Научная статья на тему 'Моделирование системы автоматического управления углом тангажа с автоматом ограничения угла атаки летательного аппарата'

Моделирование системы автоматического управления углом тангажа с автоматом ограничения угла атаки летательного аппарата Текст научной статьи по специальности «Механика и машиностроение»

CC BY
381
36
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по механике и машиностроению, автор научной работы — Петунин В. И., Абдуллина Э. Ю.

Показано, что существующие системы автоматического управления углом тангажа летательного аппарата обеспечивают хорошие статические и динамические характеристики канала управления углом тангажа, но не позволяют ограничить значение угла атаки, что может привести к потере устойчивости летательного аппарата. Для решения этой задачи в систему управления введен с помощью алгебраического селектора автомат ограничения угла атаки. Приведены результаты моделирования.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

MODELLING the SYSTEM OF AUTOMATIC CONTROL BY THE ANGLE of tangage WITH THE AUTOMATIC MACHINE OF the RESTRICTION OF THE aircraft ATTACK ANGLE

It is shown that the existing systems of automatic control of an angle of tangage for the aircraft provide proper static and dynamic characteristics of the control path with an angle tangage but they don't allow to limit the value of the attack angle that may lead to the aircraft stability loss. For the solution of this problem the automatic machine of the attack angle restriction is entered into the control system by means of algebraic selector. The results of modeling are presented.

Текст научной работы на тему «Моделирование системы автоматического управления углом тангажа с автоматом ограничения угла атаки летательного аппарата»

Решетневские чтения

ния дислокации, не производящей точечные дефекты, увеличивается (см. рисунок).

Библиографические ссылки

1. Dislocation dynamics of elementary crystallo-graphic shear / L. E. Popov [et al.] // Computational Materials Science. 2000. Vol. 19. P. 267-274.

2. Петелин А. Е., Колупаева С. Н. Автоматизация исследования кристаллографического скольжения в ГЦК металлах // Известия Том. политехн. ун-та. 2010. Т. 316, № 5. C. 141-146.

3. Самохина С. И., Петелин А. Е., Колупаева С. Н. Моделирование зоны кристаллографического сдвига в ГЦК металлах. Численное решение системы жестких дифференциальных уравнений // Вестник ТГУ. Приложение. Томск. 2007. № 23. С. 333-338.

4. Колупаева С. Н., Самохина С. И., Петелин А. Е. Программный комплекс Dislocation Dynamic of Crys-tallographic Slip // Прикладные задачи математики и механики : материалы XVI Междунар. науч.-техн. конф. Севастополь : Изд-во СевНТУ, 2008. С. 262-266.

A. E. Petelin, S. N. Kolupaeva Tomsk State University of Architecture and Building, Russia, Tomsk

MATHEMATICAL MODELING OF THE ALUMINUM SLIP ZONE

The process offormation of aluminum crystallographic slip zone is investigated. The scale, time and energy characteristics of slip zone are calculated. Software DDCS (Dislocation Dynamics of Crystallographic Slip) is developed.

© Петелин А. Е., Колупаева С. Н., 2010

УДК 681.51

В. И. Петунин, Э. Ю. Абдуллина Уфимский государственный авиационный технический университет, Россия, Уфа

МОДЕЛИРОВАНИЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ УГЛОМ ТАНГАЖА С АВТОМАТОМ ОГРАНИЧЕНИЯ УГЛА АТАКИ ЛЕТАТЕЛЬНОГО АППАРАТА

Показано, что существующие системы автоматического управления углом тангажа летательного аппарата обеспечивают хорошие статические и динамические характеристики канала управления углом тангажа, но не позволяют ограничить значение угла атаки, что может привести к потере устойчивости летательного аппарата. Для решения этой задачи в систему управления введен с помощью алгебраического селектора автомат ограничения угла атаки. Приведены результаты моделирования.

Для построения систем автоматического управления (САУ) с автоматами ограничения (АО) параметров летательных аппаратов (ЛА) можно использовать логические устройства, реализующие алгоритмы алгебраического селектирования каналов. Такое управление реализуется с помощью алгебраических селекторов (АС). Селекторы вводятся в систему автоматического управления для устранения зоны совместной работы каналов управления. Это позволяет сохранить статическую точность и запасы устойчивости, свойственные отдельным каналам управления.

Приведем синтез систем автоматического управления углом тангажа с автоматами ограничения угла атаки [1].

Передаточная функция самолета по углу тангажа 9 при управлении рулем высоты д:

p§B = kj J-J ) +-

1

-OJ + pj + p2 k» )J,

h 9Дв ( p) =

-nB ( p + n22)

»( p) =_

Дв ( p) ( p2 + 2do щ p + Щ ) p

Закон управления астатического автопилота (АП) угла тангажа со скоростной обратной связью:

P + «22

где к9, к9, к^, к9 - передаточные числа АП.

Передаточная функция самолета по углу атаки б при управлении рулем высоты д:

И№ (р) = =_-«_.

б5" §в(р) р2 + р + щ

Закон управления АО угла атаки:

р$в = кб (б - богр) + кбРб + кбр'6 ,

где кб, кб, кб - передаточные числа АО.

Приравняв передаточную функцию замкнутой системы к желаемой передаточной функции Фа (р) = Ф^ (р), получим передаточные числа АО:

кб = Щ / «; кб = (Дщ2 - Щ))/«в; кб = (Дщ- 2с/0ш0)/«в, где ю, А1, А2 - параметры желаемой передаточной функции.

Математические методы моделирования, управления и анализа данных.

Схема моделирования САУ углом тангажа с АО угла атаки представлена на рис. 1.

Результаты синтеза подтверждаются результатами моделирования переходных процессов в САУ, представленными на рис. 2, где задающие воздействия каналов: &зад = 1; богр = 0,2. Переходные процессы 1,

полученные в САУ углом тангажа без АО угла атаки, являются неудовлетворительными, а переходные процессы 2, полученные в САУ углом тангажа с АО угла атаки, т. е. по ограничиваемой координате, являются удовлетворительными, поскольку показывают необходимую точность ограничения б < б = 0,2 и хо-

рошее качество управления на режиме переключения каналов.

Следовательно, благодаря введению АО в структуру САУ ЛА с помощью АС, можно обеспечить необходимую точность ограничения и плавные переходные процессы при переключении каналов.

Библиографическая ссылка

1. Петунин, В. И. Синтез законов управления канала тангажа автопилота / В. И. Петунин // Вестник УГАТУ. Сер. «Управление, вычислительная техника и информатика». 2007. Т. 9, № 2 (20). С. 25-31.

Рис. 1. Схема моделирования САУ углом тангажа ЛА с АО угла атаки

a

si

а / ft -2

a

£, сек

Рис. 2. Переходные процессы в САУ углом тангажа ЛА: 1 - без АО угла атаки; 2 - с АО угла атаки

V. I. Petunin, E. J. Abdullina Ufa State Aviation Technical University, Russia, Ufa

MODELLING THE SYSTEM OF AUTOMATIC CONTROL BY THE ANGLE OF TANGAGE WITH THE AUTOMATIC MACHINE OF THE RESTRICTION OF THE AIRCRAFT ATTACK ANGLE

It is shown that the existing systems of automatic control of an angle of tangage for the aircraft provide proper static and dynamic characteristics of the control path with an angle tangage but they don't allow to limit the value of the attack angle that may lead to the aircraft stability loss. For the solution of this problem the automatic machine of the attack angle restriction is entered into the control system by means of algebraic selector. The results of modeling are presented.

© Петуннн В. H., A6gyjuiHHa Э. to., 2010

i Надоели баннеры? Вы всегда можете отключить рекламу.