УДК 622.778
К ВОПРОСУ О КОМПЛЕКСНОЙ ПЕРЕРАБОТКЕ ХРОМОВЫХ РУД МАССИВА РАЙ-ИЗ*
А.И. Пашкеев, И.Ю. Пашкеев, Г.Г. Михайлов
ТО THE QUESTION OF COMPLEX PROCESSING CHROMIC ORES OF THE RAI-IZ DEPOSIT
A.I. Pashkeev, I.Yu. Pashkeev, G.G. Mikhailov
В статье приведены результаты исследования кристаллохимических превращений в хромовой руде при окислительном обжиге. Предложена схема получения хромового концентрата из окисленной руды, а также способ концентрирования и извлечения примесных элементов, входящих в состав хромовой руды.
Ключевые слова: хромовая руда, окислительный обжиг, кристаллохимические превращения, концентрирование элементов.
The article presents the results of study of crystal-chemical transformations in chromic ore during the oxidizing burning. The model of chromic concentrate production from the oxidized ore is proposed, as well as a method of concentration and extraction of the impurity elements included in chromic ore.
Keywords: chromic ore, oxidizing burning, crystal-chemical transformations, concentration of elements.
Производство электропечного низкоуглеродистого феррохрома основано на силикотермиче-ском восстановлении хрома и железа из оксидов хромовой руды кремнием, задаваемым в шихту в виде ферросиликохрома. Для выплавки низкоуглеродистого ферросиликохрома используется руда фракции 0-10 мм с содержанием оксида хрома и отношением Сг203/Ре0, обеспечивающим получение товарного сплава, в котором не менее 65 % хрома. Качество сплава любой марки определяется содержанием в нем вредных примесей Р и Б . В условиях восстановительной плавки известковые шлаки обеспечивают требуемое содержание серы в металле, но не обеспечивают удаление фосфора. Поэтому получение феррохрома с содержанием фосфора не более 0,03 % достигается применением шихты с низким содержанием фосфора. По данным В.И. Лурье [1], компоненты шихты вносят следующее количество фосфора: руда - 10-12 %; ферросиликохром - 50-55 %; известь - 35-40 %. Автор работы [1] справедливо считает, что такое распределение в значительной мере определяется колебанием содержания фосфора в известняке, которое лежит в широких пределах - 0,002-0,012 %. Однако приведенные данные, основанные на многолетнем анализе технологического процесса на ОАО «ЧЭМК», отражают близкое к реальному распределение долей вносимого фосфора в металл между основными источниками.
В настоящее время технологическая подго-
товка шихты для получения феррохрома с низким содержанием фосфора в основном сводится к подбору низкофосфористых компонентов по всему переделу: углеродистый феррохром - ферросиликохром - низкоуглеродистый феррохром.
М.И. Гасик и В.И. Погорелый [2] приводят результаты промышленного получения на ЗФЗ низкофосфористого ферросиликохрома с содержанием фосфора 0,015-0,020%. Последующее применение его в производстве низкоуглеродистого феррохрома позволило получить сплав с содержанием фосфора
0,020-0,023 %. Авторы работы [2] показали, что низкое содержание фосфора в силикохроме можно получать технологическими приемами, а затраты окупаются качеством низкоуглеродистого феррохрома. Перед металлургами-технологами стоит вопрос -каким образом проводить подготовку руды, чтобы получить в ней необходимое содержание основных и примесных компонентов?
В монографии М.Г. Курочкина [3] дается анализ способов, применяемых для обогащения руд до 1988 г. Коллективная монография «Хром Казахстана» [4] дополняет эти сведения результатами последних работ в области обогащения руд. В настоящее время основными способами обогащения руд и получения концентратов являются гравитационный, флотационный и в некоторых случаях для окисленных руд - магнитная сепарация. Технология глубокой переработки руды с увеличением отношения Сг2Оэ/РеО в хромшпинелиде, уда-
* Работа проведена по научной программе Федерального агентства по образованию «Развитие научного потенциала высшей школы (2009-2010 годы)», код проекта - 375.
лением вредных примесей и выделением сопутствующих полезных элементов для массового производства феррохрома до сих пор отсутствует. Технологические схемы извлечения сопутствующих элементов, основанные на жидкофазном разделении, являются сложными и практически мало применимыми в связи с большим потреблением воды и ограниченными возможностями метода в суровых климатических условиях. В России в настоящее время возрождается сырьевая база с вовлечением руд Полярного Урала в производство хрома и его сплавов, но пока без глубокой переработки и подготовки рудного сырья. Для сравнения, за рубежом 70 % всей добываемой хромовой руды направляют на обогащение [3].
Руды массива Рай-Из, на долю которых приходится около 85 % разведанных запасов и 84,4 % прогнозных ресурсов, изучены в основном геологами. В переработку на ОАО «ЧЭМК» поступают руды месторождения «Центральное», расположенного в пределах массива Рай-Из. Характеристика руд по данным «Реестра хромопроявлений в аль-пиноптипных ультрабазитах Урала» [5] дает общее представление о сырье, поступающем в технологических передел. Содержание оксидов хрома лежит в пределах: Сг2Оэ - 5,92-48,25 мае. %;
среднее значение Сг203 - 30,92 мае. %; отношение Сг2Оэ/РеО равно 2,0-4,4; среднее - 2,7. Тип руды по содержанию хромшпинелидов - от убого-вкрапленных до густовкрапленных и сплошных. Тип руды по составу хромшпинелида - высокохромистый магнезиальный. Попутные полезные элементы - металлы платиновой группы (МПГ), г/т: Рг - 0,033-2,0; Ы - 0,02-0,70 и 0,21-1,35; Ш1 -до 0,1; Об - 0,09-0,14; 1г - 0,058-0,062 и другие. В работе Т.Н. Грейвер и соавторов [6] приводятся результаты оценки стоимости МПГ месторождения «Центральное» массива Рай-Из, из которых следует, что их стоимость составляет примерно 25 % от стоимости хромовых руд. В хромовых рудах этого месторождения до 100 т МПГ, содержание которых колеблется от 1,456 г/т в средне-вкрапленных до 2,3 г/т в густовкрапленных, что является достаточным для извлечения. В качестве примера, месторождения платины с содержанием МПГ 1-4 г/т с успехом разрабатываются в Австралии, Канаде, Зимбабве, Финляндии. Таким образом, более глубокая переработка хромовых руд Полярного Урала позволит дополнительно извлекать МПГ, теряющиеся при выплавке феррохрома. Это относится не только к рудам Рай-Из, но и к другим ультрабазитовым массивам этого региона -Сыум-Кеу, Вайкаро-Сыньинскому, Хасаятскому.
Результаты исследований кристаллохимических превращений в хромовых рудах массива Рай-Из
при нагреве в различных условиях позволили авторам настоящей статьи разработать способ обогащения хромовой руды, основанный на контролируемом изменении магнитной восприимчивости хромовой руды в процессе окислительного обжига [7].
С целью изучения возможности извлечения из хромовых руд массива Рай-Из сопутствующих элементов, изменения состава хромшпинелида и вмещающей породы в процессе подготовки их к плавке были исследованы превращения в руде при нагреве в окислительных и нейтральных условиях.
Для физико-химических исследований руды месторождения «Центральное» из куска нарезали образцы кубической формы с ребром 20 мм. Тип руды по содержанию хромшпинелидов - густовкрап-ленный, химический анализ приведен в табл. 1.
Интервал концентраций оксида никеля, определенный по другим пробам для руд месторождения Рай-Из, находится в пределах 0,15-0,30 %.
Дериватографический анализ образцов в атмосфере аргона показал, что руда претерпевает ряд превращений:
1. 425-475 °С - происходит дегидратация бру-сита, входящего в значительных количествах во вмещающую породу:
м§(он)2та -> (м§о)та+Н2Огаз. (1)
Это одна из отличительных особенностей исследуемой руды в сравнении с другими рудами, в том числе и с казахскими.
2. 500-800 °С - выделение воды при разложении серпентина:
М§6 (ОН)8 [814О10 ]та -» М§6814014тв +
+ 4Н2Огаз. (2)
3. 800-850 °С - распад обезвоженного серпентина с выделением форстерита и 8Ю2 :
М§6814014 тв -> ЗМ$2$Ю4 + $Ю2 та . (3)
4. 1000-1500 °С — протекает химическое взаимодействие выделяющегося 8Ю2 и форстерита с образованием метасиликата магния:
ЗМ§2БЮ4 + 8Ю2тв -> 2М§28Ю4 +
+ 2М§8Ю3тв, (4)
или взаимодействие продуктов распада брусита и обезвоженного серпентина с образованием метасиликата магния:
м§0тв +5Ю2тв -> Мё8Ю3 тв. (5)
В процессе нагрева руды, сопровождающемся удалением влаги и изменением структуры вмещающей породы, увеличивается пористость в 4-5 раз по сравнению с исходной. Основной размер пор - 0,5-10 мкм [8]. Этим не ограничиваются превращения в хромовой руде. При окислитель-
Таблица 1
Химический состав хромовой руды месторождения «Центральное» массива Рай-Из, мае. %
Сг203 Р е005щ А1203 MgO 8Ю2 №0 Р п.п.п. Сг203/Ге00бщ
40,23 12,64 7,69 25,0 10,77 0,18 0,0035 2,70 3,18
ном нагреве происходит диффузия катионов железа и магния из хромшпинелида к границе раздела «хромшпинелид - магниевый силикат». В образцах после обжига в окислительной атмосфере ус-
тановлено увеличение концентрации железа в слое, пограничном с магниевым силикатом, в зависимости от температуры и времени выдержки (рис. 1, 2) [9].
а)
6)
Рис. 1. Результаты линейного сканирования образца исходной хромовой руды Рай-Из: а - структура; б, в, г - распределение магния, хрома и железа соответственно; д - распределение элементов по линии сканирования. Ордината - содержание элементов в импульсах, абсцисса - размер линии сканирования в мкм
в) г)
Д)
Рис. 2. Результаты линейного сканирования образцов хромовой руды Рай-Из, нагретой до 1000 °С с последующей изотермической выдержкой в течение 8 часов (см. обозначения на рис. 1)
В слое хромшпинелида, граничащем с магниевым силикатом, протекают последовательно реакции окисления ¥еО и Ре304 :
ЗРеО+1/2 О2 -> Ре304,
(6)
^^юоо °с — —156,9 кДж;
2Ре3<Э4 + 1/2 02 -> ЗРе203,
(7)
^^юоо °с - “26,15 кДж.
Экспериментально установлено, что диффузия катионов железа из зерна хромшпинелида в прилегающий магниевый силикат происходит только в
окислительной атмосфере [9]. При обжиге хром-шпинелида в инертной атмосфере аргона протекает диффузия только катиона магния из хромшпи-нелида в магниевый силикат. В окислительных же условиях параллельно протекают диффузия железа и магния в магниевый силикат с образованием форстерита:
МёОтв+МЕ8Ю3тв =Мв28Ю4тв,
(*)
^^1000 °с 31,3 кДж.
Твердофазное взаимодействие М§0 и М§8Ю3 с образованием форстерита (8) протекает в широком интервале температур [10]. В результате диффузии М%0 в магниевый силикат и образования форстерита состав магниевого силиката исходной руды изменяется. В табл. 2 приведено изменение состава магниевого силиката от времени обжига руды при 1000 °С.
Диффузия магния в магниевый силикат подтверждается рентгеноспектральным анализом. На линии сканирования (см. рис. 2) между хромшпи-
нелидом и магниевым силикатом концентрация магния в хромшпинелиде упала практически до нуля в слое порядка 10 мкм. В магниевом силикате руды массива Рай-Из мольное отношение М§0 к 8Ю2 колеблется в пределах 1,17-1,36, что свидетельствует о наличии М§8Ю3 и 1И^28Ю4. Для исследуемой руды (М§0/8Ю2 =1,36) состав магниевого силиката изменился при окислительном обжиге, концентрация MgO выросла с 45,69 до 52,00 % и отношение М§0/8Ю2 через 12 часов обжига стало равным 1,78. Образующийся в результате твердофазных реакций форстерит является крайним членом изоморфного ряда М§28Ю4 -Ре28Ю4. Взаимодействие форстерита с Ре2Оэ приводит к образованию железистого форстерита или оливина -(М§, Ре)2 8Ю4 , содержание железа в котором определяется температурой и временем обжига.
Рентгенофазовым анализом установлено также, что в продуктах обжига хромовой руды появи-
Таблица2
Изменение химического состава магниевого силиката в прилегающем к хромшпинелиду слое при окислительном обжиге (Т = 1000 °С)*
Время Химический состав, мае. %
обжига, ч MgO 8Ю2 Сг203 Ре304
Исходная руда 45,69 50,17 2,34 1,59
Нагрев до 1000 °С без выдержки 47,00 50,61 1,08 1,31
2 46,96 49,62 1,23 2,19
4 51,16 43,57 1,07 4,21
6 51,90 43,27 1,80 3,03
8 52,63 44,36 0,54 2,47
9 49,59 45,14 1,68 3,59
10 49,37 47,57 0,58 2,48
12 52,00 44,00 0,86 3,16
: Приведены составы на расстоянии 5 мкм от границы зерна хромшпинелида.
Температура нагрева, °С
Рис. 3. Изменение содержания феррита магния в хро- Рис. 4. Изменение содержания железа в хромшпинелиде мовой руде при окислительном нагреве до 1050 °С. от времени изотермического обжига в окислительных Скорость нагрева 15 °/мин условиях при 1000 °С
Рис. 5. Изменение отношения Сг/¥е в хромите в результате окислительного обжига от времени изотермического обжига при 1000 °С
Рис. 6. Изменение содержания железа на границе с магниевым силикатом от времени окислительного обжига при 1000 °С
лась новая фаза - феррит магния, образование которого можно описать уравнением
Mg0 + Fe203 =MgFe204,
(9)
^^íooo °с - -12,5 кДж.
Количество образовавшегося феррита магния в хромовой руде при окислительном нагреве определялось по следующей методике. Серию образцов нагревали в муфельной печи от комнатной температуры до 1050 °С со скоростью 15 °С/мин. В процессе нагрева через каждые 100 °С из печи извлекали один образец, охлаждали на воздухе и измельчали до фракции 0-1 мм. Количество MgFe204 в пробе определяли на магнитометре «Магнит-6», предварительно откалиброванном по ферриту магния. Изменение содержания феррита магния в руде при окислительном нагреве в интервале температур 20-1050 °С приведено на рис. 3.
В интервале температур 800-1000 °С происходит интенсивное образование феррита магния. Таким образом, обжиг хромовой руды в окислительной атмосфере при температуре выше 800 °С является магнитизирующим обжигом.
Изменения содержания железа и отношения Cr203/Fe0 в хромшпинелиде при окислительном обжиге показаны на рис. 4, 5. Концентрирование железа в пограничном с магниевым силикатом слое представлено на рис. 6. Результаты исследований кристаллохимических превращений в хромовых рудах, полученные авторами статьи ранее, опубликованы в работе [9].
Увеличение магнитной восприимчивости руды в результате кристаллохимических превращений при окислительном обжиге хромовой руды явилось обоснованием схемы ее обогащения (рис. 7). В результате окислительного обжига и магнитной сепарации получается хромовый концентрат и вы-
деляются ценные сопутствующие элементы: Ni, Со и металлы платиновой группы (МПГ).
Рис. 7. Схема обогащения хромовой руды
Химический состав магнитной и немагнитной фракций, полученных после окислительного обжига руды при 1000 °С и 7-часовой выдержке, представлен в табл. 3. Выход магнитной фракции составил 16 %.
Магний в виде феррита магния (М§Ре204) извлекается в магнитную фракцию. В табл. 3 приведен состав магнитной фракции густовкраплен-
Хромовый
концентрат
(немагнитная
фракция)
Магнитная фракция MgFe2043Fe3045 NiFe204, МПГ
Химический состав продуктов магнитной сепарации хромовой руды после окислительного обжига при 1000 °С в течение 7 часов
Продукт сепарации Содержание, мае. %
Сг203 Р ®00§щ А120з МвО 8Ю2 №0 Р М§0 А1203
Магнитная фракция 8,8 22,6 4,7 44,2 18,8 0,38 0,02 9,4
Немагнитная фракция (хром, конц-т) 46,9 9,6 8,2 21,6 9,5 0,20 0,001 2,6
ной руды после окислительного обжига, измельченной до 0-3 мм. Количество фракции изменяется в зависимости от температуры обжига, времени выдержки и степени измельчения. Наблюдаемое снижение фосфора в хромовом концентрате (немагнитная фракция) объясняется образованием феррита магния, в который частично переходит фосфор. В системе М§0-Р205 образуются три соединения оксидов магния и фосфора: ЗМ§0Р205, 2М%0 ?205, ЗМ§02Р205 [11].
Образование феррита магния, загрязненного фосфором, и последующее его извлечение при магнитной сепарации снижают содержание фосфора в хромовом концентрате. Следует отметить также значительное снижение в концентрате оксида магния, влияние которого на свойства шлаковых расплавов более сложное, чем принято считать, исходя лишь из исследования их вязкости и электропроводности. Присутствие М§0 в шлаках уменьшает активность хрома в шлаковом расплаве, и вследствие этого восстановление хрома из шлакового расплава затрудняется. При понижении температуры из расплава выпадает тугоплавкая фаза М§Сг204, что является причиной увеличения потерь хрома с отвальными шлаками в виде вторичных хромшпинелидов [12].
Таким образом, при исследовании кристаллохимических превращений в хромовой руде в результате окислительного обжига и концентрирования примесных элементов установлено:
- снижение содержания оксида железа в хромшпинелиде при неизменном содержании в нем оксида хрома, что приводит к повышению отношения Сг203 /¥Ю;
- диффузия ¥е2+ к межфазной границе «хромшпинелид - магниевый силикат» и окисление до Ре3+;
- диффузия М§0 из хромшпинелида в магниевый силикат вмещающей породы с образованием форстерита;
- образование феррита магния и магнетита в сопряженных слоях магниевого силиката и хромшпинелида, что приводит к повышению магнитной восприимчивости цементирующей породы хромовой руды;
- концентрирование примесных элементов в магнитной фракции хромовой руды;
- снижение содержания фосфора в хромовом концентрате, полученном в результате магнитной сепарации хромовой руды после обжига.
Выводы
Перечисленные положительные эффекты, достигаемые в процессе окислительного обжига хромовой руды, являются обоснованием новой схемы переработки хромовых руд с получением высококачественного хромового концентрата и извлечения из хромовой руды ценных сопутствующих элементов
Литература
1. Лурье, В.И. Сборник лекций по технологии производства ферросплавов / В. И. Лурье. — Челябинск: Издательство Татьяны Лурье, 2006. -164 с.
2. Гасик, М. И Рафинирование железохромистых сплавов от серы и фосфора комплексными и редкоземельными ставами / М.И. Гасик, В.И. Погорелый // Теория и практика получения и применения комплексных ферросплавов: материалы науч.-техн. конф. - Тбилиси, 1974. - С. 13-15.
3. Курочкин, М.Г. Обогащение хромовых руд / М.Г. Курочкин. - Новосибирск: Наука. Сибирское отделение, 1988. -141 с.
4. Хром Казахстана / В.И. Гриненко, О. И. Поляков, М.И. Гасик и др. - М.: Металлургия, 2001. — 416 с.
5. Реестр хромитопроявлений в альпинотип-ных ультрабазитах Урала. - Пермь: КамНИИ-КИГС, 2000. - 474 с.
6. Грейвер, Т.Н. Хромитовые платиносодержащие руды - перспективный минерально-сырьевой источник платиновых металлов / Т.Н. Грейвер, О.Н. Тихонов, Г. В. Петров // Известия вузов. Цветная металлургия. — 1999. -№ 3. - С. 17—24.
7. Пат. 2341574 Российская Федерация. МПК С 22 В 34/32, С 22 В 1/04. Способ обогащения магнезиальных хромовых руд / ИЮ. Пашкеев, ГГ. Михайлов, К.И. Невраева. - № 2007123202; заявл. 20.06.2007; опубл. 20.12.2008.
8. Невраева, К. И. Превращения в хромовых рудах месторождения «Центральное» массива Рай-Из при нагреве в окислительных условиях / К. И. Невраева, НЮ. Пашкеев, Г.Г. Михайлов // Вестник ЮУрГУ. С ерш «Металлургия». —2007. — Вып. 9. -М 21. - С. 41-44.
9. Пашкеев, А.И. Кристаллохимические превращения в хромовых рудах массива Рай-Из при окислительном нагреве / А.И Пашкеев, ИЮ. Пашкеев, Г.Г. Михайлов // Вестник ЮУрГУ. Серия «Металлургия». - 2009. - Вып. 12. -№ 14. - С. 6-16.
10. Бабушкин, В.И. Термодинамика силикатов /
В.И. Бабушкин, Г.М. Матвеев, О.П. Мчедлов-Петросян. - М.: Стройиздат, 1972. —351 с.
11. Диаграммы состояния силикатных систем: справ. Вып. 1: Двойные системы / H.A. Торо-пов, В.П. Борзаковский, В.В. Лапин, H.H. Курцева. — М. ; Л. : Наука. - 1965. - 546 с.
12. Характер потерь хрома в шлаках рафинированного феррохрома при выплавке из магнезиальных руд / В.П. Стариков, ИГ. Вертий, С.В. Зацепин, Т.Л. Рождественская // Снижение потерь при производстве ферросплавов: тематич. отрасл. сб. — М. : Металлургия, 1982. — С. 20—27.
Поступила в редакцию 11 февраля 2010 г.