Научная статья на тему 'К одной задаче белоконя А. В'

К одной задаче белоконя А. В Текст научной статьи по специальности «Математика»

CC BY
111
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
ТЕОРИЯ УПРУГОСТИ / КОНТАКТНЫЕ ЗАДАЧИ / ПОЛЫЙ ЦИЛИНДР / КРУЧЕНИЕ / АППРОКСИМАЦИЯ / THEORY OF ELASTICITY / CONTACT PROBLEMS / HOLLOW CYLINDER / TORSION / APPROXIMATION

Аннотация научной статьи по математике, автор научной работы — Пожарский Дмитрий Александрович, Золотов Никита Борисович

Введение. Кандидатская диссертация проф. А.В. Белоконя (1941-2013), который на протяжении многих лет был ректором Ростовского государственного университета, а затем Президентом Южного федерального университета, была посвящена асимптотическим методам решения контактных задач теории упругости для тел цилиндрической формы (1969 год). В настоящей работе исследуется контактная задача теории упругости о кручении жестким вкладышем бесконечного полого цилиндра, внешняя поверхность которого жестко закреплена. Вкладыш находится внутри цилиндра и имеет конечную длину. Эта задача была в 1971 году поставлена и изучена А.В. Белоконем, который при помощи интегрального преобразования Фурье свел ее к интегральному уравнению относительно неизвестного контактного напряжения. А. В. Белоконь получил полное решение данной задачи для случая толстостенных цилиндров, когда символ ядра интегрального уравнения может быть аппроксимирован функцией, соответствующей кручению пространства с цилиндрической шахтой. В настоящей работе рассматривается преимущественно случай тонкостенных цилиндров, дополняющий решение А. В. Белоконя. Материалы и методы. Материал цилиндра считается линейно-упругим. При решении задачи используется метод интегральных преобразований. Для решения интегрального уравнения применяется сингулярный асимптотический метод. Результаты исследования. На основе исследования свойств функции-символа ядра интегрального уравнения предложена новая специальная легко факторизуемая аппроксимация этого символа, пригодная для цилиндра любой толщины. Для нахождения оптимальных параметров этой аппроксимации используется метод Монте-Карло. Расчеты сделаны в основном для тонкостенных цилиндров. В результате в аналитическом виде получено асимптотическое решение интегрального уравнения. Обсуждение и заключение. Найденное новое решение эффективно для относительно длинных жестких вкладышей, длина которых превышает внутренний диаметр цилиндра. Метод, основанный на новой аппроксимации, остается применимым и для случаев, когда цилиндр можно рассматривать как цилиндрическую оболочку. Асимптотическое решение можно рекомендовать инженерам для анализа прочностных характеристик упругих деталей цилиндрической формы при кручении жестким вкладышем.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

To one Belokon’s problem

Introduction. Prof A.V. Belokon’s (1941-2013; former Rector of Rostov State University and President of Southern Federal University) PhD thesis was devoted to asymptotical methods in contact problems of the elasticity theory for bodies of cylindrical shape (1969). In the present paper, a contact problem of the elasticity theory on torsion of an infinite hollow cylinder by a rigid insert is investigated. The outer cylinder surface is rigidly fixed. The insert of a finite length is inside the cylinder. In 1971, this problem was formulated and analyzed by A.V. Belokon. He reduced it to an integral equation with respect to the unknown contact stress by using the Fourier integral transformation. A.V. Belokon derived a complete solution to this problem for the case of thick-walled cylinders when the kernel symbol of the integral equation can be approximated by the function corresponding to the torsion of the space with a cylindrical cavity. In the present paper, the case of thin-walled cylinders being complementary to Belokon’s case is mainly considered. Materials and Methods. The cylinder material is supposed to be linearly elastic. The method of integral transformations is used to solve the problem. The singular asymptotic method is applied to solve the integral equation. Research Results. On the basis of studying the properties of the integral equation kernel symbol function, a new special easily factorable approximation applicable for any cylinder thickness is suggested. The Monte-Carlo method is used to determine optimal approximation parameters. Calculations are mainly made for thin-walled cylinders. As a result, an analytic asymptotical solution to the integral equation is obtained. Discussion and Conclusions. The new solution can be effective for relatively long rigid inserts whose length is bigger than the internal diameter of the cylinder. The method based on new approximation remains applicable also for the cases when a cylinder can be regarded as a cylindrical shell. The asymptotical solution can be recommended to engineers for the strength analysis of elastic machine parts of the cylindrical form twisted by a rigid insert.

Текст научной работы на тему «К одной задаче белоконя А. В»

МЕХАНИКА MECHANICS

УДК 539.3

К одной задаче Белоконя А. В.*

Д. А. Пожарский1, Н. Б. Золотов2**

1,2 Донской государственный технический университет, г. Ростов-на-Дону, Российская Федерация

To one Belokon's problem *** D. A. Pozharskii1, N. B. Zolotov2**

1,2 Don State Technical University, Rostov-on-Don, Russian Federation

10.23947/1992-5980-2017-17-2-7-11

Введение. Кандидатская диссертация проф. А.В. Белоконя (1941-2013), который на протяжении многих лет был ректором Ростовского государственного университета, а затем Президентом Южного федерального университета, была посвящена асимптотическим методам решения контактных задач теории упругости для тел цилиндрической формы (1969 год). В настоящей работе исследуется контактная задача теории упругости о кручении жестким вкладышем бесконечного полого цилиндра, внешняя поверхность которого жестко закреплена. Вкладыш находится внутри цилиндра и имеет конечную длину. Эта задача была в 1971 году поставлена и изучена А.В. Белоконем, который при помощи интегрального преобразования Фурье свел ее к интегральному уравнению относительно неизвестного контактного напряжения. А. В. Белоконь получил полное решение данной задачи для случая толстостенных цилиндров, когда символ ядра интегрального уравнения может быть аппроксимирован функцией, соответствующей кручению пространства с цилиндрической шахтой. В настоящей работе рассматривается преимущественно случай тонкостенных цилиндров, дополняющий решение А. В. Белоконя. Материалы и методы. Материал цилиндра считается линейно-упругим. При решении задачи используется метод интегральных преобразований. Для решения интегрального уравнения применяется сингулярный асимптотический метод.

Результаты исследования. На основе исследования свойств функции-символа ядра интегрального уравнения предложена новая специальная легко факторизуемая аппроксимация этого символа, пригодная для цилиндра любой толщины. Для нахождения оптимальных параметров этой аппроксимации используется метод Монте-Карло. Расчеты сделаны в основном для тонкостенных цилиндров. В результате в аналитическом виде получено асимптотическое решение интегрального уравнения.

Обсуждение и заключение. Найденное новое решение эффективно для относительно длинных жестких вкладышей, длина которых превышает внутренний диаметр цилиндра. Метод, основанный на новой аппроксимации, остается применимым и для случаев, когда цилиндр можно рассматривать как цилиндрическую оболочку. Асимптотическое решение можно

Introduction. Prof A.V. Belokon's (1941-2013; former Rector of Rostov State University and President of Southern Federal University) PhD thesis was devoted to asymptotical methods in contact problems of the elasticity theory for bodies of cylindrical shape (1969). In the present paper, a contact problem of the elasticity theory on torsion of an infinite hollow cylinder by a rigid insert is investigated. The outer cylinder surface is rigidly fixed. The insert of a finite length is inside the cylinder. In 1971, this problem was formulated and analyzed by A.V. Belokon. He reduced it to an integral equation with respect to the unknown contact stress by using the Fourier integral transformation. A.V. Belokon derived a complete solution to this problem for the case of thick-walled cylinders when the kernel symbol of the integral equation can be approximated by the function corresponding to the torsion of the space with a cylindrical cavity. In the present paper, the case of thin-walled cylinders being complementary to Belokon's case is mainly co n-sidered.

Materials and Methods. The cylinder material is supposed to be linearly elastic. The method of integral transformations is used to solve the problem. The singular asymptotic method is applied to solve the integral equation.

Research Results. On the basis of studying the properties of the integral equation kernel symbol function, a new special easily factorable approximation applicable for any cylinder thickness is suggested. The Monte-Carlo method is used to determine optimal approximation parameters. Calculations are mainly made for thin-walled cylinders. As a result, an analytic asymptotical solution to the integral equation is obtained. Discussion and Conclusions. The new solution can be effective for relatively long rigid inserts whose length is bigger than the internal diameter of the cylinder. The method based on new approximation remains applicable also for the cases when a cylinder can be regarded as a cylindrical shell. The asymptoti-

* Работа выполнена по гранту РФФИ 15-01-00331.

**E-mail: pozharda@rambler.ru, zolotov.nikita.borisovich@gmail.com

*** The research is done on RFFI grant no. 15-01-00331.

рекомендовать инженерам для анализа прочностных характе- cal solution can be recommended to engineers for the strength

ристик упругих деталей цишндригестай фюр^ при круче- analysis of elastic machine parts of the cylindrical form twisted

нии жестким вкладышем. by a rigid insert.

Ключевые слова: теория упругости, контактные задачи, по- Keywords: theory of elasticity, contact problems, hollow cylinder,

лый цилиндр, кручение, аппроксимация. torsion, approximation.

Введение. Контактные задачи о взаимодействии жесткого бандажа с бесконечным сплошным упругим цилиндром и о нормальном контакте жесткого вкладыша с поверхностью цилиндрической шахты в упругом пространстве рассматривались в работах [1-4]. При этом в сингулярном асимптотическом методе использовалась аппроксимация символа ядра интегрального уравнения в виде суммы двух легко факторизуемых функций, что позволяет найти только приближенное решение уравнения Винера-Хопфа [2]. Позже для этих же задач была предложена аппроксимация символа ядра одной легко факторизуемой функцией [5,6], что позволило существенно облегчить применение сингулярного асимптотического метода, который получил широкое распространение при решении задач со смешанными граничными условиями [7,8]. Анализируя научное наследие профессора А. В. Белоконя [9], сталкиваешься с еще одной интересной задачей, рассмотренной им в начале 70-х годов прошлого века. Это задача кручения жестким вкладышем полого цилиндра, которую тогда удалось эффективно решить лишь для толстостенного цилиндра [3, с. 230 ]. Цель настоящего исследования — получить решение этой задачи для тонкостенного цилиндра на основе сингулярного асимптотического метода и новой эффективной аппроксимации символа ядра интегрального уравнения.

Материалы и методы. В цилиндрических координатах рассмотрим контактную задачу кручения полого линейно-упругого цилиндра, внутренний радиус которого равен R, а внешний Rb Внешняя поверхность цилиндра жестко закреплена. Внутрь цилиндра помещен жесткий цилиндрический вкладыш длины 2a, к которому приложен крутящий момент M. Под действием этого момента упругий материал цилиндра в области контакта испытывает угловое перемещение иф=-е. Материал цилиндра характеризуется модулем сдвига G. При заданных величинах R, Rb a, е требуется определить контактное напряжение p(z) в области контакта. Затем может быть определен момент M. При помощи метода интегрального преобразования Фурье задача сводится к следующему интегральному уравнению (|x| < a)

[3]:

a f X — Z }

j p(z)K|-Idz K(t) = jL(u)cosutdu, (1)

— a V R J 0

где символ ядра имеет вид

L(u) = —-1 — Ю-1(М )ю(аМ)---, (2)

mKj (u)[K0 (u) + /0 (и)ю(аи)] + 2[1 — ю (и)ю(аи)]

Ki(u) Ri ю(и) = —1-, а = —- > 1.

I (u) R

Здесь In(u), Kn(u) — модифицированные функции Бесселя [10]. Безразмерный параметр а характеризует толщину стенок цилиндра. При а^-да функция L(u) вида (2) стремится к функции

L0 (u ) =---1-, (3)

uKj (u)K0 (u) + 2

соответствующей случаю кручения пространства с цилиндрической шахтой.

Ранее было установлено, что при а>3 и u>0 функция L0 (u) вида (3) достаточно хорошо аппроксимирует функцию L(u) и было получено полное решение уравнения (1) с символом ядра (3) [3]. Отметим, что наибольшее отличие этих функций наблюдается в нуле, где

L(0) = Л = 1 — ¿, L0(0) = 1 (4)

В бесконечности функция (2) имеет асимптотику:

1 3

---i"4 i

u 2u V u

13 f 1

L(u) = - ——T + o I —|, u (5)

Введем безразмерные обозначения

I z , X p(z) , е R

z =—, x =—, p (z) =--, е' = —, X = —. (6)

a a G a a

Штрихи далее будем опускать. Параметр X характеризует относительную ширину области контакта. В обозначениях (6) уравнение (1) примет вид

1 р( 2)К ^ ^ j й2 = яв. (7)

Для решения уравнения (7) применим сингулярный асимптотический метод [5,6], эффективный при достаточно малых значениях X.

Результаты исследования. Получение решения задачи основано на сведении уравнения (7) к интегральному уравнению Винера-Хопфа, при решении которого используем новую аппроксимацию

■Ji

л \ т i \ 2 + B L(u) и L (и) = 2 2 exp

и + C

i 3 ^ W и2 + E2

u

22 и + О

(8)

при условиях

|fexp142 = 4 E = Ю- (9)

Аппроксимация (8), (9) учитывает поведение L(u) в нуле и бесконечности, см. формулы (4), (5). Кроме того, функция (8) легко факторизуема. В табл. 1 для разных а даны значения параметров аппроксимации (8) и ее относительная погрешность 6 (в процентах) при u>0. Значения параметра C определялись из условия (9). Значение а=да соответствует аппроксимации предельной функции (3).

При проведении расчетов параметров аппроксимации использовался метод Монте-Карло.

Таблица 1 Table 1

Параметры аппроксимации Approximation parameters

а Ac B G 6 а A0 B G 6

да 1,970 0,8872 0,8447 2,0 1,07 0,4068 4,001 8,696 1,07

3 0,4649 5,651 4,674 0,5 1,06 0,1582 6,088 10,25 4

2 0,8586 1,150 3,340 0,5 1,05 1,251 5,091 4,580 4

1,5 2,192 4,183 3,631 0,3 1,04 1,448 5,002 4,924 4

1,1 3,165 6,887 8,878 2 1,03 1,400 6,991 6,876 4,5

1,09 1,269 6,582 10,09 3 1,02 2,082 5,909 7,875 5

1,08 2,037 6,583 9,164 3,5 1,01 2,715 6,507 9,500 5,5

Значение E специально выбрано большим (см. формулу (9)), поскольку в процессе получения сингулярного асимптотического решения используется еще одна аппроксимация в полуплоскости Яе 5 > 0 : ехр(Я*)) * 1 + Я*), (10)

5 + >/ 5 2 - Е 2

Я*) =

3

2%4s2-

E2

E

При выбранном значении E относительная погрешность аппроксимации (10) при действительных s>0 не превышает 0,3 %.

В результате применения метода Винера-Хопфа главный член асимптотического решения интегрального уравнения (7) при малых X можно построить в форме

Р( x) =

1 + x ^ [ 1 - x

VI — l + V

X )

X

J_

A

(I x |< 1), (11) W (s) +1 (s)

V(s) =

VA

3 s

I (s) = — J W (s - x) K0 (Ex)d x 2л о

w (s)=expc-Bs) +

C +1 - Ao

*Jns ^VB A2

irf^Bs) -

Б

X

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

+(1 . t0i(RA°G f} exP(" A Gs)errfQ(B - A0 G)s).

A0 VB Ao G

Здесь erf(x) — интеграл вероятностей, На основании формулы (11) можно получить выражение для интегральной характеристики решения (момента M).

Как показывают расчеты, погрешность асимптотического решения (11) при Х<1 не превышает (6+6)%, где 6 — погрешность аппроксимации (8).

Обсуждение и заключение. Аппроксимация вида (8) пригодна не только для тонкостенного цилиндра для цилиндра любой толщины (при любых значениях параметра а). Как правило, с уменьшением толщины цилиндра (с уменьшением а) погрешность 6 возрастает. При значениях а<1,02 цилиндр можно рассматривать не только в рамках теории упругости, но и в рамках теории цилиндрических оболочек (толщина оболочки обычно составляет не более двух процентов радиуса срединной поверхности). Приближенное аналитическое решение (11) можно рекомендовать инженерам для анализа прочностных характеристик деталей цилиндрической формы при кручении жесткой шайбой (вкладышем), когда длина шайбы 2a превышает внутренний диаметр цилиндра 2R (при этом X=R/a<1).

Библиографический список

1. Aleksandrov, V. M. Asymptotic solution of a class of integral equations and its application to contact problems for cylindrical elastic bodies / V. M. Aleksandrov, A.V. Belokon' // Journal of Applied Mathematics and Mechanics. — 1967. — Vol. 31, No. 4.— P. 718-724.

2. Aleksandrov, V. M. Asymptotic solution of a class of integral equations encountered in the investigation of mixed problems of the mathematical physics for regions with cylindrical boundaries / V. M. Aleksandrov, A. V. Belokon' // Journal of Applied Mathematics and Mechanics. — 1968. — Vol. 32, No. 3.— P. 402-413.

3. Развитие теории контактных задач в СССР / под ред. Л. А. Галина. — Москва : Наука, 1976. — 493 с.

4. Александров, В. М. Контактные задачи в машиностроении / В. М. Александров, Б. Л. Ромалис. — Москва : Машиностроение, 1986. — 176 с.

5. Aleksandrov, V. M. An asymptotic method in contact problems / V. M. Aleksandrov, D. A. Pozharskii // Journal of Applied Mathematics and Mechanics. — 1999. — Vol. 63, No. 2. — P. 283-290.

6. Alexandrov, V. M. Three-dimensional contact problems / V. M. Alexandrov, D. A. Pozharskii. — Dordrecht: Kluwer academic publishers, 2001. — 406 p.

7. Dаvtyan, D. B. The action of a strip punch on a transversely isotropic half-space / D. B. Davtyan, D. A. Pozharskii // Journal of Applied Mathematics and Mechanics. — 2012. — Vol. 76, No. 5. — P. 558-566.

8. Artamonova, E. A. A strip cut in a transversely isotropic elastic solid / E. A. Artamonova, D. A. Pozharskii // Journal of Applied Mathematics and Mechanics. — 2013. — Vol. 77, No. 5. — P. 551-558.

9. Наседкин, А. В. Александр Владимирович Белоконь (1941-2013) / А. В. Наседкин, А. О. Ватульян, М. И. Карякин // Известия вузов. Северо-Кавказский регион. Естественные науки. — 2016. — № 4. — С. 128-129.

10. Справочник по специальным функциям / под ред. М. Абрамовица и И. Стиган. — Москва : Наука, 1979. —

832 с.

References

1. Aleksandrov, V. M., Belokon, A. V. Asymptotic solution of a class of integral equations and its application to contact problems for cylindrical elastic bodies. Journal of Applied Mathematics and Mechanics, 1967, vol. 31, no. 4, pp. 718-724.

2. Aleksandrov, V. M., Belokon, A. V. Asymptotic solution of a class of integral equations encountered in the investigation of mixed problems of the mathematical physics for regions with cylindrical boundaries. Journal of Applied Mathematics and Mechanics, 1968, vol. 32, no. 3, pp. 402-413.

3. Galin, L. A., ed. Razvitie teorii kontaktnykh zadach v SSSR. [Development of the theory of contact problems in the USSR.] Moscow: Nauka, 1976, 493 p. (in Russian).

4. Aleksandrov, V. M., Romalis, B.L. Kontaktnye zadachi v mashinostroenii. [Contact problems in mechanical engineering.] Moscow: Mashinostroenie, 1986, 176 p. (in Russian).

5. Aleksandrov, V. M., Pozharskii, D. A. An asymptotic method in contact problems. Journal of Applied Mathematics and Mechanics, 1999, vol. 63, no. 2, pp. 283-290.

6. Alexandrov, V. M., Pozharskii, D. A. Three-dimensional contact problems. Dordrecht: Kluwer academic publishers, 2001, 406 p.

7. Dаvtyan, D. B., Pozharskii, D. A. The action of a strip punch on a transversely isotropic half-space. Journal of Applied Mathematics and Mechanics, 2012, vol. 76, no. 5, pp. 558-566.

8. Artamonova, E. A., Pozharskii, D. A. A strip cut in a transversely isotropic elastic solid. Journal of Applied Mathematics and Mechanics, 2013, vol. 77, no. 5, pp. 551-558.

9. Nasedkin, A. V., Vatulyan, A. O., Karyakin, M. I. Aleksandr Vladimirovich Belokon' (1941-2013). [Alexander Vladimirovich Belokon (1941 - 2013).] Izvestiya vuzov. Severo-Kavkazskiy region. Natural Sciences. 2016, no. 4, pp. 128129 (in Russian).

10. Abramovits, M, Stigan, I., erd. Spravochnik po spetsial'nym funktsiyam. [Reference on special functions.] Moscow: Nauka, 1979, 832 p. (in Russian).

Поступила в редакцию 09.03.2017 Сдана в редакцию 09.03.2017 Запланирована в номер 05.04.2017

Об авторах:

Пожарский Дмитрий Александрович,

заведующий кафедрой «Прикладная математика» Донского государственного технического университета (РФ, 344000, Ростов-на-Дону, пл. Гагарина, 1), доктор физико-математических наук, профессор, ОЯСГО: http://orcid.org/0000-0001-6372-1866 ро/Иагёа@гатЬ1сг. га

Золотов Никита Борисович, студент кафедры «Прикладная математика» Донского государственного технического университета (РФ, 344000, Ростов-на-Дону, пл. Гагарина, 1) ,

ОЯСГО : http://orcid.org/0000-0002-2193-0616 zo1otov.nikita.borisovich@gmai1.com

Received 09.03.2017 Submitted 09.03.2017 Scheduled in the issue 05.04.2017

Authors:

Pozharskii,_Dmitry A.,

Head of the Applied Mathematics Department, Don State Technical University (RF, 344000, Rostov-on-Don, Gagarin Square, 1), Dr.Sci. (Phys.-Math.), professor, ORCID: http://orcid.org/0000-0001-6372-1866 pozharda@rambler. ru

Zolotov, Nikita B.,

student of the Applied Mathematics Department, Don State Technical University (RF, 344000, , Rostov-on-Don, Gagarin Square, 1),

ORCID : http://orcid.org/0000-0002-2193-0616 zolotov.nikita.borisovich@gmail.com

i Надоели баннеры? Вы всегда можете отключить рекламу.