768. ISBN: 9780429493768.
oo
CO
E
ro
CO
Q >
M—
O </)
TS
ro
2 o <1J
<1J
d O
ro E
CD
Kulli, V.R. 2020. Graph indices. In: Pal, M., Samanta, S. & Pal, A. (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, pp.66-91. Hershey, USA: IGI Global. Available at: https://doi.org/10.4018/978-1-5225-9380-5.ch003. 0 Li, F., Ye, Q., Broersma, H., Ye, R. & Zhang, X. 2021. Extremality of VDB
> topological indices over f-benzenoids with given order. Applied Mathematics S and Computation, 393(art.number:125757). Available at: ° https://doi.org/10.1016/j.amc.2020.125757.
of Lin, Z., Zhou, T. & Miao, L. 2023. On the spectral radius, energy and
¡2 Estrada index of the Sombor matrix of graphs. Transactions on Combinatorics, g 12, pp.191-205.
0 Monsalve, J. & Rada, J. 2022. Energy of a digraph with respect to a VDB < topological index. Special Matrices, 10(1), pp.417-426. Available at: y https://doi.org/10.1515/spma-2022-0171.
1 Rada, J. 2014. The linear chain as an extremal value of VDB topological uj indices of polyomino chains. Applied Mathematical Sciences, 8(103), pp.5133-^ 5143. Available at: https://doi.org/10.12988/ams.2014.46507.
ct Stevanovic, D. 2015. Spectral Radius of Graphs. Cambridge,
^ Massachusetts: Academic Press. ISBN: 9780128020685.
Todeschini, R. & Consonni, V. 2009. Molecular Descriptors for Chemoinformatics. Weinheim: Wiley-VCH. ISBN: 978-3-527-31852-0.
(Л <
^ О спектральном радиусе матриц графов ВДБ
^ Иван Гутман
>о
Крагуевацкий университет, естественно-математический факультет, ^ г. Крагуевац, Республика Сербия
I-
РУБРИКА ГРНТИ: 27.29.19 Краевые задачи и задачи на собственные ^ значения для обыкновенных
дифференциальных уравнений и систем ^ уравнений
ВИД СТАТЬИ: оригинальная научная статья
Резюме:
Введение/цель: Матрицы графа, основанные на вершинных степенях (ВДБ), образуют особый класс матриц, соответствующих в настоящее время широко исследованным инвариантам графа, основанным на вершинных степенях (ВДБ). В данной статье исследованы некоторые спектральные свойства подобных матриц.
Результаты: Получены общепринятые нижняя и верхняя границы спектрального радиуса матриц ВДБ. Также предствлены случаи, в которых применяются равенства. В статье показано, что ранее
(матрицы).
опубликованные результаты являются частными случаями пределов, которые теперь более подробно описаны. Выводы: Результаты настоящей работы вносят вклад в общую спектральную теорию матриц ВДБ, а также в общую теорию о инвариантов графов ВДБ.
о. го сл
Ключевые слова: матрица основанная на степени вершин, матрица ВДБ, инвариант графа, основанный на степени
вершин, инвариант графа ВДБ, спектральный радиус ш
а >
ч— О (Л
Спектрални радиус ВДБ графовских матрица
Иван Гутман
Универзитет у Крагу]евцу, Природно-математички факултет, Крагу]евац, Република Срби]а
.
ОБЛАСТ: математика КАТЕГОРША (ТИП) ЧЛАНКА: оригинални научни рад о
Сажетак:
го
Увод/цил>: На степенима чворова засноване, ВДБ графовске Е матрице образу}у класу специ}алних матрица ко}е одговара}у, данас ^ често истраживаним, на степенима чворова заснованим, ВДБ графовским инвари}антама. Испитиване су неке спектралне особине ових матрица.
Резултати: Доби}ене су општеважеЬе доъе и горъе границе за спектрални ради]ус ВДБ матрица. Окарактерисани су и случа]еви када важе ]еднакости. За неколико рани]е публикованих резултата }е показано да су специ]ални случа]еви сада у наведеним границама.
Закъучак: Резултати изложени у раду представъа}у допринос општо] спектрално] теори]и ВДБ матрица, као и општо] теори]и ВДБ графовских инвари]анти.
Къучне речи: графовске матрице засноване на степенима чворова, ВДБ матрице, графовске инварианте засноване на степенима чворова, ВДБ графовске инварианте, спектрални ради]ус (матрице).
EDITORIAL NOTE: The author of this article, Ivan Gutman, is a current member of the Editorial Board of the Military Technical Courier. Therefore, the Editorial Team has ensured that the double blind reviewing process was even more transparent and more rigorous. The Team made additional effort to maintain the integrity of the review and to minimize any bias by having another associate editor handle the review procedure independently of the editor - author in a completely transparent process. The Editorial
Team has taken special care that the referee did not recognize the author's identity, thus avoiding the conflict of interest.
КОММЕНТАРИЙ РЕДКОЛЛЕГИИ: Автор данной статьи Иван Гутман является действующим членом редколлегии журнала «Военно-технический вестник». Поэтому редколлегия провела более открытое и более строгое двойное слепое > рецензирование. Редколлегия приложила дополнительные усилия для того чтобы со сохранить целостность рецензирования и свести к минимуму предвзятость, о вследствие чего второй редактор-сотрудник управлял процессом рецензирования независимо от редактора-автора, таким образом процесс рецензирования был ш абсолютно прозрачным. Редколлегия во избежание конфликта интересов Е позаботилась о том, чтобы рецензент не узнал кто является автором статьи.
0 РЕДАКЦШСКИ КОМЕНТАР: Аутор овог чланка Иван Гутман ]е актуелни члан ° Уре^ивачког одбора Во]нотехничког гласника. Због тога ]е уредништво спровело
< транспарентни]и и ригорозни]и двоструко слепи процес рецензи]е. Уложило ]е додатни напор да одржи интегритет рецензи]е и необ]ективност сведе на на]ма^у
1 могу^у меру тако што ]е други уредник сарадник водио процедуру рецензи]е ^ независно од уредника аутора, при чему ]е та] процес био апсолутно
транспарентан. Уредништво ]е посебно водило рачуна да рецензент не препозна ко
^ ]е написао рад и да не до^е до конфликта интереса.
<
Paper received on / Дата получения работы / Датум приема чланка: 27.11.2022. Manuscript corrections submitted on / Дата получения исправленной версии работы / Датум достав^а^а исправки рукописа: 14.01.2023.
Paper accepted for publishing on / Дата окончательного согласования работы / Датум от коначног прихвата^а чланка за об]ав^ива^е: 15.01.2023.
щ © 2023 The Author. Published by Vojnotehnicki glasnik / Military Technical Courier
g; (www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the
>q terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/rs/). x
ш © 2023 Автор. Опубликовано в «Военно-технический вестник / Vojnotehnicki glasnik / Military
О Technical Courier» (www.vtg.mod.gov.rs, втг.мо.упр.срб). Данная статья в открытом доступе и
_ распространяется в соответствии с лицензией «Creative Commons»
О (http://creativecommons.org/licenses/by/3.0/rs/).
© 2023 Аутор. Об]авио Во^отехнички гласник / Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). Ово je чланак отвореног приступа и дистрибуира се у складу са Creative Commons licencom (http://creativecommons.org/licenses/by/3.0/rs/).