Научная статья на тему 'МЕТОДИКА РАСЧЕТА ПАРАМЕТРОВ ПРОЦЕССА ЗАКАЧКИ УГЛЕКИСЛОГО ГАЗА В ЗОНАЛЬНО-НЕОДНОРОДНЫЙ ПОРИСТЫЙ ПЛАСТ С УЧЕТОМ ОБРАЗОВАНИЯ ГАЗОВОГО ГИДРАТА'

МЕТОДИКА РАСЧЕТА ПАРАМЕТРОВ ПРОЦЕССА ЗАКАЧКИ УГЛЕКИСЛОГО ГАЗА В ЗОНАЛЬНО-НЕОДНОРОДНЫЙ ПОРИСТЫЙ ПЛАСТ С УЧЕТОМ ОБРАЗОВАНИЯ ГАЗОВОГО ГИДРАТА Текст научной статьи по специальности «Химические технологии»

CC BY
20
2
Читать
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
неизотермическая фильтрация / алгоритм решения / захоронение диоксида углерода / образование газового гидрата / non-isothermal filtration / solution algorithm / carbon dioxide disposal / gas hydrate formation

Аннотация научной статьи по химическим технологиям, автор научной работы — Бородин С. Л., Мусакаев Н. Г.

В работе построена методика численной реализации математической модели процесса закачки газообразного диоксида углерода в зонально-неоднородный пористый пласт, насыщенный в исходном состоянии метаном и водой. Произведен учет гидратообразования в пласте, растворимости углекислого газа в воде, теплообмена рассматриваемого пористого коллектора с окружающими горными породами. Разработана расчетная программа для проведения анализа влияния параметров закачки диоксида углерода и характеристик пористого пласта на распределения в пласте гидродинамических и температурных полей, а также насыщенностей фаз.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим технологиям , автор научной работы — Бородин С. Л., Мусакаев Н. Г.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
Предварительный просмотрDOI: 10.24412/cl-37274-2024-1-51-56
i Надоели баннеры? Вы всегда можете отключить рекламу.

METHODOLOGY FOR CALCULATING THE PROCESS PARAMETERS OF CARBON DIOXIDE INJECTION INTO A ZONALLY HETEROGENEOUS POROUS RESERVOIR, TAKING INTO ACCOUNT THE FORMATION OF GAS HYDRATE

The work develops a method for the numerical implementation of a mathematical model of the process of gaseous carbon dioxide injection into a zonally heterogeneous porous reservoir, saturated in the initial state with methane and water. Accounting was made for hydrate formation in the reservoir, the solubility of carbon dioxide in water, and the heat exchange of the porous reservoir with the surrounding rocks. A calculation program was developed to analyze the influence of carbon dioxide injection parameters and porous reservoir characteristics on the distributions of hydrodynamic and temperature fields, and phases saturations in the reservoir.

Текст научной работы на тему «МЕТОДИКА РАСЧЕТА ПАРАМЕТРОВ ПРОЦЕССА ЗАКАЧКИ УГЛЕКИСЛОГО ГАЗА В ЗОНАЛЬНО-НЕОДНОРОДНЫЙ ПОРИСТЫЙ ПЛАСТ С УЧЕТОМ ОБРАЗОВАНИЯ ГАЗОВОГО ГИДРАТА»

УДК 532.685

МЕТОДИКА РАСЧЕТА ПАРАМЕТРОВ ПРОЦЕССА ЗАКАЧКИ УГЛЕКИСЛОГО ГАЗА В ЗОНАЛЬНО-НЕОДНОРОДНЫЙ ПОРИСТЫЙ ПЛАСТ С УЧЕТОМ ОБРАЗОВАНИЯ ГАЗОВОГО ГИДРАТА

И Бородин С. Л., Мусакаев Н. Г.

Тюменский филиал Института теоретической и прикладной механики им. С. А. Христиановича СО РАН, Тюмень, Россия E-mail: S.L.Borodin@yandex.ru

В работе построена методика численной реализации математической модели процесса закачки газообразного диоксида углерода в зонально-неоднородный пористый пласт, насыщенный в исходном состоянии метаном и водой. Произведен учет гидратообразования в пласте, растворимости углекислого газа в воде, теплообмена рассматриваемого пористого коллектора с окружающими горными породами. Разработана расчетная программа для проведения анализа влияния параметров закачки диоксида углерода и характеристик пористого пласта на распределения в пласте гидродинамических и температурных полей, а также насыщенностей фаз.

Ключевые слова: неизотермическая фильтрация, алгоритм решения, захоронение диоксида углерода, образование газового гидрата.

METHODOLOGY FOR CALCULATING THE PROCESS PARAMETERS

OF CARBON DIOXIDE INJECTION INTO A ZONALLY HETEROGENEOUS POROUS RESERVOIR, TAKING INTO ACCOUNT THE FORMATION OF GAS HYDRATE

И Borodin S. L., Musakaev N. G.

Tyumen Branch of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, TB ITAM SB RAS, Tyumen, Russia

The work develops a method for the numerical implementation of a mathematical model of the process of gaseous carbon dioxide injection into a zonally heterogeneous porous reservoir, saturated in the initial state with methane and water. Accounting was made for hydrate formation in the reservoir, the solubility of carbon dioxide in water, and the heat exchange of the porous reservoir with the surrounding rocks. A calculation program was developed to analyze the influence of carbon dioxide injection parameters and porous reservoir characteristics on the distributions of hydrodynamic and temperature fields, and phases saturations in the reservoir.

Key words: nonisothermal filtration, solution algorithm, carbon dioxide disposal, gas hydrate formation.

Введение. Исследования показывают, что повышение концентрации углекислого газа в земной атмосфере может увеличить частоту экстремальных явлений тепла [5]. В качестве

одного из способов снижения концентрации CO2 в атмосфере предлагается его утилизация и захоронение в пористых коллекторах [4]. Перспективным вариантом является геологическое хранение углекислого газа в твердой газогидратной форме [6]. Газогидратное хранение CO2 эффективно благодаря компактности хранилища углекислого газа, так как при одинаковых термодинамических условиях в единице объема твердого газового гидрата в стабильном состоянии содержится больше газа, чем в свободном состоянии (до некоторых больших значений давления) [2]. При организации подземного газогидратного хранилища углекислого газа немаловажными являются предварительные теоретические эксперименты, а именно расчеты, для проведения которых необходима разработка математической модели и методики ее численной реализации [3].

Методика расчета. Далее представлена блок-схема алгоритма расчетов (рис.) и подробно описаны некоторые шаги.

^ Начало ^

Ввод начальных данных

I

7

1. Заполнение массивов начальными данными

I

Блок-схема алгоритма для решения системы уравнений математической модели неизотермической фильтрации смеси газов (углекислый газ и метан) и жидкости (вода и растворенный в ней углекислый газ) с учетом образования гидрата углекислого газа

^ Конец ^

Вывод результатов

Шаг по 1 =1 зремени + Д1

1

14. Переопредел для предыдущего ение параметров шага по времени

2.Расчет давления ■

3. Расчет коэффициента сжимаемости газа

I

4. Расчет температуры

I

5. Расчет массовой доли метана и углекислого газа в газовой фазе

I

13. Переопределение итерационных параметров

6. Расчет удельной газовой "постоянной" 1

7. Расчет насыщенности гидратом углекислого газа

12. Определение максимальной погрешности итерации {£) 8. Расчет насыщенности жидкостью

I

9. Расчет газонасыщенности

I

11. Расчет интенсивности растворения углекислого газа в воде 10. Расчет абсолютной проницаемости при наличии газового гидрата

1. Далее нижними индексами sk, I, g и hcd отмечены параметры, относящиеся к скелету пористой среды, жидкости, газу и гидрату углекислого газа соответственно; нижние индексы в скобках (Ж), (М), (CD) относятся к компонентам воды, метана и диоксида углерода соответственно.

2. Давление рассчитывается из следующего уравнения методом покоординатного расщепления, с использованием неявной схемы и метода прогонки:

где S. — насыщенность пор у'-й фазы; — коэффициент сжимаемости газа; р. — плотность у'-й фазы, кг/м3; Rg=R/Mg — удельная газовая «постоянная», этот параметр может изменяться в зависимости от состава газовой фазы, Дж/(кгК); Я — универсальная газовая постоянная, Дж/ (мольК); М — молярная масса газовой фазы, кг/моль; Т — температура, К; р — давление, Па; ф — пористость пласта; к. — относительная фазовая проницаемость для j-й фазы; ц — динамическая вязкость j-й фазы, Па с; kr и кг — абсолютная проницаемость пористой среды в направлении оси г и г соответственно, м2; g — значение ускорения свободного падения, м/ с2; т — массовое содержание в у'-й фазе /-й компоненты; Jкii)^ja) — интенсивность перехода

кОМО)

массы /-й компоненты из к-й фазы ву'-ю, кг/(м3 с).

3. Рассчитывается из уравнения Латонова — Гуревича:

где Г. ирсг — критические температура и давление смеси газов.

4. Температура рассчитывается из следующего уравнения методом покоординатного расщепления, с использованием неявной схемы и метода прогонки:

где рс — объемная теплоемкость насыщенной пористой среды, Дж/(м3К); с — изобарная удельная теплоемкость у'-й фазы, Дж/(кгК); X — коэффициент теплопроводности насыщенной

пористой среды, Вт/(мК); е. — коэффициент Джоуля — Томсона для j-й фазы, К/Па; — коэффициент адиабатического охлаждения газа, К/Па; Lhcd — удельная теплота образования/ разложения гидрата углекислого газа, Дж/кг; Lgl(CD) — удельная теплота растворения углекислого газа в воде или испарения углекислого газа из воды, Дж/кг.

5. Массовые доли компонент газовой фазы рассчитываются из следующих уравнений (первое — методом покоординатного расщепления, с использованием неявной схемы и метода прогонки, второе — явно):

6. В зависимости от массовых долей компонент газовой фазы рассчитывается молярная масса газовой смеси и удельная газовая «постоянная».

7. Рассчитывается распределение насыщенности гидратом углекислого газа с использованием условия равновесности фазового перехода (алгоритм не приведен вследствие его большого объема и ограниченного объема статьи).

8. Насыщенность жидкостью рассчитывается явно (IMPES-метод) из следующего уравнения:

9. Насыщенность газом рассчитывается из условия, что сумма всех насыщенностей равна единице:

-"5

1-5,-5,

Ней-

10. Для расчета абсолютной проницаемости пористой среды, содержащей газовый гидрат, используется следующее уравнение:

где k0 — абсолютная проницаемость пористой среды при отсутствии газогидрата. Показатель степени N зависит от типа заполнения газогидратом пористой среды, в расчетах будем принимать N=8, так как при таком значении проницаемость наиболее близка к экспериментальным точкам, представленным в [7].

11. Для расчета массовой концентрации углекислого газа в воде в зависимости от парциального давления углекислого газа и температуры используются следующие уравнения [1]:

где В1=70 МПа; В2=3,38 МПа/С; В3=106; Т0=273,15 К; р(со) — парциальное давление углекислого газа в газовой фазе, Па; Хцс^ — мольная доля диоксида углерода в воде; М(со) и М^ — молярная масса диоксида углерода и воды соответственно, кг/моль.

Массовая доля воды в жидкости может быть найдена из выражения:

Для расчета интенсивности растворения углекислого газа в воде можно записать:

ш1(СО)

Заключение. В работе представлена методика расчета параметров процесса закачки углекислого газа в пористый пласт с учетом образования газового гидрата. Для двумерной осесимметричной постановки приведены основные уравнения математической модели неизотермической фильтрации смеси газов и жидкости с учетом растворения углекислого газа в воде и образования гидрата углекислого газа. Кратко описан алгоритм решения системы уравнений. На основании вышеприведенной методики авторами разработан программный продукт для проведения вычислительных экспериментов по анализу влияния параметров закачки углекислого газа в пласт с метаном и водой и характеристик пористого пласта на распределения в нем гидродинамических и температурных полей, а также насыщенностей фаз с целью определения наилучших параметров для эффективного захоронения углекислого газа.

Исследование выполнено за счет гранта Российского научного фонда № 24-29-00093, https://rscf.ru/project/24-29-00093/.

Список литературы

1. Воронов В. П., Городецкий Е. Е., Григорьев Б. А., Муратов А. Р. Экспериментальное исследование процесса замещения метана в газовом гидрате диоксидом углерода // Вести газовой науки. 2011. № 2 (7). С. 235-248.

2. Истомин В. А., Якушев В. С. Газовые гидраты в природных условиях. М.: Недра, 1992. 235 с.

3. Шагапов В. Ш., Мусакаев Н. Г. Динамика образования и разложения гидратов в системах добычи, транспортировки и хранения газа. М.: Наука, 2016. 240 с.

4. Cao X., Wang H., Yang K., Wu S., Chen Q., Bian J. Hydrate-based CO2 sequestration technology: Feasibilities, mechanisms, influencing factors, and applications // Journal of Petroleum Science and Engineering. 2022. Vol. 219. 111121.

5. Hu T., Xu T., Tian H., Zhou B., Yang Y. A study of CO2 injection well selection in the naturally fractured undulating formation in the Jurong Oilfield, China // Int. Journal of Greenhouse Gas Control. 2021. Vol. 109. 103377.

6. Kim S., Santamarina J. C. Engineered CO2 injection: The use of surfactants for enhanced sweep efficiency // Int. Journal of Greenhouse Gas Control. 2014. Vol. 20. P. 324-332.

7. Zhang P., Liu B., Hu L., Meegoda J. N. Coupled multiphase flow and pore compression computational model for extraction of offshore gas hydrates // Computers and Geotechnics. 2022. Vol. 145. 104671.

References

1. Voronov V. P., Gorodetsky E. E., Grigoriev B. A., Muratov A. R. Experimental study of the process of replacing methane in gas hydrate with carbon dioxide // Vesti Gazovoy Nauki, 2011. N 2 (7). P. 235-248.

2. Istomin V. A., Yakushev V. S. Gazovyye gidraty v prirodnykh usloviyakh. M.: Nedra, 1992. 235 s.

3. Shagapov V. Sh., Musakaev N. G. Dinamika obrazovaniya i razlozheniya gidratov v sistemakh dobychi, transportirovki i khraneniya gaza. M.: Nauka, 2016. 240 s.

4. Cao X., Wang H., Yang K., Wu S., Chen Q., Bian J. Hydrate-based CO2 sequestration technology: Feasibilities, mechanisms, influencing factors, and applications // Journal of Petroleum Science and Engineering. 2022. Vol. 219. 111121.

5. Hu T., Xu T., Tian H., Zhou B., Yang Y. A study of CO2 injection well selection in the naturally fractured undulating formation in the Jurong Oilfield, China // Int. Journal of Greenhouse Gas Control. 2021. Vol. 109. 103377.

6. Kim S., Santamarina J. C. Engineered CO2 injection: The use of surfactants for enhanced sweep efficiency // Int. Journal of Greenhouse Gas Control. 2014. Vol. 20. P. 324-332.

7. Zhang P., Liu B., Hu L., Meegoda J. N. Coupled multiphase flow and pore compression computational model for extraction of offshore gas hydrates // Computers and Geotechnics. 2022. Vol. 145. 104671.

i Надоели баннеры? Вы всегда можете отключить рекламу.