6. Cheremisin V. T., Ushakov S. U., Kashtanov A. L. Edinaya avtomatizirovannaya sistema ucheta elektroenergii na elektropodvizhnom sostave (EASUE EPS) postoyannogo toka [The uniform automated system of electricity metering in electric rolling stock (EASA EPS) DC]. Izvestiia Transsiba - The Trans-Siberian Bulletin, 2013, no. 3, pp. 108 - 113.
7. Cheremisin V. T., Pashkov D. V., Ushakov S. U. Avtomatizirovannyy monitoring energet-icheskoy effektivnosti raboty elektropdvizhnogo sostava OAO «RZhD» [Automated monitoring of energy efficiency ehlektropodvizhnogo of the JSC «RZD»]. Izvestiia Transsiba - The Trans-Siberian Bulletin, 2014, no. 3, pp. 87 - 91.
8. Ozhegov A. N. Sistemy ASKUE: Uchebnoe posobie (AMR system: study guide). Kirov: Vi-atSU, 2006, 102 p.
9. Sistemy ASKUE (AIIS) dlia rynka elektroenergii. Shetchiki elektroenergii, vody, tepla [AMR system (AIIS) for the electricity market. Electricity meters, water and heat] / The Company «Elster Metronica»: Available at http://www.izmerenie.ru/ (accessed 1 May 2015).
10. Nikiforov M. M., Okishev A. S., Chizhma S. N. Printcipy postroenia system ucheta elektroenergii na fiderah kontaktnoy seti postoyannogo toka [Principles of electric power metering systems at feeder catenary DC]. Elektrifikatcia i razvitie infrastruktury energoobespechenia tyagipoezdov skorost-nogo i vysokoskorostnogo zheleznodorozhnogo transporta: Tezisy dokladov sedmogo mezhdunarod-nogo simpoziuma «Eltrans'2013» (Electrification and infrastructure development of traction power supply high-speed trains and high speed rail: Abstracts of the Seventh international Symposium «Eltrans'2013»). Sankt-Petersburg, 2013, pp. 74 - 79.
11. Chizhma S. N., Okishev A. S., Lavruhin A. A., Kildibekov A. B. Sistema ucheta elektroenergii na fiderah kontaktnoi seti [The metering system on the catenary feeders]. Informatcionnye i upravlyauchie sistemy na transporte i v promyshlennosty: materialy vserossisiskoy nauchno-tehnicheskoy internet-konferencii s mezhdunarodnym uchastiem (Information and control systems in transport and industry: proceedings of all-Russian scientific and technical Internet-conference with international participation). Omsk, 2014, pp. 179 - 184.
12. Chizhma S. N., Kondratiev Y. V., Chriakov A. A., Onufriev A. S. Primenenie system sinhronizacii v setiah elektrosnabzhenia zheleznodorozhnogo transporta [Application of systems time synchronization in power networks of the railway transport]. Innovatcionnye proekty i novye tehnologii v obrazovanii, promyshlennosti i na transporte: materialy nauchno-prakticheskoy kon-ferecii [Innovative projects and new technologies in education, industry and transport: materials of scientific-practical conference]. Omsk, 2011. pp. 263 - 266.
УДК 625.143
Н. И. Карпущенко, А. В. Быстров, П. С. Труханов
ОБЕСПЕЧЕНИЕ НАДЕЖНОСТИ РЕЛЬСОВ, ИМЕЮЩИХ КОРРОЗИОННО-УСТАЛОСТНЫЕ ПОВРЕЖДЕНИЯ
Представлены данные о коррозионно-усталостных повреждениях подошвы рельсов (дефект 69) на железных дорогах России. Установлено, что причиной изломов рельсов по дефекту 69 является коррозионная усталость, возникающая в результате увлажнения подошвы в зоне контакта с подрельсовой прокладкой в сочетании с высоким уровнем растягивающих напряжений в подошве рельса. Анализ статистических данных об отказах рельсов по дефекту 69 в Западно-Сибирской дирекции инфраструктуры показал, что интенсивность отказов растет до наработки тоннажа 800 млн т брутто и носит усталостный характер. На участках пути со сложным планом и профилем интенсивность отказов в три - четыре раза выше, чем на спокойном Транссибирском ходу. Показаны итоги анализа данных и предложены меры по повышению надежности рельсовых плетей, имеющих склонность к образованию дефектов по коду 69.
104 ИЗВЕСТИЯ Транссиба №„3(253)
1. Общие положения.
Коррозионные повреждения подошвы рельсов (дефект 69) особенно опасны, потому что современные дефектоскопы даже при нормальной работе могут обнаруживать только те трещины, которые развиваются в средней части подошвы в зоне проекции шейки (рисунок 1). Испытания показали, что каверны глубиной 1,5 - 1,8 мм понижают усталостную прочность рельсов в несколько раз [1]. В связи с этим рельсы с глубиной каверн более 1,5 -2,0 мм следует заменить и отремонтировать. Подобный дефект имеется в каталогах дефектов рельсов других стран [2].
Рисунок 1 - Поперечный излом рельса вследствие образования в подошве коррозионно-усталостной трещины от коррозионной каверны на нижней поверхности подошвы рельса
2. Анализ причин изломов рельсов по дефекту 69.
В настоящее время на сети железных дорог России более 200 рельсов в год выходят из строя по дефекту 69, существенная часть из них ломается под колесами поездов [1]. По отношению к общему числу дефектных и остродефектных рельсов, ежегодно изымаемых из пути в одиночном порядке по всем причинам, доля дефектов 69 невелика - 2 %. Однако если рассматривать только случаи излома рельсов под поездами, исключив рельсы, обнаруженные средствами дефектоскопии до излома, то картина резко меняется. В связи с объективными трудностями по выявлению дефекта 69 в начальной стадии путем дефектоскопирования доля пораженных им рельсов доходит до 20 - 30 %. В настоящее время на ряде участков этот дефект стал основной причиной разрушений рельсов под колесами поездов. Задача предотвращения излома рельсов по дефекту 69 продолжает оставаться актуальной с точки зрения обеспечения безопасности движения поездов.
Повреждаемость дефектом 69 на железных дорогах России может расти и в дальнейшем. Это связано как с увеличением протяженности полигона бесстыкового пути, так и с ростом средней наработки рельсов, лежащих в пути. Последнее определяется уменьшением объемов капитальных ремонтов пути и поставок новых рельсов, а также проведением ряда мероприятий, направленных на предотвращение раннего выхода из строя рельсов в результате износа и контактной усталости.
Вероятность образования дефекта 69 заметно увеличивается с ростом наработки рельсов. До пропуска по рельсам 200 - 300 млн т груза такие изломы практически не возникают, до 300 - 400 млн т груза их мало. Основная доля изломов по дефекту 69 приходится на рельсы, по которым прошло более 400 млн т груза. Максимальное количество рельсов, вышедших из строя по дефекту 69 в 1994 - 1996 гг., приходится на рельсы со сроком службы 10 -12 лет, пропустившие 500 - 900 млн т груза [1].
■■И ИЗВЕСТИЯ Транссиба 105
Причиной излома рельсов по дефекту 69 является коррозионная усталость, возникающая в результате длительного увлажнения подошвы в зоне контакта с подрельсовой прокладкой в сочетании с высоким уровнем напряжений (рабочих и остаточных).
Конструкция, размеры и материал (резина, особенно резинокорд) подрельсовых прокладок не обеспечивают сухость поверхности подошвы рельсов: на ней сохраняется влага. Гигроскопичность резины и образующийся в результате щелевой коррозии слой гигроскопичных продуктов коррозии также способствуют увеличению длительности увлажнения подошвы.
Увеличение осевой нагрузки несомненно влияет на рост вероятности появления дефекта 69, так как она увеличивает растягивающие напряжения в подошве рельса [3]. Растягивающие остаточные напряжения, образующиеся в процессе изготовления рельсов, особенно при таких операциях, как закалка и холодная правка на роликоправильных машинах, доходят у объемно-закаленных рельсов типа Р65 до 2000 - 2500 кгс/см2. Суммируясь с рабочими растягивающими напряжениями в подошве рельса и изменяя в неблагоприятную сторону коэффициент асимметрии цикла R, остаточные напряжения существенно снижают в средней части подошвы сопротивление образованию поперечных коррозионно-усталостных трещин, их развитию и переходу в полный долом всего поперечного сечения.
Роль этих напряжений в образовании усталостных трещин весьма велика, поскольку они соизмеримы с действующими здесь рабочими напряжениями. Значительное снижение их в средней части подошвы рельсов кардинально повысит долговечность рельсов или полностью исключит образование усталостных трещин в подошве. Достичь этого можно, создав специальные термоупрочненные рельсы, обладающие повышенной стойкостью к коррозионной усталости подошвы.
3. Анализ статистических данных отказов рельсов по дефекту 69 в Западно-Сибирской дирекции инфраструктуры ОАО «РЖД».
Для проведения анализа были получены данные по выходу рельсов по коду 69 за шесть лет - с 2008 по 2014 г. включительно. По этим данным составлена сводная таблица, в которую внесли следующие параметры: дата и место обнаружения, характеристика дефектного рельса, пропущенный тоннаж. Данные этой таблицы сгруппированы по трем эксплуатационным направлениям и приведены в таблице 1: Транссибирскому протяженностью 1097 км с грузонапряженностью по первому пути 116 млн т брутто, по второму пути 74,6 млн т брутто. Среднесибирскому протяженностью 758 км с грузонапряженностью по первому пути 106,9 млн т брутто, по второму пути - 40,7 млн т брутто. Третье характерное направление Арты-шта - Укладочный протяженностью 187 км с грузонапряженностью по первому пути 111,7 млн. т брутто с осевой нагрузкой подвижного состава 200 кН. По второму пути грузонапряженность составила 37,4 млн т брутто с осевой нагрузкой 70 кН/ось.
Графическое изображение данных таблицы 1 представлены на рисунках 2 и 3. Анализ данных отказов рельсов по дефекту 69 показал, что интенсивность их по первому пути, где более высокие грузонапряженность и осевые нагрузки, в целом на 29 % выше. Отказы носят усталостный характер и до наработки тоннажа 800 млн т брутто увеличиваются. При более высокой наработке тоннажа численность отказов снижается из-за уменьшения в пути рельсов с такой наработкой.
На Среднесибирской магистрали (см. рисунок 3) картина более сложная из-за того, что на втором, менее нагруженном пути лежат переложенные старогодные рельсы. В целом интенсивность отказов рельсов по дефекту 69 в 1,44 раза выше, чем на Транссибирской магистрали.
На третьем эксплуатационном направлении Укладочный - Артышта кроме высокой грузонапряженности и высоких осевых нагрузок по первому пути имеет место сложный план с кривыми радиусом до 300 м и профиль с уклонами крутизной до 15 %о. Интенсивность отказов здесь по первому пути в 3 раза выше, чем по второму, где грузонапряженность и осевые нагрузки в три раза ниже.
106 ИЗВЕСТИЯ Транссиба № 3(23) 2015
1
Если учесть, что протяженность участка Укладочный - Артышта составляет всего 17 % от протяженности Транссиба в пределах Западно-Сибирской дирекции инфраструктуры, то интенсивность отказов их по 69 дефекту в целом здесь оказалась в четыре раза выше.
Таблица 1 - Данные об отказах рельсов по эксплуатационным направлениям
Эксплуатационное Путь Пропущенный тоннаж, при котором произошел отказ рельсов
направление 0 - 200 201 - 400 401 - 600 601 - 800 801 - 1000 1001 - 1200
Транссибирское 1 2 1 1 2 2 4 1 6 3 3 3 2 5
Среднесибирское 1 2 3 5 5 1 2 5 6 3
Артышта -Укладочный 1 2 9 2 2 6 2 1
Л 7 —
6 —
И 5 О 5 о Л
ч
а а
ч о X 3 И
4 —
2 —
1 —
22
11
I
4
1
И
3 3
1
2
I
->
200
400
600
800
1000
1200
Пропущенный тоннаж, млн т брутто - второй путь
первый путь;
Рисунок 2 - Отказы рельсов по дефекту 69 на путях Транссибирской магистрали
/К
н Э
со о о
Л
а
«
о
X
3 «
7
6
3 --
2 --
4,3 3
7,2 5
7,2 5
7,2
8,7 6
1,4
"Г"
2,9 2
4,3
200
400
600
800
1000
1200
Пропущенный тоннаж, млн т брутто
Р
первый путь;
второй путь
Рисунок 3 - Отказы рельсов по дефекту 69 на путях Среднесибирской магистрали 4. Содержание рельсовых плетей с дефектом 69.
Усталостная природа дефекта 69 свидетельствует о том, что наиболее эффективно воздействовать на него можно, снижая напряжения, действующие в месте возникновения усталостной трещины.
6
5
3
5
5
4
3
НИИ ИЗВЕСТИЯ Транссиба 107
Уменьшение напряжений благоприятно на любых стадиях усталостного разрушения. Если на протяжении всего периода эксплуатации обеспечить напряжения в подошве ниже предела выносливости, то усталостная трещина просто не возникнет. В том случае, когда до момента зарождения усталостной трещины уровень напряжений невысок, но все же превышает предел выносливости, момент зарождения усталостных трещин отдалится. При этом достигается существенный выигрыш в долговечности рельсов - их выход по дефекту 69 будет происходить при большем пропущенном тоннаже. Однако следует помнить о том, что образование дефекта 69 - явление достаточно редкое, а снижение уровня напряжений по всей длине рельсов - достаточно дорогое мероприятие.
Более приемлемо снижать напряжения в том сечении рельса, где путем прецизионного дефектоскопирования обнаружена усталостная трещина в подошве (дефект 69) докритиче-ского размера. Опыт дефектоскопистов свидетельствует о том, что если эти трещины находятся в проекции шейки, то обнаружить их вполне возможно. После обнаружения трещины в подошве можно, установив в данном месте накладки, существенно снизить уровень растягивающих напряжений от изгиба. Шестидырные накладки устанавливают на четырех крайних болтах, чтобы не ослаблять болтовыми отверстиями сечение, близкое к плоскости трещины.
Необходимо также продолжить совершенствование подрельсовых прокладок. Конструкция, размеры и материал большинства из них пока не обеспечивают полной сухости поверхности подошвы рельсов даже в сухое время года.
Замена рельсовой плети на новую, несомненно, является наиболее кардинальной мерой по исключению дефекта 69, имеющего усталостную природу. Очень важно наладить четкий учет числа дефектов 69 в каждой рельсовой плети нарастающим итогом и после образования трех - пяти таких дефектов заменять плеть на новую.
Таким образом, основными можно считать следующие действия, направленные на предотвращение образования дефекта 69:
в рамках текущего содержания пути - переход на более совершенные подрельсовые прокладки;
установка накладок на участки рельсов с обнаруженным дефектом 69 и последующий перевод его в дефект 69Н, при котором возможно движение поездов без ограничения скорости;
замена рельсовой плети на новую после образования трех - пяти дефектов 69, при этом следует наладить четкий учет дефектов;
в рамках перспективного производства рельсов - переход на выпуск рельсов новой категории - стойких к коррозионной усталости с контролируемыми низкими внутренними остаточными напряжениями в подошве.
Список литературы
1. Шур, Е. А. Повреждение рельсов [Текст] / Е. А. Шур. - М.: Интекст, 2012. - 192 с.
2. UJC Catalogue of Rail Defects-2001 edition «Handbook of Rail Defects - UJC Cod 712R». 2001. - 108 p.
3. Карпущенко, Н. И. Обеспечение надежности железнодорожного пути и безопасности движения поездов [Текст] / Н. И. Карпущенко, Д. В. Величко / Сибирский гос. ун-т путей сообщения. - Новосибирск, 2008. - 321 с.
References
1. Schur E. A. Povrejdenie relsov (Damage of rails). Moscow: Intext, 2012, 192 p.
2. UJC Catalogue of Rail Defects - 2001 edition «Handbook of Rail Defects - UJC Cod 712R». 2001. - 108 p.
3. Karpuschenko N. I., Velichko D. V. Obespechenie nadejnosti jeleznodorojnogo puti i be-zopasnosti dvijeniya poezdov (Ensuring reliability of a railway track and traffic safety of trains). Novosibirsk, 2008, 321 p.
108 ИЗВЕСТИЯ Транссиба №„3(253)