Научная статья на тему 'Изучение микроорганизмов-деструкторов функциональных полимерных материалов в условиях имитации тропического климата'

Изучение микроорганизмов-деструкторов функциональных полимерных материалов в условиях имитации тропического климата Текст научной статьи по специальности «Промышленные биотехнологии»

CC BY
358
96
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Труды ВИАМ
ВАК
RSCI
Ключевые слова
биоповреждения / биодеградация / микроорганизмы-деструкторы / микробиологическая стойкость / неметаллические материалы / микрофлора / микробиоло-гические повреждения / экспозиция / испытания / biodeterioration / biodegradation / microorganisms-destructors / microbiological resistance / non-metallic materials / microflora / microbial damage / exposure / tests

Аннотация научной статьи по промышленным биотехнологиям, автор научной работы — А А. Кривушина, Т В. Бобырева, Ю С. Горяшник, Г М. Бухарев

С целью изучения микробиологической стойкости функциональных материалов и вы-деления новых микроорганизмов-деструкторов проводятся испытания в различных усло-виях. В течение 18 мес в условиях имитации тропического климата проходили экспози-цию образцы полимерных материалов: резин и герметиков. После проведения экспозиции с образцов были выделены и идентифицированы культуры микроскопических грибов, определена их частота встречаемости. Доминирующими видами оказались микромице-ты Penicillium lanosum и Cladosporium sphaerospermum, реже встречались Penicillium sp., Cladosporium oxysporum и Aspergillus ochraceus. Единичная встречаемость отмечена для Rhizopus oryzae, Aspergillus terreus, Acremonium sp., Stachybotrys chartarum, Trichoderma viride. Большинство выделенных грибов известны как деструкторы полимерных мате-риалов в различных климатических зонах и экологических условиях.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по промышленным биотехнологиям , автор научной работы — А А. Кривушина, Т В. Бобырева, Ю С. Горяшник, Г М. Бухарев

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

STUDY OF MICROORGANISMS THE DESTRUCTORS OF FUNCTIONAL POLYMERIC MATERIALS EXPOSED UNDER CONDITIONS OF TROPICAL CLIMATE SIMULATION

Tests are carried out in various conditions in order to study the microbiological resistance of functional materials and the isolation of new microorganisms-destructors. Polymeric materi-als and structural elements were exposed for 18 months under imitation of tropical climate weathering conditions. In exposition were used samples of rubber and sealant. Cultures of mi-croscopic fungi were isolated after exposure from the samples surfaces and thereafter their spe-cies identified along with theirs occurrence frequency counting. The dominant species of mi-cromycetes were Penicillium lanosum and Cladosporium sphaerospermum. Such species as Penicillium sp. (non P. lanosum), Cladosporium oxysporum and Aspergillus ochraceus were rarely isolated. Single occurrence was noted for Rhizopus oryzae, Aspergillus terreus, Acremo-nium sp., Stachybotrys chartarum and Trichoderma viride. Most of the isolated fungi are known as destructors of polymeric materials in different climatic zones and environmental conditions.

Текст научной работы на тему «Изучение микроорганизмов-деструкторов функциональных полимерных материалов в условиях имитации тропического климата»

УДК 620.1

А.А. Кривушина1, Т.В. Бобырева1, Ю.С. Горяшник1, Г.М. Бухарев1

ИЗУЧЕНИЕ МИКРООРГАНИЗМОВ-ДЕСТРУКТОРОВ ФУНКЦИОНАЛЬНЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ В УСЛОВИЯХ ИМИТАЦИИ ТРОПИЧЕСКОГО КЛИМАТА

DOI: 10.18577/2307-6046-2019-0-7-76-83

С целью изучения микробиологической стойкости функциональных материалов и выделения новых микроорганизмов-деструкторов проводятся испытания в различных условиях. В течение 18 мес в условиях имитации тропического климата проходили экспозицию образцы полимерных материалов: резин и герметиков. После проведения экспозиции с образцов были выделены и идентифицированы культуры микроскопических грибов, определена их частота встречаемости. Доминирующими видами оказались микромице-ты Penicillium lanosum и Cladosporium sphaerospermum, реже встречались Penicillium sp., Cladosporium oxysporum и Aspergillus ochraceus. Единичная встречаемость отмечена для Rhizopus oryzae, Aspergillus terreus, Acremonium sp., Stachybotrys chartarum, Trichoderma viride. Большинство выделенных грибов известны как деструкторы полимерных материалов в различных климатических зонах и экологических условиях.

Ключевые слова: биоповреждения, биодеградация, микроорганизмы-деструкторы, микробиологическая стойкость, неметаллические материалы, микрофлора, микробиологические повреждения, экспозиция, испытания.

A.A. Krivushina1, T.V. Bobyreva1, Yu.S. Goryashnik1, G.M. Bukharev1

STUDY OF MICROORGANISMS THE DESTRUCTORS OF FUNCTIONAL POLYMERIC MATERIALS

EXPOSED UNDER CONDITIONS OF TROPICAL CLIMATE SIMULATION

Tests are carried out in various conditions in order to study the microbiological resistance offunctional materials and the isolation of new microorganisms-destructors. Polymeric materials and structural elements were exposed for 18 months under imitation of tropical climate weathering conditions. In exposition were used samples of rubber and sealant. Cultures of microscopic fungi were isolated after exposure from the samples surfaces and thereafter their species identified along with theirs occurrence frequency counting. The dominant species of mi-cromycetes were Penicillium lanosum and Cladosporium sphaerospermum. Such species as Penicillium sp. (non P. lanosum), Cladosporium oxysporum and Aspergillus ochraceus were rarely isolated. Single occurrence was noted for Rhizopus oryzae, Aspergillus terreus, Acremonium sp., Stachybotrys chartarum and Trichoderma viride. Most of the isolated fungi are known as destructors of polymeric materials in different climatic zones and environmental conditions.

Keywords: biodeterioration, biodegradation, microorganisms-destructors, microbiological resistance, non-metallic materials, microflora, microbial damage, exposure, tests.

^Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт авиационных материалов» Государственный научный центр Российской Федерации [Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials» State Research Center of the Russian Federation]; e-mail: [email protected]

Введение

Неметаллические материалы и изделия в связи с расширением сферы их использования постоянно попадают в разные условия эксплуатации, где испытывают на себе воздействие разнообразных факторов - климатических и биологических. К биологическим

факторам относятся микроорганизмы, которые поселяются на поверхности, а в ряде случаев проникают внутрь материалов и изделий, где начинают свою жизнедеятельность [1]. Микроорганизмы быстро адаптируются к широкому кругу материалов, начинают интенсивно развиваться либо за счет внешних загрязнений, либо за счет компонентов самого материала, что неминуемо ведет к разрушению последнего. Среди всех возможных видов микроорганизмов грибы-микромицеты широко представлены как агенты процесса биодеструкции на материалах разной химической природы и структуры. Влияние микроорганизмов на различные материалы особенно существенно в условиях влажного тропического климата. Биологические сообщества в данных климато-географических условиях характеризуются самым высоким уровнем биоразнообразия в мире, в том числе микробиологического сообщества. Биоповреждения, вызванные развитием микроорганизмов, приводят к потере чувствительности радиоэлектронных устройств, изменению электрических параметров электронных и других устройств, нарушают светопропускание и отражение оптических приборов, уменьшают сроки службы изоляционных материалов. Микроорганизмы нарушают режим работы топливных систем, изменяют свойства горючесмазочных материалов, что может привести к возникновению аварийной ситуации [2-4].

Воздействие микромицетов на неметаллические материалы и, соответственно, устойчивость по отношению к ним самих материалов, регламентируются различными стандартами. Стандартные испытания на грибостойкость в соответствии с российскими государственными стандартами позволяют проводить сравнительную оценку характеристик различных материалов. Однако при подобных испытаниях, к сожалению, невозможно учесть влияние всех природных факторов, одним их которых является постоянное появление новых активных штаммов микроорганизмов-деструкторов, способных, например, повреждать материал, который ранее считался грибостойким. Именно поэтому очень важно проводить испытания материалов на микробиологическую стойкость не только в лабораторных, но и в естественных условиях с последующим выделением в чистые культуры штаммов микроорганизмов-деструкторов [2, 5, 6].

Разнообразие микрофлоры и ее численный и качественный состав находятся в прямой зависимости от природно-климатических условий, а скорость роста и развития микроорганизмов зависит от ряда факторов, важнейшими из которых являются влажность воздуха и температура окружающей среды. В России отсутствуют собственные территории с влажным тропическим климатом, в связи с чем возникли предпосылки к испытанию материалов на микробиологическую стойкость в условиях, имитирующих влажный тропический климат. В качестве оптимальных условий для данных испытаний выбран тропический блок в новой фондовой оранжерее ГБС РАН им. Н.В. Цицина. Климат этой оранжереи, оснащенной современными электронными системами его контроля, максимально приближен к условиям влажного тропического климата. В тропическом блоке новой оранжереи высажено в грунт около 550 видов древесных и травянистых растений из всех регионов земного шара с тропическим климатом [7]. Цель данной работы - выделение штаммов микромицетов с образцов различных функциональных полимерных материалов, проходящих экспозицию в условиях имитации влажного тропического климата.

Материалы и методы

При экспонировании исследованы образцы следующих полимерных материалов: резинотканевый материал, используемый для изготовления мягкого топливного бака; резиновая смесь на основе бутилнитрильного каучука средней вязкости (РБС); резиновая смесь на основе бутилнитрильного каучука низкой вязкости (РБН); тиоколовый

герметик, вулканизированный солями марганца (ГТМ). Образцы проходили экспозицию на микологических стендах в оранжерее Главного ботанического сада им. Н.В. Цицина в условиях имитации влажного теплого климата сроком 18 мес. Образцы экспонировались на микологических стендах, внутри которых были размещены вертикально на расстоянии 500 мм от земли, расстояние между образцами составляло не менее 5 см. В процессе испытаний проводили мониторинг температурно-влажностных условий испытаний на микологической площадке.

После окончания экспозиции образцы помещали в стерильные емкости и перевозили в лабораторию, где проводили выделение микроорганизмов с их поверхности.

Для выделения микромицетов с образцов неметаллических материалов использовали питательные среды Чапека-Докса и агаризованное сусло. С целью подавления роста бактерий в среды добавляли молочную кислоту из расчета 2 мл кислоты на 500 мл питательной среды. Для выделения грибов использовали методы отпечатков и метод прямого посева [8].

Метод отпечатков заключается в том, что образец неметаллического материала после экспозиции прислоняют наиболее пораженной стороной к стерильной питательной среде в чашке Петри и затем извлекают. Чашки тут же закрывают крышками и заклеивают парафильмом. В лабораторных условиях чашки Петри со средой и отпечатками с образцов инкубируют в термостатах при температуре 26-28°С в течение 7-14 сут. Ежедневно производится осмотр чашек Петри с фиксацией количества образовавшихся колониеобразу-ющих единиц (КОЕ), затем выросшие колонии пересеваются на новые чашки Петри со свежей питательной средой. Далее проводится ряд дополнительных пересевов до момента получения чистой культуры микромицета. Метод отпечатков позволяет выделять микро-мицеты как с образцов с явными признаками микробиологического поражения, которые легко различимы визуально, так и с образцов без явных признаков. Данный метод позволяет выделить наибольшее количество видов микромицетов, контаминирующих материалы, часть из которых может являться потенциальными деструкторами.

Метод прямого посева заключается в том, что с участков, наиболее подверженных микробиологическому повреждению, с помощью бактериологической петли производится захват фрагментов мицелия, выросшего на материале. Далее фрагмент переносят в чашки Петри с агаризованной питательной средой и растирают стерильным шпателем. Вся процедура производится в стерильных лабораторных условиях. Далее чашки инкубируют, как и в предыдущем случае, при температуре 26-28°С в течение 7-14 сут с периодическими подсчетами выросших колоний и отсевами новых штаммов. Метод прямого посева позволяет выделять наиболее активные штаммы микромицетов-деструкторов, однако предполагает наличие на образцах материалов явных признаков микробиологического поражения в виде мицелия.

Для определения видовой принадлежности высевали культуры грибов на чашки Петри со средой Чапека-Докса и помещали в термостаты с температурой 25°С. Определение грибов проводили с помощью определителей по морфологическим особенностям [9-17]. Частота встречаемости штаммов подсчитана как отношение количества чашек Петри, в которых встречается штамм, к общему количеству чашек Петри, на которых проводилось выделение.

Результаты и обсуждение

Со всех исследуемых образцов полимерных функциональных материалов выделено 10 штаммов мицелиальных грибов, проведена их видовая идентификация по морфологическим признакам при росте на стандартных питательных средах, список выделенных видов представлен в таблице.

Видовой список выделенных микромицетов и их встречаемость _на образцах материалов после экспозиции_

Выделенные виды Материал Встречаемость

микромицетов Резинотканевый РБС РБН ГТМ микромицетов по материалам

Acremonium sp. - - + - 1

Aspergillus ochraceus + + - - 2

Aspergillus terreus - + - + 2

Cladosporium oxysporum + - - - 1

Cladosporium sphaerospermum - + + + 3

Penicillium lanosum + + + - 3

Penicillium sp. + - - - 1

Rhizopus oryzae + + - - 2

Stachybotrys chartarum + - - - 1

Trichoderma viride + - - - 1

Видовое разнообразие выделенных 7 5 3 2 17

микромицетов

Примечание. «+» - микромицет выделен с поверхности образца материала; «-» - микромицет не выделен с поверхности образца материала.

На всех исследуемых образцах материалов после экспозиции наблюдали рост грибов в той или иной степени. Среди всех образцов наиболее подвержены микробиологическому поражению оказались образцы резинотканевого материала, используемого для изготовления мягкого топливного бака. На поверхности образцов невооруженным глазом наблюдали образование грибного мицелия, при рассмотрении под микроскопом обнаружено хорошо развитое спороношение (рис. 1, а). С образцов резинотканевого материала в связи с их степенью микробиологического поражения также произведено наибольшее количество выделений путем метода прямых пересевов. Выделено и идентифицировано семь видов мицелиальных грибов (см. таблицу): Aspergillus ochraceus, Cladosporium oxysporum, Pénicillium lanosum, Pénicillium sp, Rhizopus oryzae, Stachy-botrys chartarum, Trichoderma viride. На образцах резиновых смесей также наблюдали активный рост микромицетов (рис. 1, б, в). С образцов резиновой смеси на основе бу-тилнитрильного каучука средней вязкости (РБС) выделено пять видов микромицетов: Aspergillus ochraceus, Aspergillus terreus, Cladosporium sphaerospermum, Penicillium lanosum, Rhizopus oryzae. С образцов резиновой смеси на основе бутилнитрильного каучука низкой вязкости (РБН) выделено и идентифицировано три вида мицелиальных грибов: Acremonium sp., Cladosporium sphaerospermum, Penicillium lanosum. Наконец, с образцов тиоколового герметика, вулканизированного солями марганца (ГТМ), выделено и идентифицировано два вида микромицетов: Aspergillus terreus и Cladosporium sphaerospermum (рис. 1, г).

Для всех выделенных видов подсчитана общая частота встречаемости (рис. 2). Данная величина рассчитывалась как отношение количества чашек Петри, в которых встречается вид, к общему количеству чашек Петри, используемых при выделении микромицетов с поверхности материала. Как видно из данных диаграммы, наиболее часто на образцах материалов встречаются виды Penicillium lanosum (30%) и Cladosporium sphaerospermum (26%).

Вид Penicillium lanosum отмечен в научно-технической литературе как деструктор полимерных материалов различного химического состава. На среде Чапека-Докса наблюдается довольно медленный рост этих колоний - диаметром 2,5-3 см за 10 сут роста (рис. 3, а). Колонии Penicillium lanosum состоят из пушистого вторичного мицелия, более обильное спороношение наблюдается в краевой зоне. Окраска колоний варьируется от бледно-зеленой до сизо-серой. Эколого-физиологические особенности данного вида

мало изучены. Известно, что оптимальная температура роста составляет 26°С, минимальная - около 3°С, максимальная - около 34°С [10, 15].

Рис. 1. Биоповреждения поверхности образцов из резинотканевого материала (а), бутилнит-рильного каучука средней (б) и низкой вязкости (в), тиоколового герметика, вулканизованного солями марганца (г)

35 т-

30

I 25

с

Е

о —

с.

7-

и

Рис. 2. Частота встречаемости видов микромицетов

Рис. 3. Внешний вид колоний Penicillium lanosum (а) и Cladosporium sphaerospermum (б) на среде Чапека

Вид Cladosporium sphaerospermum также известен своей деструктивной активностью. Согласно научно-техническим литературным данным, микромицеты данного вида широко распространены в Прибалтике, Аджарии и других регионах, где они являются активными деструкторами целлюлозы и обладают высокой адаптационной способностью. Колонии Cladosporium sphaerospermum растут со скоростью 2 см за 10 сут роста, часто неправильной формы, приподнятые над субстратом (рис. 3, б). Окраска колоний варьируется от оливково-зеленой, оливково-коричневой до черной, поверхность колоний мучнистая, бороздчатая, реверс зелено-черный. Оптимальная температура роста составляет 22°С, минимальная - около 5°С, максимальная - около 35°С [13-15].

Реже предыдущих, но тем не менее неоднократно встречены на образцах материалов два других вида микромицетов тех же родов: Penicillium sp. (11%) и Cladosporium oxysporum (13%), а также вид Aspergillus ochraceus (8%). Микромицеты родов Penicillium, Cladosporium и Aspergillus относятся к наиболее распространенным грибам среди микромицетов-деструкторов. Их довольно часто выделяют с образцов неметаллических материалов и изделий, эксплуатирующихся в различных климатических зонах [15]. Так, в состав тест-культур по ГОСТ 9.049-91, используемых при проведении испытаний материалов на грибостойкость, входят три вида рода Penicillium (Penicillium funiculosum, Penicillium chrysogenum, Penicillium cyclopium) и три вида рода Aspergillus (Aspergillus niger, Aspergillus terreus, Aspergillus oryzae) [18]. В набор тест-культур ГОСТ 9.048-89, который используется для испытаний изделий на грибостойкость, входят два вида рода Penicillium (Penicillium funiculosum, Penicillium ochrochloron) и два вида рода Aspergillus (Aspergillus niger, Aspergillus terreus) [19]. Виды рода Cladospori-um также неоднократно выделены с образцов неметаллических материалов, особенно с различных видов герметизирующих материалов, резин и прорезиненных тканей. Вид Cladosporium resinae (аналог Hormoconis resinae) используется для испытания топлив согласно ГОСТ 9.023-74 [20, 21].

Остальные виды, выделенные с образцов неметаллических материалов после экспозиции, встречаются реже: Rhizopus oryzae (4%), Aspergillus terreus (2%), Acremonium sp. (2%), Stachybotrys chartarum (2%), Trichoderma viride (2%). Известно, что вид Aspergillus terreus нередко поселяется на поверхности полимерных материалов в складских помещениях. Выделенные штаммы данного вида обладают способностью активно разрушать целлюлозу. Оптимальная температура роста - около 35°С, минимальная - около 7°С, максимальная - около 45°С. Виды рода Rhizopus oryzae и Acremonium sp. нередко контаминируют поверхность полимерных материалов, однако

их роль в деструкции материалов изучена недостаточно. Виды Stachybotrys chartarum и Trichoderma viride также нередко выделяют с образцов неметаллических материалов в разных зонах, отмечена также их способность к росту за счет компонентов полимерных материалов. Оптимальная температура роста этих видов - около 26°С, минимальная -около 4°С, максимальная составляет 35-40°С [11, 13-15]. Кроме того, вид Trichoderma viride входит в состав тест-культур, используемых многими стандартами, для испытаний материалов и изделий на грибостойкость, среди которых ГОСТ 9.048-89, ГОСТ 9.049-91 и др.

Таким образом, большинство выделенных микромицетов известны в научно-технической литературе как деструкторы различных видов материалов и изделий. Однако не следует забывать, что способность разрушать материал и использовать его компоненты для своего метаболизма - это свойства штамма, а не вида в целом. Другими словами, внутри одного вида могут встречаться микромицеты как способные к росту и развитию на материале, так и не обладающие этой способностью. Кроме того, имеет место и общая контаминация поверхности материалов спорами и фрагментами гиф грибов, т. е. среди всех выделенных с поверхности материалов микроорганизмов могут оказаться как деструкторы, так и микроорганизмы-контаминанты, не имеющие отношения к процессам деструкции. Наибольшую вероятность выделения микромицетов, обладающих способностью к деструкции, позволяет получить метод прямого посева с биоповрежденных участков материалов. Однако даже при данном методе существует вероятность попадания в чашку Петри протагул микромицетов, не имеющих отношения к деструкции. Метод отпечатков позволяет выделять как потенциальные микромицеты-деструкторы, так и общие контаминанты поверхностей. Для подтверждения деструктивной активности выделенных штаммов необходимо проводить дополнительные исследования с повторным заражением материалов монокультурами микромицетов.

Заключения

С образцов функциональных полимерных материалов выделено 10 штаммов ми-целиальных грибов, определена их видовая принадлежность и частота встречаемости. Доминирующими видами оказались микромицеты Penicillium lanosum и Cladosporium sphaerospermum, чуть реже встречались два других вида тех же родов Penicillium sp., Cladosporium oxysporum, а также Aspergillus ochraceus, единично встречены Rhizopus oryzae, Aspergillus terreus, Acremonium sp, Stachybotrys chartarum, Trichoderma viride. Практически все выделенные виды грибов известны как деструкторы полимерных материалов в различных климатических зонах и экологических условиях. Некоторые виды и роды грибов входят в состав тест-культур российских и международных стандартов, используемых при проведении лабораторных испытаний материалов и изделий на грибостойкость. Таким образом, выделенные культуры микромицетов представляют интерес для дальнейшего использования их в исследовательских целях, а также для проведения ускоренных испытаний на грибостойкость. Все полученные культуры мик-ромицетов депонированы в коллекцию микроорганизмов ФГУП «ВИАМ».

Основные виды микроорганизмов, попадающие на поверхность образцов, которые могут быть потенциальными деструкторами, в природе являются обитателями почвы, растений, опада и других естественных субстратов. В условиях оранжереи на видовой состав микроорганизмов будет влиять целый ряд факторов, таких как тип используемой почвы, виды растений, состав минеральных удобрений, используемые биоциды, режим полива и многие другие. В связи с этим остается открытым вопрос об объективности проведения испытаний материалов и изделий на микробиологическую стойкость в различных имитационных условиях - в частности, в оранжереях, а также о возможности сравнения данных, полученных в естественных природных и имитационных условиях. Данная тема, несомненно, представляет большой интерес и требует дополнительных исследований.

ЛИТЕРАТУРА

1. Каблов Е.Н. Ключевая проблема - материалы // Тенденции и ориентиры инновационного развития России. М.: ВИАМ, 2015. С. 458-464.

2. Каблов Е.Н., Ерофеев В.Т., Светлов Д.А., Смирнов В.Ф., Богатов А.Д. Биоповреждения в космических аппаратах // Тр. Междунар. науч.-технич. конф. «Композиционные материалы. Теория и практика», 2015. С. 40-46.

3. Каблов Е.Н., Старцев В.О. Системный анализ влияния климата на механические свойства полимерных композиционных материалов по данным отечественных и зарубежных источников (обзор) // Авиационные материалы и технологии. 2018. №2 (51). С. 47-58. DOI: 10.18577/2071-9140-2018-0-2-47-58.

4. Кривушина А.А., Горяшник Ю.С. Способы защиты материалов и изделий от микробиологического поражения (обзор) // Авиационные материалы и технологии. 2017. №2 (47). С. 80-86. DOI: 10.18577/2071-9140-2017-0-2-80-86.

5. Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. №1 (34). С. 3-33. DOI: 10.18577/20719140-2015-0-1-3-33.

6. Полякова А.В., Кривушина А.А., Горяшник Ю.С., Бухарев Г.М. Испытания на микробиологическую стойкость в натурных условиях различных климатических зон // Труды ВИАМ: электрон. науч.-технич. журн. 2016. №4 (40). От. 11. URL: http://www.viam-works.ru (дата обращения: 25.03.2019). DOI: 10.18577/2307-6046-2016-0-4-11-11.

7. Романов М.С., Золкин С.Ю., Коломейцева Г.Л. История и динамика комплектования фондовой оранжереи Главного ботанического сада им. Н.В. Цицина РАН // Бюллетень Главного ботанического сада. 2015. №2 (201). С. 23-36.

8. Дудка И.А., Вассер С.П., Элланская И.А и др. Методы экспериментальной микологии: справочник / под ред. В.И. Билай. Киев: Наукова думка, 1982. С. 432-460.

9. Raper K.B., Fennell D.I. The genus Aspergillus. Baltimore: The Williams and Wilkins Company, 1965.686 p.

10. Raper K.B., Thom C., Fennell D.I. A Manual of the Penicillia. New York-London: Hafner Publishing Company, 1968. 875 p.

11. Ellis M.V. Dematiaceous hyphomycetes. Kew, Surreg, England, 1971. 608 p.

12. Gams W., Holubova-Jechova V. Chloridium and some other Dematiaceous Hyphomycetes growing on decaying wood // Studies in Mycology. 1976. No. 13. P. 59-71.

13. Domsch K.H., Gams W., Anderson T.H. Compendium of Soil Fungi. London: Academic Press, 1980. Vol. 1, 2. 1264 p.

14. Domsch K.H., Gams W., Anderson T. H. Compendium of Soil Fungi. 2nd ed. Lubrecht & Cramer Ltd, 2007. 672 p.

15. Лугаускас А.Ю., Микульскене А.И., Шляужене Д.Ю. Каталог микромицетов - биодеструкторов полимерных материалов. М: Наука, 1987. С. 258-259.

16. Watanabe T. Pictorial Atlas of soil and seed fungi: morphologies of cultured fungi and key to species. Boca Raton-Ann Arbor-London-Tokyo: Lewis publishers, 1994. 411 p.

17. De Hoog G.S., Guarro J., Gene J., Figueras M.J. Atlas of clinical fungi. CBS, Utrecht; Universitat Rovira i Virgili Reus, 2000. 1126 p.

18. ГОСТ 9.049-91. Единая система защиты от коррозии и старения (ЕСЗКС). Материалы полимерные и их компоненты. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов. М.: Изд-во стандартов, 1994. 15 с.

19. ГОСТ 9.048-89. Единая система защиты от коррозии и старения (ЕСЗКС). Изделия технические. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов. М.: Изд-во стандартов, 1994. 23 с.

20. Кривушина А.А., Чекунова Л.Н., Мокеева В.Л. Морфологические особенности штаммов «керосинового» гриба Hormoconis resinae при росте в авиационном топливе и на питательных средах // Микология и фитопатология. 2019. №1. С. 23-32.

21. ГОСТ 9.023-74. Единая система защиты от коррозии и старения (ЕСЗКС). Топлива нефтяные. Метод лабораторных испытаний биостойкости топлив, защищенных противомикроб-ными присадками. М.: Изд-во стандартов, 1994. 9 с.

i Надоели баннеры? Вы всегда можете отключить рекламу.