Научная статья на тему 'Метод усреднения в задачах о продольном ударе стержней переменного сечения'

Метод усреднения в задачах о продольном ударе стержней переменного сечения Текст научной статьи по специальности «Физика»

CC BY
221
51
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МЕТОД УСРЕДНЕНИЯ / ПРОДОЛЬНЫЙ УДАР / СВОБОДНЫЕ КОЛЕБАНИЯ / СТЕРЖЕНЬ ПЕРЕМЕННОГО СЕЧЕНИЯ / НАПРЯЖЕНИЯ / ДЕФОРМАЦИИ / METHOD OF AVERAGING / LONGITUDINAL IMPACT / FREE OSCILLATIONS / ROD WITH VARIABLE CROSS SECTION / VOLTAGE / STRAIN

Аннотация научной статьи по физике, автор научной работы — Улитин Геннадий Михайлович, Царенко Сергей Николаевич

Рассмотрен метод усреднения переменных коэффициентов применительно к моделям продольного удара стержней переменного сечения. Решена задача о свободных колебаниях стержня. Приводится сравнение значений собственных частот для моделей упрощенной и точной. Получены зависимости для определения продольных деформаций и напряжений в сечениях стержня. Для сравнения найденных решений с известными результатами построены графики изменения усилия в ударном торце для конических стержней различной конфигурации.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

METHOD OF AVERAGING FOR THE TASKS ON LONGITUDINAL IMPACT OF VARIABLE SECTION RODS

The method of averaging of variable coefficients is applied to the models of longitudinal impact of variable section rods. The task of free vibrations of a rod is solved. The values of the proper frequencies for the two models: simplified and accurate ones are compared. The dependencies to determine the longitudinal strains and stresses in the rod sections are obtained. To compare the obtained results with the earlier outcomes the graphs of effort change in the impact end of conical rods for different configurations are created.

Текст научной работы на тему «Метод усреднения в задачах о продольном ударе стержней переменного сечения»

УДК 539.4

DOI: 10.14529/mmph160106

МЕТОД УСРЕДНЕНИЯ В ЗАДАЧАХ О ПРОДОЛЬНОМ УДАРЕ СТЕРЖНЕЙ ПЕРЕМЕННОГО СЕЧЕНИЯ

Г.М. Улитинл, С.Н. Царенко2

Рассмотрен метод усреднения переменных коэффициентов применительно к моделям продольного удара стержней переменного сечения. Решена задача о свободных колебаниях стержня. Приводится сравнение значений собственных частот для моделей упрощенной и точной. Получены зависимости для определения продольных деформаций и напряжений в сечениях стержня. Для сравнения найденных решений с известными результатами построены графики изменения усилия в ударном торце для конических стержней различной конфигурации.

Ключевые слова: метод усреднения; продольный удар; свободные колебания; стержень переменного сечения, напряжения; деформации.

Математической моделью для многих задач динамики элементов оборудования и сооружений является стержень с переменным сечением (ударный инструмент в силовых импульсных системах, стойки и сваи различной конфигурации и пр.). Основная трудность при решении таких задач состоит в том, что собственные функции соответствующих граничных задач являются решением уравнений с переменными коэффициентами. Для некоторых частных случаев найдены аналитические решения таких уравнений, например, в работах [1, 2] рассмотрены задачи продольного удара стержней конической и гиперболической формы, в статье [3], при исследовании собственных и вынужденных продольных колебаний в конических стойках трубчатого сечения решение получено в функциях Бесселя. В работе [4] решение уравнения продольных колебаний стержня неоднородной структуры находится в виде ряда, который строится на основе рекуррентной интегральной зависимости. Тем не менее, не существует общего метода для аналитического решения таких уравнений. Поэтому для практических расчетов широкое распространение получили численные методы, в том числе и на основе аппроксимации поверхности стержней различных форм последовательно сопряженными цилиндрическими участками [5]. Однако так как численное решение можно получить исключительно для объекта с заданными параметрами, такой подход практически не применим на стадии проектных разработок. Поэтому становится актуальным вопрос об использовании методов упрощения математической модели и проведения оценок таких методов.

В работе [6] представлены различные методы приведения уравнений колебаний упругих систем к уравнениям с постоянными коэффициентами. Одним из таких методов является метод усреднения переменных коэффициентов. Такой метод был, например, использован в задаче устойчивости бурильных колон [7], а также при нахождении собственных значений для краевых спектральных задач четвертого порядка [8].

Поставим задачу об ударе стержня переменного сечения о жесткий ограничитель (рис. 1), принятая схема аналогична, рассмотренным в работах [1,2]. Для этого решим граничную задачу

д

, ди

д2и

Рис. 1. Схема удара стержня переменного сечения о жесткий ограничитель

—I EF(х)— I = pF(х, дх | 1 'дх J И 1 'dt2

и (0, t ) = 0,

u(l, t ) = 0. С начальными условиями

и (х,0) = 0, U (х,0 ) = -v0e (х),

(1)

(2)

(3)

(4)

1 Улитин Геннадий Михайлович - доктор технических наук, профессор, заведующий кафедрой высшей математики, Государственное высшее учебное заведение Донецкий национальный технический университет, г. Донецк, Украина.

2 Царенко Сергей Николаевич - кандидат технических наук, доцент, заведующий кафедрой сопротивления материалов, Государственное высшее учебное заведение Донецкий национальный технический университет, г. Донецк, Украина.

E-mail: [email protected]

где u (х, t) - продольное перемещение, F (x) - площадь поперечного сечения стержня, будем считать, монотонно-возрастающей на участке [0; /], E - модуль упругости, р - плотность материала, e (х) - единичная функция. Уравнение (1) представим в виде

<5>

х i2 щ

где z = — (0 < z < 1), g = ——, c =--скорость волны продольных колебаний стержня.

i c2 ]¡ р

Для решения уравнения (5) применим метод Фурье. Из соотношения (5) следует уравнение

для определения собственных функций Zn (z)

F'

Z"n +—Z'n +12 Zn = 0, (6)

F

где 1 - собственные значения.

Уравнение (6) является уравнением с переменным коэффициентом. Усредним переменный коэффициент

1 —'(z) 2a = -\—Н-dz = lnк,

J0 F (z)

F(0) , ч

где к = —— (к < 1) - отношение площади поперечного сечения меньшего торца к площади F (1) большего.

Тогда уравнение (6) представим уравнением с постоянными коэффициентами

Z'n- 2aZ'n +12 Zn = 0. (7)

Общее решение уравнения (7) имеет вид

Zn = eaz (C1 cos bnz + C2 sin f3nz), (8)

где bn =Pl - a2 .

Следует отметить, что при к = 1, уравнение (7) будет соответствовать уравнению для стержня постоянного сечения, а функция (8) будет его точным решением. Из граничного условия (2) находим С = 0 , тогда выражение для собственных функций примет вид

Zn (z) = eaz Sin bnz . (9)

Из условия (3) получим уравнение для определения собственных значений

2

bn „„„ /о2 1 2 / — V

22 - 1ln2k

4 -. (10)

tanbn =--n, или tan..¡ÁtJ — ln к =

a 4 ln к

Из зависимости (10) видно, что при рп ® 0 a® 1, таким образом, получаем наименьшее значение параметра кт^ = 1/e2, для которого можно определить собственные значения из уравнения (10).

На графиках рис. 2 показаны зависимости первых двух собственных значений от параметра к. Пунктирная линия отображает соответствующие зависимости, построенные на основании аналитических решений для стержней конической и гиперболической форм [1,2]. Из полученных зависимостей определяем наибольшее расхождение между значениями первого собственного числа, найденных из аналитического решения и по методу усреднения, в точке ктЬ составит 1,3 %, для второго, как и для всех последующих, расхождение не будет превышать 1 %. Таким образом, на основании сравнения собственных значений (собственных частот) следует вывод о том, что предложенная модель, с достаточной точностью, может использоваться для практиче-

Улитин Г.М., Царенко С.Н.

Метод усреднения в задачах о продольном ударе стержней переменного сечения

ских расчетов стержней переменного сечения, у которых отношение площадей торцов не менее

чем 1/в2.

Уравнение собственных продольных колебаний с учетом первого начального условия (4) будет иметь вид:

'( z, t ) = £ AZn (z) Sin wnt,

(11)

n=1

1 1 с

где (йп = ~n= = —--частота собственных колебаний, An - произвольные постоянные.

vg 1

¿1 1,4 1,2 1

0,2

0,4

¿2 4,7 4,65 4,6 4 55

0,6 0,8 к 0,2 0,4

Рис. 2. Зависимость А„ от величины параметра k

0,6

0,8

Дня нахождения коэффициентов An , при наличии аналитического решения, используется свойство ортогональности собственных функций. В нашем случае они не будут ортогональны. Покажем, что функция Ym (z) = e~az sinbmz будет ортогональна с функцией Zn (z) на промежутке [0; 1] для всех m Ф n

coS fin coS Pm

Г Г 1

J ZnYmdz = J sin bnzSinbmzdz = -

(fm tan fn -fn tan fm ) ,

(12)

0 0 Дп — Д2

так, как Дп Ф Дт, а также учитывая, что аФ 0, то подставив в уравнение (12) зависимость (10) получим

СОЭ Дп сов Дт

г

J ZnYmdz = -

n г m э2 п2

(bmbn bnfm ) = 0.

af -bl

Из второго начального условия следует уравнение

£ AnWnZn ( z)=-V0e (z) .

(13)

(14)

n=1

Умножим обе части равенства (14) на Ут (г) и проинтегрируем на участке [0; 1], тогда с учетом свойства (13) получим

n n n 0

откуда находим произвольные постоянные

1

AnWn J ZnYndz = -V0 JYndz

J'

An =

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

и0 0

4v0Í(12 -a2)

w

J ZnYndz Ф„ ( ^1 -a2 - sin (^1 -a2 ) j

(15)

Подставив выражение (15) в уравнение (11), получим зависимость для определения продольных перемещений сечений стержня

к

0

n

0

, (l2-a2)sinЦя2п -a2z) (z,t) = -4vieaz Y , , , -л sin wnt.

4v l ¥ 1 _ " ) sin I V _ <^2 z

и I z, t ) =--—eaz Y ___

c n=ijl ^ 2412 -a2 - sin (^ 12 -a2 ) J

Выражение для напряжений будет иметь вид:

¥ (1 -a2) [asín (л/l2 -a2 z ) + j12 - a2 cos (Jl^-a^z )|

z, t ) = -£ ^ eaz -'Vr /- / /-Л-" sin Wnt

c п=1 Дп ^ 2412-a2 - sin (2V12-a2) J

Усилие в ударном торце определяется зависимостью

4v,

р (t Y

(1-a2)

с п=1^Í^ 1 - a2 - sin(2^ 1n2 -a2)

sin wnt, (16)

где ^ = Р (0)

В работе [5] представлены результаты численных исследований на основе аппроксимации конической поверхности стержней последовательно сопряженными цилиндрическими участками. В качестве базовой модели был принят стержень постоянного сечения диаметром d0 = 0,025 м и длиной I = 1 м, конические стержни, по отношению к базовому, имели такой же диаметр ударного торца и массу, а углы уклона ф, составляли: 0,5°; 1°; 3°; 6° и 9°. Для сравнения результатов, найденных численным методом и методом усреднения, определим расчетное значение параметра к для конических стержней по формуле [2]

d.

У

о

к =3

11 611ап^ + d0 j

откуда находим: к0 5 = 0,471; к1 = 0,334 ; к3 = 0,176 ; к6 = 0,113 ; к9 = 0,087 . По полученным значениям видим, что для стержней с уклоном 6° и 9° рассматриваемый метод не применим, так как соответствующие значения к меньше предельного кт{п = 1/в2 » 0,135 .

Улитин Г.М., Метод усреднения в задачах о продольном ударе

Царенко С.Н. стержней переменного сечения

На рис. 3 представлены графики безразмерной величины усилия в ударном сечении

я Р с с

Р =---в зависимости от безразмерного времени т =—^ для конических стержней с раз-

Щ V) 1

личным углом уклона ф. Графики (рис. 3) практически полностью согласуются по характеру поведения и расчетным значениям с представленными в литературе [5], например, для стержня с ф = 3° Ртах = 3,632 [5], а максимальное значение, найденное из зависимости (16), Ртах =3,595, т.е. расхождение составляет порядка 1 %.

На основании полученных результатов, можно сделать вывод, что метод усреднения переменных коэффициентов дает достаточную точность для технических расчетов в моделях продольного удара стержней переменного сечения. При этом он ограничен предельной величиной соотношения площадей поперечных сечений, а также условием монотонности изменения площади в пределах длины стержня или участка. Учитывая, что полученные расчетные формулы не зависят от формы сечения и очертания стержня, то данный метод, с достаточной точностью для инженерных решений, дает обоснование выбора шага (участок длины стержня, в пределах которого отношение площадей сечений составляет менее чем 1/ в2) для аппроксимации сложных поверхностей участками конической или другой формы, для которой известно аналитическое решение.

Литература

1. Ултн, Г.М. Удар кошчного стрижня об жорстку перешкоду / Г.М. Ултн, С.М. Царенко // Отр матерiалiв i теорiя споруд. - 2014. - № 93. - С. 56-63.

2. Улитин, Г.М. Моделирование динамических процессов в бойках гиперболической формы в механизмах ударного действия / Г.М. Улитин, С.Н. Царенко // Вiбрацil в техшщ та технолопях. - 2014. - № 3(75). - С. 37-42.

3. Улитин, Г.М. О продольных колебаниях упругих стержней переменного сечения / Г.М. Улитин, С.Н. Царенко // Прикладная механика. - 2015. - № 1. - С. 123-129.

4. Крутий, Ю.С. Продольные колебания неоднородного прямого стержня переменного сечения с непрерывно распределенной массой / Ю.С. Крутий // Строительная механика и расчет сооружений. - 2011.- № 1. - С. 25-33.

5. Манжосов, В.К. Моделирование продольного удара в стержневых системах неоднородной структуры / В.К. Манжосов, В.В. Слепухин. - Ульяновск: УлГТУ, 2011. - 208 с.

6. Пановко, Я.Г. Основы прикладной теории упругих колебаний / Я.Г. Пановко. - М.: Машиностроение, 1967. - 316 с.

7. Улитин, Г.М. Оценка метода усреднения в задачах устойчивости бурильных колон / Г.М. Улитин // Науковi пращ Донецького нащонального техшчного ушверситету. Серiя «Прничо-геолопчна». - 2005. - № 85. - С. 69-72.

8. Абзалимов, Р.Р. Разностно-аналитический метод вычисления собственных значений для уравнений четвертого порядка с разделенными краевыми условиями / Р.Р. Абзалимов, Е.В. Саляхова // Известия высших учебных заведений. Математика. - 2008. - № 11. - С. 3-11.

Поступила в редакцию 5 апреля 2015 г.

Bulletin of the South Ural State University Series "Mathematics. Mechanics. Physics" _2016, vol. 8, no. 1, pp. 43-48

DOI: 10.14529/mmph160106

METHOD OF AVERAGING FOR THE TASKS ON LONGITUDINAL IMPACT OF VARIABLE SECTION RODS

G.M. Ulitin1, S.N. Tsarenko2

The method of averaging of variable coefficients is applied to the models of longitudinal impact of variable section rods. The task of free vibrations of a rod is solved. The values of the proper frequencies for the two models: simplified and accurate ones are compared. The dependencies to determine the longitudinal strains and stresses in the rod sections are obtained. To compare the obtained results with the earlier outcomes the graphs of effort change in the impact end of conical rods for different configurations are created.

Keywords: method of averaging; longitudinal impact; free oscillations; rod with variable cross section, voltage; strain.

References

1. Ulitin G.M., Tsarenko S.N. Udar konichnogo strizhnya ob zhorstku pereshkodu [Impact conical rod on hard limiter]. Opir materialiv i teoriya sporud, 2014, no. 93, pp. 56-63. (in Ukr.).

2. Ulitin G.M., Tsarenko S.N. Modelirovaniye dinamicheskikh protsessov v boykakh giper-bolicheskoy formy v mekhanizmakh udarnogo deystviya [Modeling of dynamic processes in the rods hyperbolic shape impact mechanisms]. Vibratsii v tekhnitsi ta tekhnologiyakh, 2014, no. 3(75), pp. 3742. (in Ukr.).

3. Ulitin G.M., Tsarenko S.N. Longitudinal Vibrations of Elastic Rods of Variable Cross-Section. Int. Appl. Mech. 2015. Vol. 51, no. 1, pp. 123-129. DOI: 10.1007/s10778-015-0676-8

4. Krutiy Yu.S. Prodol'nye kolebaniya neodnorodnogo pryamogo sterzhnya peremennogo secheniya s nepreryvno raspredelennoy massoy. Stroitel'naya mekhanika i raschet sooruzheniy, 2011, no. 1, pp. 25-33. (in Russ.).

5. Manzhosov V.K., Slepukhin V.V. Modelirovanie prodol'nogo udara v sterzhnevykh sistemakh neodnorodnoy struktury [Simulation of longitudinal impact in rod systems of heterogeneous structure]. Ul'yanovsk: UlGTU Publ, 2011, 208 p. (in Russ.).

6. Panovko Ya.G. Osnovy prikladnoy teorii uprugikh kolebaniy [Fundamentals of applied theory of elastic vibrations]. Moscow, Mashinostroenie Publ., 1967, 316 p. (in Russ.).

7. Ulitin, G.M. Naukovi pratsi Donets'kogo natsional'nogo tekhnichnogo universitetu. Seriya "Girnicho-geologichna". 2005, no. 85, pp. 69-72. (in Ukr.).

8. Abzalimov R.R., Salyakhova Ye.V. Izvestiya vysshikh uchebnykh zavedeniy. Matematika. 2008, no. 11, pp. 3-11. (in Russ.).

Received April 5, 2015

1 Ulitin Gennadiy Mikhaylovich is Dr. Sc. (Engineering), Professor, Head of Higher Mathematics Department, State Higher Education Institution Donetsk National Technical University, Donetsk, Ukraine.

2 Tsarenko Sergey Nikolaevich is Cand. Sc. (Engineering), Associate Professor, Head of Strength of Materials Department, State Higher Education Institution Donetsk National Technical University, Donetsk, Ukraine.

E-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.