Научная статья на тему 'ESTIMATING VERTEX-DEGREE-BASED ENERGIES'

ESTIMATING VERTEX-DEGREE-BASED ENERGIES Текст научной статьи по специальности «Математика»

CC BY
63
36
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Vojnotehnički glasnik
Scopus
Область наук
Ключевые слова
VERTEX-DEGREE-BASED GRAPH INVARIANT / VERTEX-DEGREE-BASED MATRIX / VERTEX-DEGREE-BASED ENERGY / ENERGY (OF GRAPH)

Аннотация научной статьи по математике, автор научной работы — Gutman Ivan

Introduction/purpose: In the current literature, several dozens of vertex degree-based (VDB) graph invariants are being studied. To each such invariant, a matrix can be associated. The VDB energy is the energy (= sum of the absolute values of the eigenvalues) of the respective VDB matrix. The paper examines some general properties of the VDB energy of bipartite graphs. Results: Estimates (lower and upper bounds) are established for the VDB energy of bipartite graphs in which there are no cycles of size divi sible by 4, in terms of ordinary graph energy. Conclusion: The results of the paper contribute to the spectral theory of VDB matrices, especially to the general theory of VDB energy.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ESTIMATING VERTEX-DEGREE-BASED ENERGIES»

ESTIMATING VERTEX-DEGREE-BASED ENERGIES

Ivan Gutman

DOI: 10.5937/vojtehg70-35584;https://doi.org/10.5937/vojtehg70-35584

cn <M I

3

p. p

University of Kragujevac, Faculty of Science, Kragujevac, Republic of Serbia, e-mail: gutman@kg.ac.rs, -o

ORCID iD: ©https://orcid.org/0000-0001-9681-1550

e s a

b -

e re

FIELD: Mathematics .g

ARTICLE TYPE: Original scientific paper x

t

Abstract: |

Introduction/purpose: In the current literature, several dozens of vertex-degree-based (VDB) graph invariants are being studied. To each such | invariant, a matrix can be associated. The VDB energy is the energy (= sum of the absolute values of the eigenvalues) of the respective VDB matrix. The paper examines some general properties of the VDB energy of bipartite graphs.

Results: Estimates (lower and upper bounds) are established for the o VDB energy of bipartite graphs in which there are no cycles of size divisible by 4, in terms of ordinary graph energy.

Conclusion: The results of the paper contribute to the spectral theory of VDB matrices, especially to the general theory of VDB energy.

Keywords: vertex-degree-based graph invariant, vertex-degree-based matrix, vertex-degree-based energy, energy (of graph).

Introduction

Let G be a simple graph with the vertex set V(G) and the edge set E(G).

If the vertices u,v e V(G) are adjacent, then the edge connecting them is denoted by uv. The number of edges incident to a vertex v is the degree of that vertex, and is denoted by d(v). The minimum and maximum vertex degrees are denoted by 5 and A, respectively.

Let V(G) = {v\,v2,.. .,vn}. Then the adjacency matrix A(G) = [aj] of the graph G is the symmetric matrix of order n, whose elements are (Cvetkovic et al, 2010):

O u,l3 — } KJ ViVj

"O

>

CN CM o CM

l if ViVj e E(G) al3 = { 0 if ViVje E(G) (1)

0 if i = j.

If the eigenvalues of A(G) are Xi} X2,..., Xn, then the (ordinary) energy

s

n

E = E (G) = Y, I Xi |. (2)

yy of the graph G is defined as

o o

<

O i=i

The theory of graph energy is nowadays elaborated in due detail (Li et | al, 2012; Ramane, 2020).

In the chemical and mathematical literature, a variety of vertex-degree-based (VDB) graph invariants of the form

CD

S2 >o z

X LU I—

0 has been considered, where f is a suitably chosen function, with a pro-

o perty f (x, y) = f (y, x) (Kulli, 2020; Todeschini & Consonni, 2009).

I = I (G)= f(d(u),d(v)) (3)

uveE(G)

These are usually referred to as topological indices. Of these, we list here a few most popular and best studied ones:

f (x,y) name of index type

x + y first Zagreb t

xy second Zagreb t

x2 + y2 forgotten t

a/x2 + y2 Sombor t

y/x + y nirmala t

1/^xy Randic ;

1 Nx + y sum-connectivity ;

2/(x + y) harmonic ;

1/x2 + 1/y2 inverse degree ;

1/\fx2 + y2 modified Sombor ;

[(x + y - 2)/(xy)]l/2 atom-bond-connectivity rsj

\x - y\ Albertson rsj

CO CN I

CO

£i Q.

E?

<D

"D <U (0 <0 .Q i

<U

ot <u

"D ■

X

<u

<D >

ro E

(0 LU

ro E

CD

The parameters x and y (being vertex degrees) always satisfy the condition x > 1, y > 1. Bearing this in mind, we immediately recognize that most VDB indices are either monotonically increasing (t) or monotonically decreasing functions (;) of the vertex degrees. Only a few such indices do not possess such a monotonicity property (~).

It should be noted that for practically all VDB indices of type t that exist in the literature, the condition f (x,y) > 1 is satisfied for all values of x and y that occur for the edges of graphs. Analogously, for practically all VDB indices of type ;, 0 < f (x, y) < 1 holds for all values of x and y.

Taking into account Eqs. (1) and (3), we introduce the VDB matrix Ai(G) = [(ax)j via

f f (d(vi),d(v)) if ViVj e E(G) (ai)ij = I 0 if ViV3e E(G) (4)

I 0 if i = j.

o

15 >

cn

CM o CM

O >

If its eigenvalues are fii,^2,■■■,yn, then the energy pertaining to the VDB invariant I, Eq. (3), is

n

Ex = Ex(G) = J2 Ifrl ■ (5)

i=i

For recent works on the investigation of this class of graph-spectral invariants see (Das et al, 2018; Gutman, 2020, 2021; Gutman et al, 2022, | 2021; Li & Wang, 2021; Shaoetal, 2021).

o o

^ Main results

o

x A cycle of length p is a cycle consisting of (exactly) p vertices ft vi,v2, ■ ■ ■, vp, so that vi and vi+i are adjacent for i = l, 2,...,p - l, and £ also vi and vp are adjacent. As it is well known, a graph G is bipartite if and <c only if all its cycles (if any) are of even length. In this paper, we prove the results valid for bipartite graphs which do not possess cycles of a length divisible by 4. Let G be such a graph. Without loss of generality, we assume that G is connected.

Let the graph energy E and the VDB energy Ex be the quantities defined (D via Eqs. (2) and (5), and let f be the function specified in Eq. (3). Let 5 ad A be the smallest and largest vertex degrees of G.

w Theorem 1. Let G be a bipartite graph with no cycle of size divisible by 4. o Then

f (5,5) E(G) <Ex(G) < f (A, A) E(G)

holds for all VDB invariants in which the function f is monotonically increasing and f (x, y) > l for all vertex degrees x and y. Equality on both sides holds if and only if G is a regular graph, in which case 5 = A.

The examples of the VDB invariants for Theorem 1 are the above listed first and second Zagreb, forgotten, Sombor, and nirmala indices.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Theorem 2. Let G be a bipartite graph with no cycle of size divisible by 4. Then

f (A, A) E(G) <Ex(G) < f (5,5) E(G)

holds for all VDB invariants in which the function f is monotonically decreasing and 0 < f (x,y) < l for all vertex degrees x and y. Equality on both sides holds if and only if G is a regular graph.

16

The examples of the VDB invariants for Theorem 2 are the above listed " Randic, sum-connectivity, harmonic, and modified Sombor indices, as well °° as the inverse degree. ä

A tree is a connected graph with no cycles. Therefore, Theorems 1 and 2 apply to trees. For any tree 5 = 1, but Theorems 1 and 2 can be slightly strengthened.

holds for all VDB invariants in which the function f is monotonically increasing and f (x, y) > l for all x, y. Equality on the left-hand side holds if and only if n = 3.

Theorem 4. Let T be a tree with n > 3 vertices. Then

f (A, A) E(T) < Ex(T) < f (l, 2) E(T)

Theorem 3. Let T be a tree with n > 3 vertices. Then E

f (1,2) E(T) <EX(T) <f (A, A) E(T)

<u £ <u

"O

I

X

<u

<D >

ro E

(O LU

CO

E

holds for all VDB invariants in which the function f is monotonically de- o creasing and 0 < f (x, y) < l for all x, y. Equality on the right-hand side holds if and only if n = 3.

In addition to trees, Theorems 1 and 2 are applicable to various classes of cycle-containing graphs. Of these, of particular interest may be the hexagonal systems (molecular graphs of benzenoid hydrocarbons) (Gut-man &Cyvin, 1989). All their vertices are of degrees 2 and 3. The so-called catacondesned hexagonal systems (= hexagonal systems having no internal vertices) are known to possess only cycles of size 4p + 2. For these molecular graphs

f (2,2) E(G) < Ex(G) < f (3,3) E(G). (6)

or

f (3,3) E(G) < Ex(G) < f (2,2) E(G). (7)

depending on whether f (x, y) monotonically increases or decreases.

Hexagonal systems possessing internal vertices have cycles of size 4p , p = 3,4,..., and thus Theorems 1 and 2 are not applicable. We nevertheless conjecture that estimates (6) and (7) are valid for all hexagonal systems.

o

"o

>

cn

CM o CM

In order to prove the above theorems, we need an auxiliary result, stated below as Lemma 3.

Energy of a weighted bipartite graph

The main part of the results outlined in this section was reported in (Gut-man et al, 2021). These are repeated here (in an abbreviated form) in order

yy to maintain completeness. Also, a few errors committed in (Gutman et al,

on

ZD

o Let G be a bipartite graph with n vertices. Let Gw be obtained from G

< by associating weighs to its edges, so that wj is the weight of the edge ij. Then the characteristic polynomial of Gw is of the form (Cvetkovic et al, o 2010)

LU

0(Gw, X) = Xn + Y/-1)k c(Gw, k) Xn-2k (8)

>-

Ct k>1

whereas the energy of Gw satisfies the equality (Gutman, 1977, 2020; Li et al, 2012)

2 f dx

E (Gw ) = - -2

S? -V-w, - I

_J n J x

o

c(Gw ,k) x2k

k1

(9)

>o Note that E(Gw) is a monotonically increasing function of any of the

x coefficients c(Gw, k).

^ According to the Sachs theorem (Cvetkovic et al, 2010)

o (-1)k c(Gw,k)= (-1)p{a) 2c(a) w(a) (10)

where Sk(Gw) is the set of all Sachs graphs of Gw possessing exactly 2k vertices, and where a is an element of S2k(Gw), containing p(a) components, of which c(a) are cycles. The weight of the Sachs graph a is equal to the product of the weights of its components. If the isolated edge ij is a component of a, then its weight is wfj. If a cycle Z is a component of a, then its weight is the product of weights of the edges contained in Z.

Lemma 1. (Gutman et al, 2021) If the Sachs graph a e S2k(Gw) = 0 does not contain cycles whose size is divisible by 4, then

(-1)k (-1)p(a) 2c(a) > 0 .

Proof.The Sachs graph a has p(a) components. Let among them be r0 > " 0 isolated edges, whose total number of vertices is 2r0. Let a contain r1 > 0 " cycles, whose total number of vertices is 4x+2 r1 for some integer x. Thus, £

2k = 2r0 + 4x + 2 n.

Case 1: 2k is not divisible by 4. Then (—l)k = —l whereas r0+r1 = p(a) is odd. Therefore, (—l)k (—l)p(a) > 0 and the claim of Lemma 1 holds.

» UJ i. ,,,^,,v-_L)k =+l whereas ro + ri = p(a)

is even, implying, again, (—l)k (—l)p(a) > 0. □ ^

Lemma 1 has the following noteworthy consequences:

Lemma 2.

(a) Let Gw be an edge-weighted bipartite graph whose all cycles (if any) have size not divisible by 4, and let the weights of all its edges be positive-valued. Then for any Sachs graph a e S2k(Gw) = ty,

(—l)k (—l)p(a) 2c(a) w(a) > 0 .

<D

<D "O i

X <D

<D >

CO

E

(0 Lll

(b) Therefore, because of Eq. (10), the coefficients c(Gw, k) in Eq. (8) are non-negative and are the monotonically increasing functions of the edge- ^ weights.

(c) Therefore, because of Eq. (9), the energy of the graphs Gw is a mono-tonically increasing function of the edge-weights.

From Lemma 2(c), we obtain the result needed for our proofs:

Lemma 3. Let Gw be an edge-weighted bipartite graph whose all cycles (if any) have size not divisible by 4.

(a) If for all edges ij e E(Gw), the condition wij > l holds, then E (Gw) > E(G). If wij > l for at least one edge ij, then E(Gw) > E(G).

(b) If for all edges ij e E(Gw), the condition wij < l holds, then E(Gw) < E(G). If wij < l for at least one edge ij, then E(Gw) < E(G).

(c) If in both cases (a) and (b), wij = w holds for all edges ij e E(Gw), then E (Gw )= w E (G).

Proof of Theorems 1 -4

The adjacency matrix Aj(G), Eq. (4), could be viewed as the ordinary adjacency matrix of an edge-weighted modification of the graph G. Therefore, if the condition f (dVi ,dVj ) > 1 holds, and if f (x,y) is an increasing

o

15 >

cn

CM o CM

CC

yy

cc

ZD

o o

-J

<

o

X

function for x > 1 and y > 1, then the lower bound of Theorem 1 follows by Lemma 3 if all f (x, y) are replaced by f (5,5). The upper bound is obtained if all f (x, y) are replaced by f (A, A).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The proof of Theorem 2 is analogous.

Theorems 3 and 4 are based on the fact that no tree with n > 3 vertices is a regular graph. The only tree having two adjacent degree-one vertices is the two-vertex tree. Therefore, for trees with 3 or more vertices, the minimal (resp. maximal) value of f (x, y) is f (1,2).

References

Cvetkovic, D., Rowlinson, P. & Simic, K. 2010. An Introduction to the Theory of g Graph Spectra. Cambridge: Cambridge University Press. ISBN: 9780521134088. m Das, K.C., Gutman, I., Milovanovic, I., Milovanovic, E. & Furtula, B. 2018.

Degree-based energies of graphs. Linear Algebra and its Applications, 554, fi pp.185-204. Available at: https://doi.org/10.1016/j1aa.2018.05.027.

Gutman, 1.1977. Acyclic systems with extremal Huckel n-electron energy. The-oretica chimica acta, 45, pp.79-87. Available at: https://doi.org/10.1007/BF00552542.

CO

<5 Gutman, I. 2020. Relating graph energy with vertex-degree-based energies.

tD Vojnotehnicki glasnik/Military Technical Courier, 68(4), pp.715-725. Available at: https://doi.org/10.5937/vojtehg68-28083.

Gutman, I. 2021. Comparing degree-based energies of trees. Contributions to □ Mathematics, 4, pp.1-5. Available at: https://doi.org/10.47443/cm.2021.0030. § Gutman, I. & Cyvin, S.J. 1989. Introduction to the theory of benzenoid hydro-

o carbons. Berlin: Springer. Available at: https://doi.org/10.5860/choice.27-4521.

Gutman, I., Monsalve, J. & Rada, J. 2022. A relation between a vertex-degree-based topological index and its energy. Linear Algebra and its Applications, 636(March), pp.134-142. Available at: https://doi.org/10.1016/j1aa.2021.11.021.

Gutman, I., Redzepovic, I. & Rada, J. 2021. Relating energy and Sombor energy. Contributions to Mathematics, 4, pp.41-44. Available at: https://doi.org/10.47443/cm.2021.0054.

Kulli, V.R. 2020. Graph indices. In: Pal, M., Samanta, S. & Pal, A. (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, pp.66-91. Hershey, USA: IGI Global. Available at: https://doi.org/10.4018/978-1-5225-9380-5.ch003.

Li, X., Shi, Y. & Gutman, I. 2012. Introduction. In: Graph Energy, pp.1-9. New York, NY: Springer. Available at: https://doi.org/10.1007/978-1-4614-4220-2_1.

Li, X. & Wang, Z. 2021. Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by degree-based indices. Linear Algebra and Its Applications, 620, pp.61-75. Available at: https://doi.org/10.1016/j.laa.2021.02.023.

Ramane, H.S. 2020. Energy of graphs. In: Pal, M., Samanta, S., & Pal, A. (Eds.) Handbook of Research on Advanced Applications of Graph Theory in Modern Society, pp.267-296. Hershey, PA, USA: IGI Global. Available at: https://doi.org/10.4018/978-1-5225-9380-5.ch011.

Shao, Y., Gao, Y., Gao, W. & Zhao, X. 2021. Degree-based energies of trees. Linear Algebra and Its Applications, 621, pp.18-28. Available at: https://doi.org/10.1016/jJaa.2021.03.009.

Todeschini, R. & Consonni, V. 2009. Molecular Descriptors for Chemoinforma-tics. Weinheim: Wiley-VCH. ISBN: 978-3-527-31852-0.

ОЦЕНКА ЭНЕРГИЙ, ОНСОВАННЫХ НА СТЕПЕНИ ВЕРШИН

Иван Гутман

Крагуевацкий университет, естественно-математический факультет, г Крагуевац, Республика Сербия

РУБРИКА ГРНТИ: 27.00.00 МАТЕМАТИКА:

ВИД СТАТЬИ: оригинальная научная статья Резюме:

Введение / цель: В новейшей литературе изучаются десятки инвариантов графов, основанных на степени вершин (VDB). К каждому такому инварианту может присоединиться матрица. Энергия VDB - это энергия (= сумма абсолютных значений собственных значений) соответствующей матрицы VDB. В данной статье исследуются некоторые общие свойства VDB-энергии двудольных графов.

Результаты: Получены оценки (нижней и верхней границы) по энергии VDB двудольных графов, не имеющих циклов величины, кратной 4, в зависимости от обычной энергии графа.

со гм I

со

£± CP

Е?

Ф

С ф

"О ф

ф ф

ф

>

го Е

го Е

CD

27.29.19 Краевые задачи и задачи на

собственные значения для обыкновенных дифференциальных уравнений и систем уравнений

< о

ш

Выводы: Результаты статьи вносят вклад в спектральную теорию матриц VDB, а особенно в общую теорию энергии VDB.

Ключевые слова: инвариант графа основанный на степени вершины, матрица основанная на степени вершины, энергия основанная на степени вершины, энергия (графа).

о

>

ГМ

гм о гм

^ ПРОЦЕНА ЕНЕРГША ЗАСНОВАНИХ НА СТЕПЕНИМА

g ЧВОРОВА

Иван Гутман

Универзитету Крагу]евцу, Природно-математички факултет,

I Крагу]евац, Република Срби]а

ОБЛАСТ: математика

^ ВРСТА ЧЛАНКА: оригинални научни рад

Сажетак:

Увод/цил>: У Hoeujoj литератури npoy4aeajy се 6pojHe графовске инварианте засноване на степенима чворова ^ (VDB). Сващ од ових инвар^анти може се придружити

^ матрица. VDB енерг^а jе енерг^а (= збир апсолутних

q вредности сопствених вредности) одговараjуfiе VDB мат-

рице. Рад истражуjе неке опште особине VDB енерг^е би-ш партитних графова.

° Резултати: Доб^ене су процене (док>е и горъе границе)

о за VDB енерг^у бипартитних графова ко\и немаjу циколве

величине деъиве са 4, а у зависности од обичне графовске енерг^е.

Закъучак: Резултати овог рада доприносе спектралноj теории VDM матрица, а посебно општоj теории VDB енерг^е.

Къучне речи: инварианта заснована на степенима чворова, матрица заснована на степенима чворова, енерг^а заснована на степенима чворова, енерг^а (графа).

Paper received on / Дата получения работы / Датум приема чланка: 27.12.2021. Manuscript corrections submitted on / Дата получения исправленной версии работы / Датум достав^а^а исправки рукописа: 04.01.2022.

Paper accepted for publishing on / Дата окончательного согласования работы / Датум коначног прихвата^а чланка за об]ав^ива^е: 05.01.2022.

CO

© 2022 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier <m

(http://vtg.mod.gov.rs, http://BTr.MO.ynp.cp6). This article is an open access article distributed under co the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/rs/).

CP

E?

<u

© 2022 Авторы. Опубликовано в "Военно-технический вестник / Vojnotehnicki glasnik / Military Technical Courier" (http://vtg.mod.gov.rs, httpV/втг.мо.упр.срб). Данная статья в открытом доступе и распространяется в соответствии с лицензией "Creative Commons"

(http://creativecommons.org/licenses/by/3.0/rs/). -о

<u

© 2022 Аутори. Обjавио Воjнотехнички гласник / Vojnotehnicki glasnik / Military Technical Courier <§

.a ■

<u

(http://vtg.mod.gov.rs, http://BTr.M0.ynp.cp6}. Ово je чланак отвореног приступа и дистрибуира се у складу са Creative Commons лиценцом (http://creativecommons.org/licenses/by/3.0/rs/}. ä>

CT

licci © I I

X

<u

<u >

ro E

(Я Ш

ro E

CD

i Надоели баннеры? Вы всегда можете отключить рекламу.