ЦИТОЛОГИЯ И ГЕНЕТИКА
УДК 575, 576
И.Э. Вассерлауф, К.Е. Усов, Е.Ю. Митренина, В.Н. Стегний
ИЗУЧЕНИЕ ВИДОВЫХ ОСОБЕННОСТЕЙ ВЗАИМНОГО РАСПОЛОЖЕНИЯ ПЕРВИЧНЫХ ПОЛИТЕННЫХ ХРОМОСОМ В ЯДРАХ ТРОФОЦИТОВ ЯИЧНИКОВ У ВИДОВ D. YAKUBA BURLA И D. SANTOMEA LACHAISE, HARRY ПОДГРУППЫ «MELANOGASTER» РОДА DROSOPHILA (SOPHOPHORA)
Работа выполнена при финансовой поддержке РФФИ (проект № 04-04-48175), целевой программы «Развитие научного потенциала высшей школы (2006-2008)» (проект РНР.2.2.1.1.2038) и НШ - 4283.2006.4
Аннотация. Изучено взаимное расположение политенных хромосом в ядрах трофоцитов яичников у видов D. yakuba и D. santomea. У межвидовых гибридов была обнаружена видовая специфичность ориентации хромосом в ядре, проявляющаяся в асинаптировании гомеологичных хромосом. Это объясняется тем, что гомеологи «сохраняют» свою видоспецифичную позицию в пространстве ядра. Изучение ассоциации хромосом D. yakuba и D. santomea на протяжении всего эндомитотического цикла выявило динамику прицентромерных гетерохроматиновых блоков хромосом 3 и 2, связанную с образованием ядрышкового материала.
Ключевые слова: первичные политенные хромосомы, эндоцикл, взаимное расположение хромосом в ядрах трофоцитов яичников, подгруппа видов Drosophila melanogaster.
Взаимное расположение хромосом в пространстве ядра у эукариот играет важную роль в экспрессии генов и сегрегации хромосом в процессе клеточного деления [1-5]. Для интерфазного ядра характерна динамичность хроматина [6-9], при этом хромосомы сохраняют свою территориальность и взаимное расположение [10].
Расположение политенных хромосом в ядрах соматических тканей (слюнные железы, протаракальная железа, средняя и задняя кишка и мальпигиевы сосуды) и генеративной системы клеток (ядра трофоцитов яичников) у двукрылых насекомых имеет тканевую специфичность [11-12]. У близкородственных видов малярийных комаров (комплекс Anopheles maculipennis [11]) и дрозофилы (виды подгруппы Drosophila melanogaster [13], виды группы D.virilis [14]) в ядрах трофоцитов яичников были выявлены видовые отличия в ориентации хромосом. Видоспецифичность проявлялась в наличии или отсутствии связей определенных хромосом с ядерной оболочкой; в морфологии участков прикрепления хромосом к оболочке; наличии или отсутствии хромоцентральной организации хромосом в ядре [11, 13, 15]. Есть основания предполагать, что в подобных структурных перестройках архитектуры хромосом принимают участие мобильные генетические элементы (МГЭ), активация которых осуществляется при инбредном размножении и экстремальных температурах развития [16-18].
Для двукрылых насекомых характерен нутриментарный тип оогенеза. Ооцит и трофоциты по происхождению являются сестринскими клетками. У малярийных комаров политенные хромосомы трофоцитов хорошо структурированы, имеют дисковую исчерченность [1, 11].
У дрозофилы на стадиях оогенеза с S3 по S7 выявляются эндополиплоид-ные ядра с различной степенью политенизации и морфологией хроматина: мелкие ядра с ретикулярной структурой хроматина; первичные политенные хромосомы, имеющие гетерохроматиновые блоки; помпонообразные, компактные хромосомы; стадия распада помпонообразных хромосом и ядра с ретикулярной структурой хроматина [19-20]. Первичные политенные хромосомы на стадии S3 - S5 оогенеза дрозофилы являются удобными для изучения взаимного расположения хромосом в ядре.
Ранее нами была изучена ориентация хромосом в ядрах трофоцитов яичников у 8 близкородственных видов подгруппы «melanogaster» и построена межвидовая схема пространственной реорганизации хромосом [13]. Предполагается, что эволюция архитектуры ядер шла от локального хромоцентра (D. orena) к диффузному (D. simulans, D. sechellia, D. erecta) и к полному его исчезновению (D. mauritiana, D. yakuba, D. teissieri), к прикреплению прицен-тромерных или теломерных районов хромосом к оболочке ядра (D. melanogaster).
Недавно в западно-экваториальной Африке на одном из островов Гвинейского залива Sao Tome был открыт новый вид - D. santomea. Этот вид морфологически отличается от близкородственных подгруппы D. melanogaster жёлтым цветом тела без чёрных брюшных сегментов. D. santomea сходна с D. yakuba по структуре политенных хромосом (гомосеквентна), митотических хромосом, гену period, аллозимам [21].
В связи с этим нам было интересно изучить взаимное расположение хромосом трофоцитов яичников D. santomea и дополнить нашу филогенетическую схему, построенную на основе ориентации хромосом в ядрах трофоцитов.
МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
Материалом исследований служили 0,5-, 1-, 1,5-, 2-суточные самки D. yakuba (Фонд центра штата Аризона, США) и D. santomea, любезно предоставленные F. Lumeunier (Laboratoire Populations, Ge ne tique et Evolution, UPR CNRS, Gif-sur-Yvette, Франция).
Были получены межвидовые гибриды от скрещиваний: çD. yakuba х х ^D. santomea; ç D. santomea х ^ D. yakuba.
Яичники выделяли в физиологическом растворе 0,7% NaCl и фиксировали в упрощенном спирт-уксусном фиксаторе Карнуа в соотношении 3:1. Для изучения архитектуры ядер трофоцитов яичников получали «полудавленные» лактоацетоорсеиновые препараты. Яичники, окрашенные лактоацеторсеином (Orcein - Sigma, England), осторожно накрывали покровным стеклом и слегка давили так, чтобы хромосомы оставались внутри ядра.
Для выявления ядрышкового материала в ядрах трофоцитов яичников было проведено Ag-окрашивание - препараты инкубировали в растворе азотно-
кислого серебра. На сухие препараты наносили 3-4 капли 50%-ного раствора AgNO3 и осторожно накрывали их покровным стеклом. Затем препараты помещали в эксикатор с дистиллированной водой и инкубировали в термостате 24-30 ч при температуре 65°С; после этого их анализировали и фотографировали при помощи микроскопа Laboval-4 и фотоаппарата Olympus (увеличение 10x100).
Достоверность различий между контролем и экспериментальными данными вычисляли с помощью fZ-теста Манна-Уитни при заданной вероятности р = 0,95.
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Взаимное расположение хромосом в ядрах трофоцитов яичников у гомосеквентных видов D. yakuba и D. santomea
Взаимное расположение хромосом у гомосеквентных видов D. yakuba и D. santomea оценивалось только на стадиях S3 - S5 оогенеза на протяжении которых образуются первичные политенные хромосомы.
Ориентация хромосом в ядрах трофоцитов D. santomea (рис. 1, в, г) сходна с таковой D. yakuba (рис. 1, а, б). Хромосомы не образуют общего хромоцентра, хромосомы Х и 3 прицентромерными районами близко ассоциированы по отношению друг к другу, а хромосома 2 локализована в противофазе. Гомологи хромосом 2 и 3 в прицентромерных районах слегка асинаптированы и содержат крупные гетерохроматиновые блоки, которые локально объединяют плечи хромосом. Прикреплений хромосом к оболочке ядра визуально не обнаружено (см. рис. 1, а-г).
Такое сходство в ориентации хромосом ядер трофоцитов было ранее выявлено и у других гомосеквентных видов (например, D. simulans и D. sec-hellia) [11, 13]. Только с помощью гибридологического анализа этих видов были обнаружены видовые отличия, которые проявляются в асинаптирова-нии гомеологичных хромосом. Это связано с тем, что гомеологи «сохраняют» свою видоспецифичную позицию в пространстве ядра.
У межвидовых гибридов от скрещиваний ç D. yakuba x ^ D. santomea (рис. 1, д, е); ç D. santomea x ^ D. yakuba (рис. 1, д-з) было выявлено нарушение в спаривании гомеологичных хромосом в прицентромерных районах или полное асинаптирование плеч гомеологов, которое визуально выявляется не во всех ядрах. Был проведен анализ 10 гибридных самок от скрещивания ç D. yakuba x ^D. santomea (164 ядра). Полученные результаты показали достаточно высокий процент ядер с асинаптированными гомеологичными хромосомами (72,6±3,5%). Такая дезориентация гомеологов в прицентромерных районах или их полное асинаптирование, вероятно, связаны с видоспецифичной позицией гомеологичных хромосом в пространстве ядра у межвидовых гибридов, что свидетельствует о видовой специфичности ориентации хромосом в ядрах трофоцитов гомосеквентных видов D. yakuba и D. santomea.
Нарушение синапсиса у гомеологов межвидовых гибридов было обнаружено не во всех ядрах. Возможно, это связано с различной степенью полите-низации и компактизации хромосом на различных стадиях эндоцикла.
. за
к і
л? * ^ * -Л. - ч и: ' г*> V В *' .. .0 ч -V .*Л -7 - . г V
В шву^ 1 І. Л Шілг 3 С Д е
В
УЙ!
Еш* '* 9■
* 1Т.
В '
* ь*.
Ж
Рис. 1. Взаимное расположение хромосом в ядрах трофоцитов яичников у В. уакиЬа (а, б), В. заШошеа (в, г) и их межвидовых гибридов - $ В. уакиЬа хб В. заШошеа (д, е),
$ В. заШошеа х б В. уакиЬа (ж, з). ХЬ, 2, 3 - хромосомы; с - прицентромерные районы хромосом; стрелками обозначены асинапсисы гомеологичных хромосом у межвидовых
гибридов (увеличение 10x100)
На ранних стадиях политенизации хромосом были едва заметны асинапсисы в прицентромерных районах, которые нами не оценивались как хромо-
сомы с нарушением синаптирования. На более поздних стадиях эндомитоти-ческого цикла нарушение синапсиса гомеологов у межвидовых гибридов выявляется ярче. Такое асинаптирование гомеологов в гибридном ядре связано с видоспецифичным позиционированием гомеологичных хромосом в пространстве ядра. Подобные результаты были получены у гомосеквентных видов малярийных комаров Anopheles maculipennis и An. subalpinus [22], а также и у видов D. sechellia и D. simulans комплекса D. melanogaster [13].
Известно, что на основании данных, полученных в результате изучения структуры митотических и политенных хромосом, гена period, аллозимов, D. santomea расположили близко к D. yakuba в филогенетическом древе комплекса «yakuba». Предполагают, что D. santomea произошла от D. yakuba или эти виды имели одного общего предка. Метафазные хромосомы D. santomea и D. yakuba различаются по количеству прицентромерных гетерохроматиновых блоков Х-хромосомы и хромосомы 4 [21]. Гетерохроматин играет важную роль в поддержании ориентации хромосом в пространстве ядра. Возможно, что при видообразовании с изменением количества гетерохроматина могла измениться и территориальность хромосом в пространстве ядра, т. е. произойти пространственная реорганизация хромосом в ядре (системная мутация). Могли измениться места локализаций прицентромерных районов в ядре. В связи с этим взаимное расположение хромосом в ядрах трофоцитов D. santomea и D. yakuba отличается по локализации прицентромерных районов хромосом, которая выявляется только в ядрах межвидовых гибридов. Таким образом, ориентация хромосом в ядрах трофоцитов яичников у видов D. santomea и D. yakuba видоспецифична.
Ассоциация хромосом и функционирование ядрышка в ядрах трофоцитов яичников на протяжении эндомитотического цикла
Известно, что хроматин на протяжении интерфазы динамичен в пространстве ядра и заякорен с помощью ламин к ядерной мембране [6-7, 9]. При этом хромосомы занимают определенную территорию в пространстве ядра, которая сохраняется на протяжении всей интерфазы и на последующих стадиях клеточного цикла [23, 10].
У Calliphora erythrocephala на протяжении всего эндоцикла в полиплоидных ядрах трофоцитов яичников (от первичных ретикулярных ядер, политенных хромосом, стадии распада хромосом, до образования вторичных ретикулярных ядер) обнаружено сохранение позиционности хромосом в пространстве ядра [24]. В связи с этим мы в своих исследованиях также изучали позиционность хромосом в полиплоидных ядрах трофоцитов яичников у D. yakuba и D. santomea на различных стадиях эндоцикла (от образования тонких первичных политенных хромосом до их распада).
Был проведен сравнительный анализ позиционирования хромосом в ядрах трофоцитов в период эндомитотического цикла (S1-S7 стадии оогенеза; рис. 2). У 0,5-3-суточных самок были обнаружены все стадии эндомитоза, характерные для Diptera. Видовой особенностью являлась скорость протекания эндоцикла. Для D. santomea характерно более длительное прохождение эндомитотического
цикла. У 0,5-суточных самок D. yakuba можно было наблюдать практически все стадии эндоцикла (см. рис. 2, а—ж), а у D. santomea этого же возраста - только мелкие с ретикулярной структурой ядра трофоцитов (см. рис. 2, а ’).
Рис. 2. Стадии эндоредупликации хроматина в ядрах трофоцитов яичников D. yakuba (а-е), D. santomea (а ’-е ’). Стадии эндоцикла - первичные ретикулярные ядра (а, а ’), удлиненные первичные политенные хромосомы (б, б ’), первичные политенные хромосомы (в, в ’; г, г ’), компактные политенные хромосомы (д, д ’), стадия распада первичных политенных хромосом (е, е ’). Стрелками обозначены районы декомпактизации прицентромерного гетерохроматина; вторичные ретикулярные ядра (ж, ж’) (увеличение lQxlQQ)
На стадии первичных политенных хромосом у В. уакиЬа и В. &аМотеа были обнаружены два морфологических типа ядер, большинство которых имеют характерную для вида морфологию хромосом. Плечи хромосом 2 и 3 объединены прицентромерными гетерохроматиновыми блоками, около 10% ядер имеют хромосомы 2 и 3 с разобщением плеч в прицентромерных районах, связанных с декомпактизацией гетерохроматиновых блоков и образованием тонких фибрилл хроматина (см. рис. 2, г). Возможно, существует достаточно кратковременная стадия эндоцикла, в которой плечи хромосом 2 и 3 разобщаются, а при компактизации хромосом вновь объединяются с образованием гетерохроматиновых блоков (рис. 2, д). Поэтому ядер с такой организацией хромосом выявляется около 10%. У В. santomea эта стадия наблюдается реже, возможно, она проходит быстрее (см. рис. 2, г ’), чем у В. уакиЬа, и в связи с этим не всегда заметна.
Хромосомы на протяжении эндоцикла сохраняют свою позиционность по отношению друг к другу. Такая ассоциация выявляется и на стадии, в течение которой плечи хромосом разобщаются в результате декомпактизации при-центромерных гетерохроматиновых блоков. Можно предположить, что выявленная нами стадия декомпактизации прицентромерного гетерохроматина имеет функциональную значимость, характерную для питающих клеток ооцита и, по-видимому, связана с образованием ядрышкового материла, необходимого для питания ооцита.
У В. уакиЬа с помощью Л§-окрашивания было обнаружено, что на протяжении всего эндоцикла «разрыв» плеч хромосом связан с функционированием ядрышка (рис. 3). На ранней стадии (Б2) эндоцикла прицентромерные тяжи ядрышкообразующей хромосомы ХЬ (см. рис. 3, а) входят в ядрышко, а хромосомы 3 и 2 «лежат» на нем. На более поздней стадии (Б3) с образованием второго ядрышка в хромосоме 3 декомпактизуются прицентромерные гетерохроматиновые блоки в фибриллярные тяжи, входящие в ядрышко, в связи с чем плечи хромосомы разобщаются (рис. 3, б, в). На последующей стадии с увеличением и слиянием ядрышек гетерохроматиновые прицентромер-ные блоки хромосомы 2 также декомпактизуются и прицентромерными тяжами контактируют с ядрышком (рис. 3, г). На стадии компактных хромосом прицентромерные тяжи хромосом 2 и 3 компактизуются вновь, образуя плотные гетрохроматиновые блоки (рис. 3, д, е). На стадии распада первой распадается ядрышкообразующая Х-хромосома (рис. 3, ж). В ретикулярных ядрах выявляется ядрышко, заполняющее весь объем ядра, а декомпактизованный хроматин «лежит» на ядрышке (см. рис. 3, з).
Таким образом, на протяжении эндоцикла наблюдается динамика гетерохроматиновых блоков, связанная с их декомпактизацией и функционированием ядрышка, причем визуально наблюдаемый «разрыв» плеч хромосом 2 и 3 непосредственно связан с образованием ядрышка. По-видимому, гетерохроматиновые блоки, содержащие р-ДНК последовательности [25], непосредственно принимают участие в образовании ядрышка.
Рис. 3. Ag-окрашивание в ядрах трофоцитов яичника на выявление ядрышка на протяжении всего эндомитотического цикла у D. yakuba (а-з); N - ядрышко, N1, N2 - 1-е и 2-е ядрышки; XL, 2, 3 - хромосомы; с - прицентромерные районы хромосом (увеличение lQxlQQ)
Авторы выражают искреннюю благодарность F. Lumeunier (Laboratoire Populations, Genetique et Evolution, UPR CNRS, Gif-sur-Yvette, Франция) за предоставление линии D. santomea.
Литература
1. Стегний В.Н. Реорганизация структуры интерфазных ядер в онто- и филогенезе малярийных комаров // ДАН СССР. 1979. Т. 249, № 5. С. 1231-1234.
2. Глазков М.В. Ассоциация хромосом с ядерной оболочкой и упорядоченность пространственной организации генетического материала в интерфазном ядре // Цитология и генетика. 1999. Т. 33, № 2. С. 79-88.
3. Marshall W.F., Sedat J.W. Nuclear architecture. Results Probl. // Cell Differ. 1999. Т. 25. Р. 283-301.
4. Sadoni N., Langer S. Nuclear organization of mammalian genomes: polar chromosome territories build up functionally distinct higher order compartments // The Journal of Cell Biology. 1999. Vol. 146, № 6. С. 1211-1226.
5. Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells // Nat. Rev. Genet. 2001. Vol. 2. С. 292-301.
6. De Boni U., Mintz A.H. Curvilinear, three-dimensional motion of chromatin domains and nucleoli in neuronal interphase nuclei // Science. 1986. Vol. 234. С. 863-866.
7. Marshall W.F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells // Current Biology. 1997. Vol. 7. С. 930-939.
8. Abney J.R., Cutler B., Fillbach M.L., Axelrod D.S. Chromatin dynamics in interphase nuclei and its implication for nuclear structure // J. Cell Biol. 1997. Vol. 137, № 7. С. 1459-1468.
9. Csink A.K., Henikoff S. Large-scale chromosomal movements during interphase progression in Drosophila // J. Cell Biol. 1998. Vol. 143, № 1. Р. 13-22.
10. Croft J.A., Bringer J.M., Boyle S. et al. Differences in the localization and morphology of chromosomes in the human nucleus // J. Cell Biol. 1999. Vol. 145, № 6. С. 1119-1131.
11. Стегний В.Н. Архитектоника генома, системные мутации и эволюция. Новосибирск: Изд-во Новосиб. ун-та, 1993. С. 110.
12. Hochstrasser M., Sedat J. W. Three-dimensional organization of Drosophila melanogaster interphase nuclei. I. Tissue-specific aspects of polytene nuclear architecture // J. Cell Biol. 1987а. Vol. 104. Р. 1455-1470.
13. Стегний В.Н., Вассерлауф И.Э. Видовая архитектоника хромосом генеративной ткани и проблемы филогенетических отношений в подгруппе melanogaster рода Drosophila (Sophophora) //Генетика. 1994. Vol. 30, № 4. С. 478-483.
14. Cтегний В.Н., Вассерлауф И.Э., Ананьина Т.В. Взаиморасположение первичных политенных хромосом яичников у 12 видов группы «virilis» рода Drosophila (Sophophora) // Генетика. 1996. Т. 32, № 6. С. 750-754.
15. Стегний В.Н., Шарахова М.В. Системная реорганизация архитектоники политен-ных хромосом в онто- и филогенезе малярийных комаров: Структурные особенности зон прикрепления хромосом к ядерной мембране // Генетика. 1991. Т. 27, № 5. С. 828-835.
16. Biemont C., Arnault C., Heizmann A. Massive changes in genomic location of P elements in an inbred line of Drosophila melanogaster // Naturwissenschaften. 1990. Т. 77. С. 485-488.
17. Медведева А.В., Савватеева Е.В. Влияние температуры на пространственную организацию политенных хромосом мутантов дрозофилы с измененными функциями кальмо-дулина // ДАН СССР. 1991. Т. 318, № 4. С. 988-991.
18. ЕвгеньевМ.Б., Мнджоян Е.И., Зеленцова Е.С. и др. Мобильные элементы и видообразование // Молекулярная биология. 1998. Т. 32, № 1. С. 184-192.
19. Жимулев И.Ф. Политенные хромосомы: морфология и структура. Новосибирск: Наука, 1992. С. 480.
20. Стегний B.H., Вассерлауф И.Э., Ананьина Т.В. Идентификация, взаиморасположение и развитие первичных политенных хромосом в ядрах трофоцитов у Calliphora erythrocephala (Diptera: Calliphoridae) // Генетика. 1999. Т. 35, № 7. С. 912-918.
21. Lachaise D., Harry M., Solignac M. et al. Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from Sao Tome // Evolution. 2000. Vol. 267. Р. 1487-1495.
22. Стегний В.Н. Популяционная генетика и эволюция малярийных комаров. Томск: Изд-во Том. ун-та, 1991. 137 с.
23. Zink D., Cremer T. Chromosome dynamics in nuclei of living cells // Curr. Biol. 1998. Vol. 8. Р. 321-324.
24. Ананьина Т.В., Ведерников А.Е., Вассерлауф И.Э. и др. Визуализация хромосомных территорий в интерфазных ядрах трофоцитов яичников Calliphora erythrocephala Mg (Dip-tera: Calliphoridae) // Генетика. 2005. Т. 41, № 10. С. 1106-1112.
25. Zurita F., Jimenez R., Diaz de la Geuardia R., Burgos M. The relative rDNA content of a NOR determines its level of expression and its probability of becoming active. A sequential silver staining and in-situ hybridization study // Chromosome Research. 1999. Vol. 7. Р. 563-570.