УДК 616.857-036.12:661.831-073.97-71: 612.821.2: 612.822.3
ИЗМЕНЕНИЯ КОГНИТИВНЫХ ВЫЗВАННЫХ ПОТЕНЦИАЛОВ (Р300) ПРИ ХРОНИЧЕСКИХ ЕЖЕДНЕВНЫХ ГОЛОВНЫХ БОЛЯХ
Екатерина Андреевна Кузнецова *, Эдуард Закирзянович Якупов Казанский государственный медицинский университет
Реферат
Проведены нейрофизиологическая оценка когнитивных процессов у пациентов с хроническими ежедневными головными болями с помощью регистрации когнитивных вызванных потенциалов, а также корреляционный анализ последних и латентных периодов корковых компонентов вызванных потенциалов других модальностей — зрительных и соматосенсорных. Установлено, что хронические ежедневные головные боли сопровождаются замедлением когнитивных процессов и сочетаются с замедлением проведения афферентной импульсации на уровне соматосенсорной коры и повышением рефлекторной возбудимости зрительной коры.
Ключевые слова: хронические ежедневные головные боли, вызванные потенциалы мозга, когнитивные, зрительные, соматосенсорные вызванные потенциалы, методика Р300.
CHANGES IN THE COGNITIVE EVOKED POTENTIALS (P300) DURING CHRONIC DAILY HEADACHES
E. A. Kuznetsova*, E. Z. Yakupov Kazan State Medical University
Summary
Conducted were a neurophysiological assessment of cognitive processes in patients with chronic daily headaches by detecting cognitive evoked potentials, and a correlation analysis of recent and latent periods of cortical components of evoked potentials of other modalities - visual and somatosensory. It was established that chronic daily headaches were accompanied by slowing of the cognitive processes and were combined with a slowing of afferent impulses conduction at the level of the somatosensory cortex and with an increase in reflex excitability of the visual cortex.
Key words: chronic daily headaches, evoked brain potentials, cognitive, visual, somatosensory evoked potentials, the P300 technique.
Хроническая боль сопровождается развитием целого ряда патофизиологических процессов в организме, в том числе нарушений компенсаторно-адаптационных реакций, функционирования вегетативных сегментарных и надсегментарных отделов нервной системы, изменениями интегративной функции мозга [3, 6]. По данным некоторых авторов, хроническая боль может приводить к расстройству когнитивных функций и проявляться ослаблением концентрации внимания, изменением восприятия и обработки информации, расстройством памяти и в конечном итоге снижением качества жизни пациентов [2, 14].
Важная роль в регуляции процессов памяти принадлежит системе биогенных аминов мозга — норадреналину и серотонину. По существующим в настоящее время представлениям, норадренергическая и серотонинергическая системы в значительной степени являются антагониста-
* Адрес для переписки: [email protected]
© 2. «Казанский мед. ж.», № 1.
ми в отношении процессов памяти, а особенности когнитивных процессов зависят от соотношения активностей этих систем [12]. Известно, что хронические болевые синдромы (ХБС) различной локализации часто сопровождаются коморбидными нарушениями, такими как тревога и депрессия, при которых отмечается дисбаланс указанных нейромедиаторов [3, 9].
По данным эпидемиологических исследований, пациенты с жалобами на головные боли (ГБ) составляют около 27% общей популяции, среди которых хронические ГБ имеют место в 64% случаев [4]. Сравнительно недавно введено понятие «хронические ежедневные головные боли» (ХЕГБ) с выделением таких вариантов, как хронические головные боли напряжения — ГБН (70%), хроническая мигрень (около 25%), другие ее виды (около 5%) [4]. С учетом высокой распространенности хронических ГБН и мигрени в молодом и среднем возрасте актуально изучение особенностей когнитивных процессов у больных данного контингента. В отечест-
Показатели когнитивных вызванных потенциалов (КВП) у пациентов с хроническими ежедневными головными болями (ХЕГБ) и посттравматическими головными болями (ПГБ) (т±а)
Показатели КВП Р300 Контроль (n=35) ХЕГБ (n=23) ПГБ (n=16)
Латентность Р1 67,2±26,9 105,3±55,7** 80,0±47,2
Латентность N1 105,9±24,6 147,3±51,4** 115,8±51,0
Латентность Р2 169,3±24,6 193,4±43,1* 191,8±44,4
Латентность N2 221,9±28,3 260,6±37,2*** 250,4±41,0**
Латентность Р3 (Р300) 307,1±17,3 328,3±25,9** 326,7±42,1
Латентность N3 376,1±28,6 393,1±40,4 401,0±48,4
Примечание. * p<0,05, ** p<0,01, *** p<0,001 по сравнению с контролем.
венной литературе нейрофизиологические исследования когнитивных процессов представлены единичными работами [5]. Результаты зарубежных исследований, посвященных изучению когнитивных ВП у пациентов с первичными и вторичными ГБ, неоднозначны [7, 8, 10, 11, 13].
Целью данного исследования была нейрофизиологическая оценка когнитивных процессов у пациентов с ХЕГБ.
Основную группу составляли 23 пациента молодого возраста (средний возраст — 29,6±9,0) с ХЕГБ (преобладали ГБН). В группе сравнения было 16 пациентов также молодого возраста с хроническими посттравматическими ГБ, но не ежедневными (средний возраст — 28,3±8,1). В контрольную группу вошли 35 здоровых добровольцев (средний возраст — 25,5±8,5). Группы пациентов были сопоставимы по полу и возрасту.
Мультимодальное исследование вызванных потенциалов (ВП) включало регистрацию когнитивных, зрительных (ЗВП) и соматосенсорных (ССВП) ВП с анализом их корковых компонентов. При изучении когнитивных ВП применялась методика Р300. Проводилась бинауральная слуховая стимуляция. Условия стимуляции: длительность стимула — 50 мс, интенсивность значимого стимула — 70 дБ, незначимого — 90 дБ, период между стимулами — 1 с, частота тона для значимого стимула — 2000 Гц, вероятность — 30%, для незначимого — соответственно 1000 Гц и 70%. Активный электрод располагался в точке Cz, референтные электроды — на сосцевидных отростках, заземляющий — в точке Fpz. Эпоха анализа — 750 мс [1]. Оценивались значения латентных периодов (ЛП) компонентов Р1-ГО.
При регистрации ЗВП активные электроды помещали над затылочной 18
областью О1 и О2 международной схемы «10-20%», референтный электрод — в точке Cz, заземляющий — в точке Fpz. В качестве стимула использовалась светодиодная вспышка длительностью 20 мс, подаваемая монокулярно с помощью специальных очков. Эпоха анализа при регистрации ЗВП составляла 500 мс, число усреднений — 200 [1]. Оценивались значения ЛП компонентов P1-N4 и амплитуд N1-P2, P2-N2.
При исследовании ССВП проводилась стимуляция срединного нерва в области запястья с частотой стимуляции 5 Гц. Использовалась 4-канальная запись с расположением активных электродов в точке Эрба на стороне стимуляции, на уровне остистого отростка VII позвонка, на скальпе — в точках С3 и С4 в соответствии с международной схемой «10-20%». Референтные электроды располагали в контрлатеральной точке Эрба и в точке Cz, заземляющий электрод — в точке Fpz. Интенсивность стимуляции — чуть выше двигательного порога большого пальца кисти. Число усреднений — 700. Эпоха анализа — 50 мс. Импеданс — не более 5 кОм [1]. Оценивали значения ЛП всех пиков ССВП, все межпиковые интервалы (МПИ), а также амплитуды P8-N9, N13-P18 и N20-P23.
Статистическая обработка результатов производилась с помощью программы Microsoft Excel для Windows и статистической программы для определения достоверности различий средних величин. Проводился также корреляционный анализ показателей когнитивных ВП и ЛП корковых компонентов ЗВП (N1, P2, N2) и ССВП (ЛП N20, P23, N23 и межпиковых интервалов — МПИ N20-P23, P23-N30) с определением коэффициента корреляции Пирсона. При статистическом анализе
показателей когнитивных ВП выявлено достоверное увеличение латентных периодов Р1-Р3 у пациентов с ХЕГБ по сравнению с контрольной группой (см. табл.). У пациентов с хронической посттравма-тической ГБ прослеживалась тенденция к увеличению ЛП когнитивных ВП, однако достоверных различий между средними величинами не получено, за исключением ЛП N2 (р<0,01).
Средние значения когнитивных ВП и достоверность различий между ними представлены в таблице.
Корреляционный анализ ЛП когнитивных ВП и корковых компонентов коротколатентных ССВП и ЗВП у пациентов с ХЕГБ показал следующие результаты: 1) слабая корреляция (г<0,29) между ЛП ранних компонентов когнитивных ВП Р1 и N1, соответствующих процессам распознавания, и латентными периодами ВП других модальностей; 2) умеренная положительная корреляция между ЛП Р2 и Р3 когнитивных ВП и ЛП N30 ССВП (г=0,32 и г=0,34 соответственно), а также между ЛП Р2 и Р3 когнитивных ВП и МПИ Р23-ГО0 (г=0,30), т.е. при увеличении ЛП когнитивных ВП, в том числе Р3 (Р300), соответствующего принятию решения, наблюдается увеличение ЛП и МПИ корковых компонентов ССВП; 3) умеренная и средняя отрицательная корреляция между ЛП Р3 (Р300) и ЛП корковых компонентов ЗВП: г = - 0,43 для N1, г = - 0,58 для Р2 и г = - 0,38 для N2 компонентов ЗВП, т.е. при увеличении ЛП Р300 отмечается уменьшение ЛП корковых компонентов ЗВП.
ВЫВОДЫ
1. ХЕГБ сопровождаются замедлением когнитивных процессов. Ежедневные ГБ могут приводить к более значительным изменениям когнитивных ВП, чем хронические посттравматические ГБ.
2. Результаты корреляционного анализа свидетельствуют о том, что замедление когнитивных процессов, а именно процесс принятия решения, при ХЕГБ сочетается с замедлением проведения афферентной
импульсации на уровне соматосенсорной коры и повышением рефлекторной возбудимости зрительной коры.
3. С целью профилактики и ранней диагностики когнитивных расстройств при ХЕГБ рекомендуется проводить исследования когнитивных ВП и сопоставлять полученные результаты с данными исследований ВП других модальностей (ЗВП, ССВП).
ЛИТЕРАТУРА
1. Гнездицкий В.В. Вызванные потенциалы мозга в клинической практике.—М.:МЕДпресс-информ, 2003.— 264 с.
2. Мелкумова К.А., Подчуфарова Е.В. Хроническая боль и когнитивные функции// Неврол.журн. — 2009. — №2. — С. 41—48.
3. Кукушкин М.Л., Хитров ЯК.Общая патология боли. — М.: Медицина. — 2004. — 144 с.
4. Павленко С.С. Состояние и проблемы эпидемиологических исследований болевых синдромов // Боль. — 2006. — №4 (13). — С. 2—7.
5. Рачин А.П., Юдельсон Я.Б., Сергеев А.В. Функциональные особенности мозга (по данным динамики потенциала Р300) в процессе хронизации ГБН // Патогенез. — 2005. — №1. — С. 48—49.
6. Решетняк В.К., Кукушкин М.Л. Боль: физиологические и патофизиологические аспекты // Актуальные проблемы патофизиологии: Избранные лекции / Под ред. Б.Б. Мороза. — М.: Медицина, 2001. — С. 354—389.
7. Alberti A., Sarchielli P., Mazzotta G, Gallai V. Event-related potentials in posttraumatic headache // Headache. — 2001. — Vol. 41(6) — P. 579—585.
8. Bockowski L, Sobaniec W, Solowiej E. et al. Auditory cognitive event-related potentials in migraine with and without aura in children and adolescents // Neurol Neurochir Pol. — 2004. — Vol. 38 (1). — P. 9—14.
9. Covington E.C. Depression and chronic fatigue in the patient with chronic pain // Prim. Care. — 1991. —Vol. 18 (2). — P. 341—358.
10. Demirci S., Savas S. The auditory event related potentials in episodic and chronic pain sufferers // Eur. J. Pain. — 2002. — Vol. 6 (3). — P. 239—244.
11. Evers S., Bauer B, Grotemeyer K.fiEvent-related potentials (P300) in primary headache in childhood and adolescents // J. Child Neurol. — 1998. — Vol. 13 (7). — P.322—326.
12. Kovacs G.L. de Wied D. Peptidergic modulation of learning and memory processes // Pharmacol. Rev. — 1994. — Vol. 46 (3). — P. 269—291.
13. Mazzotta G, Alberti A., Santucci A., Gallai V. The event-related potential P300 during headache free period and spontaneous attack in adult headache sufferers // Headache. — 1995. — Vol. 35 (4). — P.210-15.
14. Zgorzalewicz M. Mental processing in primary headache in children and adolescents // Przegl Lek. — 2006. — Vol. 63, Suppl 1. — P. 18—23.