Научная статья на тему 'Light-scattering study of silver nanocomposites based on hydrophilic nitrogen-containing heterocyclic copolymers'

Light-scattering study of silver nanocomposites based on hydrophilic nitrogen-containing heterocyclic copolymers Текст научной статьи по специальности «Химические науки»

CC BY
47
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
POLYMER NANOCOMPOSITES / SILVER NANOPARTICLES / 1-VINYL-1 / 2 / 4-TRIAZOLE / VINYLSULPHONIC ACID SODIUM SALT / ПОЛИМЕРНЫЕ НАНОКОМПОЗИТЫ / НАНОЧАСТИЦЫ СЕРЕБРА / 1-ВИНИЛ-1 / 2 / 4-ТРИАЗОЛ / НАТРИЕВАЯ СОЛЬ ВИНИЛСУЛЬФОНОВОЙ КИСЛОТЫ

Аннотация научной статьи по химическим наукам, автор научной работы — Ivanova A.A.

A light scattering study was performed on new silver-containing polymer nanocomposites based on water-soluble copolymers of 1-vinyl-1,2,4-triazole having sodium salt of vinylsulphonic acid of various compositions. The formation of nanocomposites was carried out using chemical reduction of silver ions by sodium borohydride in a copolymer-containing aqueous medium. According to the dynamic light scattering data, a decrease in the average sizes of metal-polymer coils in water-salt solutions of nanocomposites is explained in terms of an increase in the content of sulphonate groups in the stabilising polymer matrix. The electrophoretic light scattering with phase analysis of synthesised nanocomposites reveals the zeta potential (ζ) to vary from -35.0 to -75.3 mV with an increased sulphonate unit proportion in the stabilising polymer matrix, indicating an increase in the stability of the colloidal system. The functional composition of the stabilising polymer matrix is established to provide a significant effect on the hydrodynamic dimensions of polymer nanocomposites in an aqueous medium.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Ivanova A.A.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Исследование нанокомпозитов серебра на основе гидрофильных азотсодержащих гетероциклических сополимеров методами светорассеяния

Методами светорассеяния исследованы новые полимерные серебросодержащие нанокомпозиты на основе водорастворимых сополимеров 1-винил-1,2,4-триазола с натриевой солью винилсульфоновой кислоты различного состава. Формирование нанокомпозитов осуществляли методом химического восстановления ионов серебра боргидридом натрия в водной среде в присутствии сополимеров. По данным динамического светорассеяния с увеличением содержания сульфонатных групп в стабилизирующей полимерной матрице наблюдается уменьшение средних размеров металлополимерных клубков в водно-солевых растворах нанокомпозитов. Исследования синтезированных нанокомпозитов методом электрофоретического светорассеяния с анализом фаз показывают, что с увеличением доли сульфонатных звеньев в составе стабилизирующей полимерной матрицы величина дзета-потенциала (ζ) изменяется от -35,0 до -75,3 мВ, что указывает на повышение стабильности коллоидной системы. Установлено, что функциональный состав стабилизирующей полимерной матрицы оказывает существенное влияние на гидродинамические размеры полимерных нанокомпозитов в водной среде.

Текст научной работы на тему «Light-scattering study of silver nanocomposites based on hydrophilic nitrogen-containing heterocyclic copolymers»

PROCEEDINGS OF UNIVERSITIES. APPLIED CHEMISTRY AND BIOTECHNOLOGY Vol. 9 No. 4 2019 ИЗВЕСТИЯ ВУЗОВ. ПРИКЛАДНАЯ ХИМИЯ И БИОТЕХНОЛОГИЯ Том 9 N 4 2019_

Original article / Оригинальная статья УДК 541.64:547.458.87

DOI: https://doi.org/10.21285/2227-2925-2019-9-4-768-772

Light-scattering study of silver nanocomposites based on hydrophilic nitrogen-containing heterocyclic copolymers

© Anastasiya A. Ivanova

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, Irkutsk, Russian Federation

Abstract: A light scattering study was performed on new silver-containing polymer nanocomposites based on water-soluble copolymers of 1-vinyl-1,2,4-triazole having sodium salt of vinylsulphonic acid of various compositions. The formation of nanocomposites was carried out using chemical reduction of silver ions by sodium borohydride in a copolymer- containing aqueous medium. According to the dynamic light scattering data, a decrease in the average sizes of metal-polymer coils in water-salt solutions of nanocomposites is explained in terms of an increase in the content of sulphonate groups in the stabilising polymer matrix. The electrophoretic light scattering with phase analysis of synthesised nanocomposites reveals the zeta potential (Z) to vary from -35.0 to -75.3 mV with an increased sulphonate unit proportion in the stabilising polymer matrix, indicating an increase in the stability of the colloidal system. The functional composition of the stabilising polymer matrix is established to provide a significant effect on the hydrodynamic dimensions of polymer nanocompo-sites in an aqueous medium.

Keywords: polymer nanocomposites, silver nanoparticles, 1-vinyl-1,2,4-triazole, vinylsulphonic acid sodium salt

Acknowledgments: The study is supported by the Russian Foundation for Basic Research (project no. 19-03-00708). The main results are obtained using the equipment of the Baikal Analytical Centre for Collective Use of the SB RAS.

Information about the article: Received April 9, 2019; accepted for publication December 5, 2019; available online December 30, 2019.

For citation: Ivanova AA. Light-scattering study of silver nanocomposites based on hydrophilic nitrogen-containing heterocyclic copolymers. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(4):768-772 (In English) https://doi.org/ 10.21285/2227-2925-2019-9-4-768-772

Исследование нанокомпозитов серебра на основе гидрофильных азотсодержащих гетероциклических сополимеров методами светорассеяния

A^. Иванова

Иркутский институт химии им. А.Е. Фаворского СО РАН, г. Иркутск, Российская Федерация

Резюме: Методами светорассеяния исследованы новые полимерные серебросодержащие нанокомпози-ты на основе водорастворимых сополимеров 1-винил-1,2,4-триазола с натриевой солью винилсульфо-новой кислоты различного состава. Формирование нанокомпозитов осуществляли методом химического восстановления ионов серебра боргидридом натрия в водной среде в присутствии сополимеров. По данным динамического светорассеяния с увеличением содержания сульфонатных групп в стабилизирующей полимерной матрице наблюдается уменьшение средних размеров металло-полимерных клубков-вводно-солевых растворах нанокомпозитов. Исследования синтезированных нанокомпозитов методом-электрофоретического светорассеяния с анализом фаз показывают, что с увеличением доли сульфо-

AA. Ivanova. Light-scattering study of silver nanocomposites based... А.А. Иванова. Исследование нанокомпозитов серебра на основе...

натных звеньев в составе стабилизирующей полимерной матрицы величина дзета-потенциала (Z) изменяется от -35,0 до -75,3 мВ, что указывает на повышение стабильности коллоидной системы. Установлено, что функциональный состав стабилизирующей полимерной матрицы оказывает существенное влияние на гидродинамические размеры полимерных нанокомпозитов в водной среде.

Ключевые слова: полимерные нанокомпозиты, наночастицы серебра, 1-винил-1,2,4-триазол, натриевая соль винилсульфоновой кислоты

Благодарности: Работа выполнена при финансовой поддержке РФФИ (проект № 19-03-00708). Основные результаты получены с использованием материально-технической базы Байкальского аналитического центра коллективного пользования СО РАН.

Информация о статье: Дата поступления 9 апреля 2019 г.; дата принятия к печати 5 декабря 2019 г.; дата онлайн-размещения 30 декабря 2019 г.

Для цитирования: Иванова А.А. Исследование нанокомпозитов серебра на основе гидрофильных азотсодержащих гетероциклических сополимеров методами светорассеяния // Известия вузов. Прикладная химия и биотехнология. 2019. Т. 9, № 4. С. 768-772. https://doi.org/10.21285/2227-2925-2019-9-4-768-772

INTRODUCTION

Obtaining organic-inorganic nanocomposites based on functional polymers appears to be a promising direction. In the processes of nanoparti-cle formation, a stabilising matrix is necessary, since the presence of various functional groups allows further modification [1-3], opening up promising new avenues for utilising target composites [4-6].

Due to the possibility of using different approaches to stabilise nanoparticles [7-9], accounting for the ability of the stabilising polymer matrix to interact with nanoparticles in order to avoid their agglomeration is of a great importance [10]. The copolymers of 1-vinyl-1,2,4-triazole are acknowledged to be effective stabilisers of metal nanoparticles [11-20].

This paper presents the results of the synthesis and property study of new silver-containing nanocomposites based on copolymers of 1-vinyl-1,2,4-triazole (VT) with the sodium salt of vinyl-sulphonic acid (Na-VSA).

EXPERIMENTAL PART

The silver content was determined using an AA-6200 atomic absorption spectrometer (Shi-madzu, Japan) in flame atomisation mode. The solution of 0.1 M NaNO3 with 0.1 mg/mL nano-composite concentration was applied to determine the hydrodynamic particle radius and zeta potential (Z) of the studied samples by means of the dynamic light scattering (DLS) and electrophoretic light scattering with phase analysis (PALS) methods, respectively, using a Zetasiser Nano-ZS photon particle analyser (Malvern Instruments, UK). The measurements were carried out in thermostated

tion of scattered light operating temperature equal to 173°.

The initial reagents for the synthesis of nanocomposites consisted of CP grade substances of NH4OH, AgNO3 and NaBH4, as well as copolymers of VT with Na-VSA of various compositions, obtained under conditions of radical initiation of azo-bisisobutyronitrile (AIBN) at a temperature of 60 °C in DMSO [21].

Synthesis of copolymers. The radical copo-lymerisation of VT and Na-VSA proceeded in DMSO at various initial monomer ratios under the influence of AIBN in argon-containing sealed ampoules at 60 °C for 8 hours. Further, the reaction mixture was dialysed against distilled water for 72 hours through a 5 KDa membrane (MFPI, Cellu Sep H1). Subsequently, the composite was isolated by lyophilisation. As the result, white nanocomposite powders were obtained with a yield of 82-89 %.

Synthesis of nanocomposites. A solution of 0.5 mmol AgNO3 in 1 mL of 25% NH4OH was added to 1.0 g (10 mmol) of a copolymer dissolved in 15 mL of double-distilled water followed by intensively stirring for 30 min at 20 °C. Then, 1 mmol of NaBH4 was gradually added with the stirring continued for 8 hours. Then the reaction mixture was dialysed for 48 hours. Subsequently, the composite was isolated by lyophilisation. The synthesis resulted in dark-brown powders of nanocomposites with a yield of 65-70 %.

RESULTS AND DISCUSSION

The reaction of VT and Na-VSA radical copol-ymerisation proceeded in accordance with the me [21]

i

N 0=S=0

ONa

cuvettes with an of 25 °С and an angle of detec sche

I" r

,N I AIBN, 60°C

\ + o=s=o -►

N // I DMSO

Ltf ONa

Hydrodynamic radii Rh distribution of the scattering particles for the nanocomposite and the initial copolymer (a); Relationship between zeta-potential (1) and the hydrodynamic radii Rh of scattering particles (2) of nanocomposites and content of Na-VSA in the original copolymer (b)

Гистограмма распределения по гидродинамическим радиусам Rh рассеивающих частиц для нанокомпозита и исходного сополимера (a); Зависимость дзета-потенциала (1) и гидродинамических радиусов Rh рассеивающих частиц (2) нанокомпозитов от содержания Na-ВСК в исходном сополимере (b)

The histograms provided in the figure are characterised by a monomodal particle size distribution with a maximum corresponding to the effective hydrodynamic radius of the scattering particles. A noticeable increase is indicated in the hydrodynamic radius of complex nanocom-posite particles presented by an ensemble of silver nanoparticles in a coil of copolymer mac-romolecules, as compared to the initial copolymer macromolecules (from 163 nm in the initial copolymer to 676 nm in the based nanocompo-site). This is possibly due to the formation of coordinated cross-linked complex particles under the action of multiple cooperative forces of intermolecular interaction, with metallic silver nanoparticles acting as coordinating cross-linking agent. As a result of this interaction, relatively large macromolecular coils are formed.

With an increase in the proportion of Na-VSA in the stabilising copolymer, a decrease in the average sizes of metal-polymer coils is observed, indicating the formation of more compact structures. The functional composition effect of the stabilising matrix on the hydrodynamic dimensions of polymer nanocomposites is associated

with the action of salt groups: sulphonate fragments in the ionised state cause the appearance of a negative charge on polymer macromole-cules further immobilised on the positively charged surface of silver metal nanoparticles, leading to a denser coagulation of macromolecu-lar coils.

Studies of synthesised nanocomposites by electrophoretic light scattering with phase analysis identified the zeta potential (Z) ranging from -35.0 to -75.3 mV with an increase in the proportion of sulphonate units in the stabilising polymer matrix, indicating an increase in the stability of the colloidal system.

CONCLUSION

A light scattering study was carried out on new stable polymer nanocomposites with silver nanoparticles based on 1-vinyl-1,2,4-triazole and the sodium salt of vinylsulphonic acid copolymers. The functional composition of the stabilising polymer matrix was established to cause a significant effect on the hydrodynamic dimensions of polymer nanocomposites in an aqueous medium.

REFERENCES

1. Zenin AA. Synthesis of hybrid materials in Polymer science. Series C. 2016;58(1):118-130.

polyelectrolyte matrixes: control over sizes and https://doi.org/10.1134/S1811238216010136

spatial organization of metallic nanostructures 2. Demchenko V, Riabov S, Shtompel V. X-ray

Study of Structural Formation and Thermome-chanical Properties of Silver-Containing Polymer Nanocomposites. Nanoscale Research Letters. 2017; 12(1):235—240. https://doi.org/10.1186/s-11671-017-1967-2

3. Dzhardimalieva GI, Uflyand IE. Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. Journal of Polymer Research. 2018;25:255-320. https://doi.org/10.1007/s10965-018-1646-8

4. Tylkowski B, Trojanowska A, Nowak M, Mar-ciniak L, Jastrzab R. Applications of silver nanoparticles stabilized and/or immobilized by polymer matrixes. Physical Sciences Reviews. 2017;2(7). 6 p. https://doi.org/10.1515/psr-2017-0024

5. Prakash J, Pivin JC, Swart HC. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications. Advances in Colloid and Interface Science. Part B. 2015;226: 187-202. https://doi.org/10.1016/j.cis.2015.10.010

6. Gerasin VA, Antipov EM, KarbushevVV Kuli-chikhin VG, Karpacheva GP, Talroze RV, et al. New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russian Chemical Reviews. 2013;82(4):303-332. https://doi.org/10.1070/-RC2013v082n04ABEH004322

7. Derjaguin B, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Progress Surface Science. 1993;43(1-4): 30-59. https://doi.org/10.1016/00796816(93)-90013-L

8. Verwey EJW. Theory of the Stability of Lyo-phobic Colloids. The Journal of Physical Chemistry. 1947;51 (3):631-636. https://doi.org/10.1021/j150453a001

9. Manojkumar K, Sivaramakrishna A, Vijaya-krishna K. A short review on stable metal nanoparticles using ionic liquids, supported ionic liquids, and poly(ionic liquids). Journal of Nanoparticle Research. 2016;18(4):103-124. https://doi.org/10. 1007/s11051 -016-3409-y

10. Zezin AA, Feldman VI, Abramchuk SS, Ivan-chenko VK, Zezina EA, Shmakova NA, et al. Formation of metal-polymer hybrid nanostructures during radiation-induced reduction of metal ions in poly(acrylic acid)-poly(ethylenimine) complexes. Polymer Science. Series C. 2011;53(1):61-67. https:// doi.org/10.1134/S1811238211060038

11. Prozorova GF, PozdnyakovAS, Emel'yanovAI, Korzhova SA, Ermakova TG, Trofimov BA. Water-soluble silver nanocomposites with 1 -Vinyl-1,2,4-triazole copolymer. Doklady Chemistry. 2013;449(1): 87-88. https://doi.org/10.1134/S00125-00813030051

12. Pozdnyakov AS, Emel'yanov AI, Ermakova TG, Prozorova GF. Functional polymer nanocomposites containing triazole and carboxyl groups. Polymer Science. Series B. 2014;56(2):238-246. https://doi.org/10.1134/s1560090414020122

13. Kuznetsova NP, Ermakova TG, PozdnyakovAS, Emel'yanov AI, Prozorova GF. Synthesis and characterization of silver polymer nanocompo-sites of 1-vinyl-1,2,4-triazole with acrylonitrile. Russian Chemical Bulletin. 2013;62(11):2509-2513. https://doi.org/10.1007/s11172-013-0364-y

14. Pozdnyakov A.S., Emel'yanov A.I., Kuznetsova N.P., ErmakovaT.G., Korzhova S.A., Khutsish-vili S.S., et al. Synthesis and Characterization of Silver-Containing Nanocomposites Based on 1-Vinyl-1,2,4-triazole and Acrylonitrile Copolymer. Journal of Nanomaterials. 2019. Article ID 4895192. 7 p. https://doi.org/10.1155/2019/4895192

15. Prozorova GF, Korzhova SA, Mazyar IV, Belovezhets LA, Kuznetsova NP, Emel'yanov AI, et al. Synthesis and properties of novel copolymer-Ag(0) nanocomposites. Izvestiya Vuzov. Priklad-naya Khimiyai Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(1):22-27. (In Russian) https://doi.org/.org/10. 21285/2227-2925-2019-9-1-22-27

16. PozdnyakovAS, Ivanova AA, Emelyanov AI, Ermakova TG, Prozorova GF. Nanocomposites with silver nanoparticles based on copolymer of 1-vinyl-1,2,4-triazole with N-vinylpyrrolidone. Russian Chemical Bulletin. 2017;66(6):1099-1103. https://doi.org/10.1007/s11172-017-1860-2

17. Pozdnyakov AS, Emel'yanov AI, Kuznetsova NP, Ermakova TG, Bolgova YI, Trofimova OM, et al. A Polymer Nanocomposite with CuNP Stabilized by 1-Vinyl-1,2,4-triazole and Acrylonitrile Copolymer. Synlett. 2016;27(6):900-904. https://doi.org/-10.1055/s-0035-1561292

18. Prozorova GF, Korzhova SA, Pozdnyakov AS, Emelyanov AI, Ermakova TG, Dubrovina VI. Immunomodulatory properties of silver-containing nanocomposite on the basis of polyvinyltriazole. Russian Chemical Bulletin. 2015;64(6):1437-1439. https://doi.org/10.1007/s11172-015-1028-x

19. Zezina EA, Emel'yanov AI, Pozdnyakov AS, Prozorova GF, Abramchuk SS, Feldman VI, et al. Radiation-induced synthesis of copper nanostructures in the films of interpolymer complexes. Radiation physics and chemistry. 2019;158:115-121. https://doi.org/10.1016/j.radphyschem.2019.01.019

20. Pozdnyakov AS, Emel'yanov AI, Kuznetsova NP, Ermakova TG, Fadeeva TV Sosedova LM, et al. Nontoxic hydrophilic polymeric nanocomposites containing silver nanoparticles with strong antimicrobial activity. The International Journal of Nano-medicine. 2016;11:1295-1304. https://doi.org/10. 2147/IJN.S98995

21. Pozdnyakov AS, Sekretarev EA, Emel'yanov AI, Prozorova GF. Hydrophilic functional copolymers of 1-vinyl-1,2,4-triazole with vinylsulfonic acid sodium salt. Russian Chemical Bulletin. 2017;66(12):2293-2297. https://doi.org/10.1007/s 11172-017-2017-z

Contribution

Anastasiya A. Ivanova carried out the experimental work, on the basis of the resuits summarized the material and wrote the manuscript. Anastasiya A. Ivanova has exclusive author's rights and bears responsibility for plagiarism.

Критерии авторства

Иванова А.А. выполнила экспериментальную работу, на основании полученных результатов провела обобщение и написала рукопись. Иванова А.А. имеет на статью эксклюзивные авторские права и несет ответственность за плагиат.

Conflict of interests

The authors declare no conflict of interests regarding the publication of this article.

The final manuscript has been read and approved by all the co-authors.

AUTHORS' INDEX

Anastasiya A. Ivanova,

Junior Researcher,

A.E. Favorsky Irkutsk Institute

of Chemistry SB RAS,

1, Favorsky St., Irkutsk 664033,

Russian Federation,

^e-mail: ivanova93@irioch.irk.ru

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Автор прочитал и одобрил окончательный вариант рукописи.

СВЕДЕНИЯ ОБ АВТОРАХ

Иванова Анастасия Андреевна,

младший научный сотрудник, Иркутский институт химии им. А.Е. Фаворского СО РАН, 664033, г. Иркутск, ул. Фаворского, 1, Российская Федерация, Иe-mail: ivanova93@irioch.irk.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.