Научная статья на тему 'Исследование системы охлаждения аккумуляторной батареи'

Исследование системы охлаждения аккумуляторной батареи Текст научной статьи по специальности «Механика и машиностроение»

CC BY
258
55
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по механике и машиностроению, автор научной работы — Слабоспицкий Ростислав Павлович, Хажмурадов Манап Ахмадович, Лукьянова Валентина Петровна

Приводятся результаты исследования аккумуляторной батареи, состоящей из отдельных ячеек с зазорами между ними. Предлагаются оптимальные расстояния между ячейками и скорость охлаждающего потока воздуха.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Слабоспицкий Ростислав Павлович, Хажмурадов Манап Ахмадович, Лукьянова Валентина Петровна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Investigation of accumulator battery cooling system

Cooling system of accumulator battery consisting of a large number of cells is considered. The optimal size of gaps between cells and the cooling air flow rate between them are given. It is shown that for optimal air flow through a large number of cells it is to use a material with high thermal conductivity.

Текст научной работы на тему «Исследование системы охлаждения аккумуляторной батареи»

РАДИОТЕХНИКА

УДК 621.3

ИССЛЕДОВАНИЕ СИСТЕМЫ ОХЛАЖДЕНИЯ АККУМУЛЯТОРНОЙ БАТАРЕИ

СЛАБОСПИЦКИЙ Р.П., ХАЖМУРАДОВ М.А., ЛУКЬЯНОВА В.П.__________________________

Приводятся результаты исследования аккумуляторной батареи, состоящей из отдельных ячеек с зазорами между ними. Предлагаются оптимальные расстояния между ячейками и скорость охлаждающего потока воздуха.

1. Введение

Аккумуляторная батарея нормально работает, когда ее температура поддерживается в пределах -30^+50°С. При этом система охлаждения батареи должна быть компактной, легкой и доступной по цене.

В работе [1] рассмотрена система с параллельным охлаждением батареи потоком воздуха. Воздух подается снизу батареи, проходит по каналам между ее отдельными ячейками и выходит во внешнюю среду. В этой работе проведен анализ и расчет системы охлаждения с помощью метода аналитических расчетов. Исходя из уравнений сохранения количества движения и энергии, приведено основное уравнение баланса энергии и ряд других формул для расчета различных параметров системы охлаждения. Расчеты выполнены для различных скоростей потока воздуха, продуваемого через систему, однако только для случая, когда зазор между отдельными ячейками равняется 2 мм и подача охлаждающего потока воздуха проводится снизу батареи. Было показано, что при скоростях потока воздуха больших 5 м/с удается охладить ячейки батареи до температуры меньше+5 0оС. Однако движение воздуха при больших скоростях турбулентное и вызывает большой шум в системе охлаждения. При скорости потока воздуха меньше 5 м/с воздух движется достаточно спокойно и не вызывает особого шума в системе охлаждения батареи, но температура ячеек батареи при этом в ряде случаев превышает предельно допустимую температурную норму (+50оС).

2. Исследование работы батареи при изменении зазора между ячейками

Возникает вопрос, можно ли какими то другими, достаточно простыми методами снизить верхний предел наиболее горячей части батареи. Такими простыми методами могут быть - изменение зазора между ячейками в батарее с 2 до 5 мм и подача охлаждающего потока воздуха сверху батареи. Для проведения

расчета температуры поверхности ячейки батареи воспользуемся в соответствии с работой [2] основным уравнением баланса энергии

qc = hc • А -ДТ2 = їй • Ср-ДТЬ (1)

где qc - тепловой поток, поступающий в канал; hc -

коэффициент теплопередачи; А - общая площадь поверхности контакта газа с теплопередающей поверхностью; m - массовый расход газа; Ср - удельная теплоемкость;

ДТ2 =

с Т + Т ^

Т _ b1 b2 s 2

V /

здесь Ts - средняя температура стенки; Тц - температура потока на входе канала; - температура

потока на выходе из канала.

В уравнении (1) за счет введения члена (Т^ + Т^)/2 учтена среднемассовая температура газа, а также изменение его температуры между входом и выходом

ДТ = Ть - Ть , при котором охлаждающий поток подается снизу батареи (рис. 1), проходит по прямоугольным каналам между ее отдельными ячейками и выходит во внешнюю среду.

Рис. 1. Параллельное охлаждение батареи

Схема батареи с указанием некоторых конкретных размеров приведена на рис. 2.

В рассматриваемом нами случае в каждой ячейке выделяется 15 Вт мощности, т.е. qc = 15 Вт. Поскольку тепло от ячейки выделяется через всю ее площадь, то площадь контакта с теплопередающей поверхностью будет А = 2b • L. Расчеты проведем для температуры воздуха на входе в канал 20°С, т.е. Тц = 20°С.

РИ, 2012, № 2

3

Имея данные о температуре поверхности ячеек при зазоре между ячейками a=2 мм [1], необходимо провести расчеты для других значений зазора между ячейками, в частности для a=3, 4, 5 мм, сравнить полученные результаты с предыдущими данными и сделать более полные выводы.

Вначале проведем расчеты для a=3 мм. Для определения типа движения воздуха необходимо знать число Рейнольдса (Re), которое рассчитывается по формуле

Re =

V

• Dh

V

(2)

где Vm - средняя скорость движения воздуха; v = 17,6 • 10-6 м2/с - коэффициент кинетической вязкости; Dh - гидравлический диаметр.

Для прямоугольного канала (при a << b) Dh = 2a = 6 мм= 610-3 м. При Vm = 1 м/с величина Re=342, что меньше критического (Reкр ~ 2000), т.е. движение воздуха в этом случае будет ламинарным. Массовый расход воздуха через канал площадью B (м2) равен

m = Р-B • Vm,

где B = a • b = 3 мм150 мм = 450 мм2, плотность воздуха р« 1,1 кг/м3 и, следовательно, m = 0,5 г/с « 0,5 л/с через один канал и 50 л/с через 100 каналов батареи.

Из формулы (1) определяем величину AT1 - изменение температуры потока воздуха между входом в канал и выходом из него. Учитывая, что C = 1014 Дж/ кг-град, AT1 = Tb2 - Tb1 = 300С, т.е. ть2 Р= 500С.

Для определения AT2 и Ts необходимо знать величину hc - коэффициента теплопередачи, который рассчитывается по следующей формуле:

h

С

k • Nu

(3)

где Nu - число Нуссельта; k = 0,0265 Вт/м-°С -коэффициент теплопроводности воздуха.

Значение Nu вычисляется по разным формулам в зависимости от типа движения воздуха по каналу.

Для ламинарного движения Nu вычисляется по формуле

Nu лам = 1,86(Re- Pr)

0,33

^Dл0’33Л. Л

L

ь

J

а для турбулентного движения - по формуле

0.14

Nu турб = 0,023Re0,8 • Pr0,3.

Для ламинарного движения при a=3 мм и Vm =1 м/с Nu = 2,91. В этих расчетах число Прандтля Pr = 0,71, коэффициент динамической вязкости ps =18,2Ч10-6 при T = 20°С и ps = 19,5• 10-6 при T = 50°С.

Зная k, Nu и Dh , вычислим по формуле (3) величину hc, которая будет равна hc =12,9 Вт/м2-град. Затем

вычислим значение AT2 и Ts - температуру поверхности:

AT2 =

дс

hc • A

17,6°С,

Ts =AT2 + Tb' + Tb2 = ,7,6° + 200 + 500

2

2

52,6°С.

Необходимо отметить, что температура поверхности ячейки, которая близка к температуре внутри ячейки, больше +50°С и, следовательно, необходимо принимать дополнительные меры по охлаждению поверхности ячейки. Это же мы отмечали в работе [ 1 ], где были проведены расчеты для случая, когда зазор между ячейками равнялся a=2 мм. Расчеты выполнены для случая, когда средняя температура стенки Ts постоянна по всей высоте ( L ) поверхности ячейки.

В реально работающих батареях температура в верхней части ячейки выше, чем в нижней. Для более точного приближения к реальности рассмотрим случай, когда стенка с L = 0,22 м условно разделена на четыре одинаковые части по 0,055 м. Из 15 Вт для всей ячейки в самой нижней (первой) части ячейки выделяется 2 Вт, во второй по высоте - 3 Вт, в третьей - 4 Вт и в верхней (четвертой) - 6 Вт [1].

Тогда для нижней (первой) части ячейки

AT,

qc

hc • A

____________2Вт_____________

12,9Вт/ м2 ° C • 2 • 0,055м • 0,15м

9,4°C

?

для второй - AT2 = 14,1°С, третьей - AT2 = 18,8°С 2 3

и четвертой - AT24 = 28,2°С.

В расчетах температура, протекающего через канал воздуха Tb2 делится по длине канала равномерно, т.е.

в каждой из четырех частей температура возрастает на 30°С/4 = 7,5°С. В этом случае температура поверхности нижней (первой) части ячейки будет

Ts =AT2 + Tb1 +Tb2 = 9,4° + 20° +11,50 = 33,2° N, s1 21 2 2

второй Ts2 = 45,4°С, третьей TS3 = 57,6°С, четвертой T = 74,5°С.

M

Из приведенных расчетов видно, что в случае, когда стенка разделена на четыре части, температура поверхности для самой верхней части возрастает больше чем на 20°С по сравнению со случаем, когда темпера-

4

РИ, 2012, № 2

тура всей поверхности одинакова. Из сравнения данных по Т = 74,50С (a=3 мм) и Т^ = 81,40С (a=2 мм)

[1] видно, что увеличение зазора между ячейками с a=2 мм до a=3 мм несколько снижает температуру

т§4 , но температура верхней части ячейки по прежнему намного выше +500С.

Вследствие трения о стенки канала давление воздуха по его длине падает [3] на величину

др=2f .р. vm •

где f = 24 • Re-1 и 0,1; р =1,1 кг/м3; Vm - скорость течения воздуха; L = 0,22 м - длина канала и Dh = 6.10-3 м.

Поэтому для Vm = 1 м/с падение давления в канале Др = 8 Па.

Расчеты для зазора между ячейками a=3 мм поделаны также для скоростей потока воздуха Vm = 2, 3, 5, 7, 10 и 20 м/с. Результаты расчетов приведены в табл. 1.

Аналогичные расчеты проделаны для зазоров между ячейками a=4 мм и a=5 мм и приведены в таблицах 2 и 3 соответственно.

Из данных, приведенных в указанных таблицах, следует, что при скоростях потока воздуха Vm = 2 м/с и выше температура поверхности первой (нижней), второй и третьей части ячеек значительно ниже критической температуры +5 00С.

При дальнейшем анализе результатов расчета использовались результаты для зазора между ячейками a=2 мм [1].

Таблица 1

Данные расчета системы охлаждения аккумуляторной батареи при зазоре

между ячейками a=3 мм

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Тип движения Vm , м/с Re Nu m, г/с hc , Вт/м2.°С ДТ1 , °С °С Т , s1 ’ °С Т , s2 ’ °С Т , s3 ’ °С Т , s4 ’ °С Др, Па

Ламинар. 1 342 2,9 0,5 12,9 30 52,6 33,2 45,4 57,6 74,5 8

Ламинар. 2 684 4,4 0,99 19,4 15 39,2 27,2 34 40 50 11,3

Ламинар. 3 1023 4,8 1,49 21,2 10 35,7 21,3 23,8 26,3 45,9 17,0

Ламинар. 4 1370 5,4 2 23,8 7,5 33,3 26 30,5 35 42 22,6

Ламинар. 5 1710 5 2,5 22,1 6 33 26 31 35 37,6 28,3

Турбулент. 7 2394 10,4 3,5 45,9 4,5 27,3 23,2 25,7 28,3 32 39,6

Турбулент. 10 3420 13,9 5 61,3 3 25,2 22,4 24,13 26 28,6 56,6

Турбулент. 15 5100 19,1 6,75 84,3 2,2 23,5 21,7 23 24,0 26 85,3

Турбулент. 20 6818 24,2 10 107 1,5 22,9 21,3 22,3 23,5 24,7 113,3

РИ, 2012, № 2 5

Для наглядности полученные результаты представлены в виде графиков. На рис. 3 приведены зависимости температуры поверхности наиболее горячей четвертой (верхней) части ячейки Т от скорости входного потока Vm для различных зазоров между ячейками (a=2, 3, 4, 5 мм). Видно, что с увеличением скорости потока Vm уменьшается различие между величинами Ts .

Рис. 3. Зависимость температуры поверхности четвертой (верхней) части ячейки Т^ для различных a=2, 3, 4, 5 мм

Основной вывод, который можно сделать на основании полученных результатов, приведенных в табл. 13 и в таблице для a=2 мм [1], заключается в том, что температуру поверхности верхней (наиболее горячей) части ячейки можно сделать ниже +500С только увеличив скорость потока воздуха выше 3 м/с, а не за счет увеличения зазора между ячейками. Разумеется, при температуре входного потока +3 00С требования к

На рис. 4 приведены зависимости температуры поверхности для верхней (Т) и нижней (T ) части ячейки от скорости охлаждающего потока воздуха Vm . Зависимости приведены для случаев, когда воздух подается снизу (Т -Н, Т -Н) и сверху (Т -В,

\ -В).

Из рис. 4 видно, что при подаче воздуха сверху удается понизить температуру поверхности верхней части ячейки до значения ниже +50оС. Однако при верхней подаче воздуха температура нижней части ячейки поднимается до +65 оС. Правда, это наблюдается только при скорости потока воздуха Vm = 1 м/с.

Таблица 2

Данные расчета системы охлаждения аккумуляторной батареи при зазоре

между ячейками a=4 мм

Тип движения Vm , м/с Re Nu m, г/с V Вт/м2-°С ЛТ1, °С °С Т , s1 ’ °С Т , s2 ’ °С Т , s3 ’ °С Т , s4 ’ °С Лр, Па

Ламинар. 1 456 3,2 0,66 10,6 22,5 52,7 34,2 45,6 56,8 73,8 7,3

Ламинар. 2 912 5,4 1,32 17,9 11,25 38,3 28 34 40,6 50,2 6,3

Ламинар. 3 1364 5,8 1,98 19,2 7,5 35,6 27,3 32,4 37,4 45,7 9,5

Ламинар. 4 1824 6,6 2,64 21,8 5,7 33,25 26 30,3 34,7 42 13

Турбулент. 5 2280 10,1 3,3 33,5 4,5 29 24,2 27 30 35 16

Турбулент. 7 3190 13,2 4,6 43,7 3,3 26,9 23,2 25,4 27,6 31,1 22,3

Турбулент. 10 4560 17,5 6,6 58 2,3 25 22,4 24 25,6 28,2 31,8

Турбулент. 15 6800 24,1 9 79,8 1,7 23,7 21,7 22,9 24 29 47,9

Турбулент. 20 9120 29,2 13,2 96,7 1,1 22,9 21,4 22,3 23,2 24,8 63,7

Таблица 3

Данные расчета системы охлаждения аккумуляторной батареи при зазоре

между ячейками a=5 мм

Тип движения Vm , м/с Re Nu m, г/с hc , Вт/м2-°С ЛТ^ °С Т s ’ °С Т , s1 ’ °С Т , s2 ’ °С Т , s3 ’ °С Т , s4 ’ °С Лр, Па

Ламинар. 1 570 3,45 0,83 9,14 18 53,8 35,6 46,8 58,3 75,8 5,0

Ламинар. 2 1110 6,2 1,55 16,4 9,28 38,4 28,5 37,7 40,9 50,6 4,2

Ламинар. 3 1705 6,7 2,48 17,8 6 35,8 27,6 32,9 37,4 46,8 6,3

Турбулент. 4 2280 10 3,3 26,5 4,5 32,3 25,7 28,6 32 37,6 8,2

Турбулент. 5 2870 12,1 4,2 32,1 3,6 28,8 24,5 27 29,7 34,4 9,2

Турбулент. 7 3990 15,7 5,8 41,6 2,6 26,6 24,5 27 29,7 31,1 14,2

Турбулент. 10 5700 21 8,3 55,7 1,8 25 22,4 24 25,7 28,7 20,3

Турбулент. 15 8500 28,7 11,25 76 1,3 23,6 21,8 22,9 24 26 30,7

Турбулент. 20 11400 36,4 16,6 96,4 0,9 23,8 21,5 22,4 23,2 24,6 40,8

системе охлаждения будут еще более жесткими, что хорошо видно на рис. 5 [1].

3. Исследование работы батареи при верхней подаче воздуха в аккумуляторную батарею

Поскольку основная часть тепла выделяется в верхней части ячеек батареи, то необходимо рассмотреть условие охлаждения ячеек при верхней подаче охлаждающего потока воздуха в батарею. В этом случае верхняя часть ячеек охлаждается более холодным потоком, еще не нагревшимся при прохождении нижних частей ячеек.

6

РИ, 2012, № 2

Рис. 4. Зависимость температуры поверхности при верхней и нижней подаче охлаждающего воздуха Vm (a=2 мм)

4. Выводы

Общий вывод, который можно сделать в результате всех проведенных исследований (изменение скорости и направления подачи воздуха в батарею, зазоров между ячейками и др.), таков, что при малой скорости потока воздуха Vm = 1 м/с не удается снизить температуру поверхности ячейки ниже +50°С и необходимо искать другие пути решения этой проблемы.

Возможные пути поисков эффективной системы охлаждения, т.е. создание условий, когда температура самых горячих частей поверхности Т ниже +50оС, можно получить за счет увеличения hc - коэффициента теплопередачи или согласно формуле (3) за счет увеличения числа Нуссельта.

Иными словами, возможный путь создания эффективной системы охлаждения дает изучение зависимостей числа Nu и коэффициента теплопередачи hc от скорости поступающего в систему воздуха Vm при различных значениях зазора между ячейками (a = 2, 3, 4, 5 мм). Результаты расчетов Nu и hc приведены на рис. 5 и рис. 6 соответственно. Видно, что на кривых (рис. 5) наблюдается излом, который соответствует переходу от ламинарного движения к турбулентному. При a = 2 мм излом наблюдается в районе Vm и 7^10 м/с, при a = 3 мм - в районе Vm и 5^7 м/ с, при a = 4 мм - в районе Vm и 4^5 м/с, при a = 5 мм - в районе Vm и 3^4 м/с.

Следует отметить, что число Nu при турбулентном движении значительно больше, чем при ламинарном. При этом (см. рис. 3) температура поверхности верхней части ячейки (Т) при турбулентном движении меньше, чем при ламинарном, т. е. при турбулентном движении поверхность ячейки лучше охлаждается.

Следовательно, нужно создавать условия, когда и при малых скоростях потока воздуха движение будет

турбулентным. Это можно сделать с помощью турбу-лизаторов, когда на поверхности ячеек создаются различные препятствия (накатки, отдельные лепестки и др.) переводящие ламинарное движение в турбулентное. Подробно такие конструкции турбулизаторов описаны в работе [4]. Результаты исследований с новыми конструкциями турбулизаторов будут рассмотрены в следующих статьях.

Рис. 5. Зависимость числа Нуссельта от скорости поступающего в систему воздуха Vm ( a = 2,3, 4,5 мм)

Из представленных на рис. 6 зависимостей коэффициента теплопередачи hc от Vm видно, что при малых скоростях Vm < 3 м/с величина hc намного меньше, чем при больших скоростях.

Рис. 6. Зависимость коэффициента теплопередачи от скорости поступающего в систему воздуха Vm (a = 2, 3, 4, 5 мм)

Ранее мы уже отмечали (см. рис. 3), что температура верхней части стенки ячейки намного превышает предельно допустимую температуру +50оС и снизить ее можно путем увеличения теплопередачи с поверхности батареи.

В 2010 году американские ученые разработали и опубликовали [5] специальное покрытие, позволяющее в 3,5-4 раза увеличить теплопередачу охлаждающих поверхностей. Основу разработки составляют

РИ, 2012, № 2

7

нано- и микрочастицы оксида цинка, которые с помощью устройств, напоминающих струйный принтер, наносятся на поверхность. В результате напыления на поверхности формируется слой микрочастиц оксида цинка, напоминающих по форме цветки. На поверхности этих цветков образуется еще один слой частиц, уже нанометровых размеров. В дальнейшем нами более подробно будут проведены расчеты и анализ условий увеличения теплопередачи от поверхности, покрытой наночастицами.

На рис. 7 и 8 приведены предварительные результаты изменения температуры поверхности при разных скоростях потока воздуха Vm, рассчитанные для зазора между ячейками a = 2 мм. Расчеты выполнены при нижней подаче воздуха для первой (нижней) (T -Н) и четвертой (верхней) части ячейки (T -Н) (рис. 7), а также при верхней подаче воздуха для первой (нижней) (Т -В) и четвертой (верхней) части ячейки (T -В) (рис. 8) без применения нанопокрытия и с его применением.

Из рис. 7 и 8 видно, что при нанесении нанопокрытия снижается температура анализируемой поверхности ячейки. Она в большинстве случаев становится ниже +50оС. Однако даже при нанесении нанопокрытия температура первой (нижней) части ячейки при верхней подаче воздуха для Vm = 1 м/с превышает 50оС.

Рис. 7. Температура четвертой (верхней) части ячейки при нижней и верхней подаче воздуха без применения (Ts4 -H и Ts4 -B) и с применением нанопокрытия ( Ts4 - Н нано и Ts4 - В нано)

Рис. 8. Температура первой (нижней) части ячейки при нижней и верхней подаче воздуха без применения (Tsi -H и Tsi -B) и с применением нанопокрытия (Ts1 - Н нано и Tsi - В нано)

Литература: 1. Слабоспицкий Р.П., Хажмурадов М.А., Лукьянова В.П. Анализ и расчет системы охлаждения аккумуляторной батареи // Радиоэлектроника и информатика. 2011. №3. С.3-8. 2. Крейт Ф., Блэк У. Основы теплопередачи. М.: Мир, 1983. 512с. 3. Уонг Х. Основные формулы и данные по теплообмену для инженеров. Справочник. Москва: Атомиздат, 1979. 216с. 4. Калинин Э.К., Дрейзер Г.А., Ярхо С.А. Интенсификация теплообмена в каналах. Машиностроение, 1990. 208с. 5. Hendricks T.J., Krishnan S. et all. Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and cooper // International Journal ofHeat and Mass Transfer. 2010. Vol.53. Issues 15-1. P.3357-3365.

Поступила в редколлегию 12.04.2012

Рецензент: д-р техн. наук, проф.Кривуля Г.Ф.

Слабоспицкий Ростислав Павлович, д-р физ.-мат. наук, заместитель директора института Физики высоких энергий и ядерной физики (ИФВЭЯФ) Национального Научного Центра Харьковский Физико-технический институт (ННЦ ХФТИ). Адрес: Украина, 61108, Харьков, ул. Академическая, 1, тел. (057)335-68-85, e-mail:

[email protected]

Хажмурадов Манап Ахмадович, д-р техн. наук, профессор, начальник отдела Национального Научного Центра Харьковский Физико-технический институт (ННЦ ХФТИ). Адрес: Украина, 61108, Харьков, ул. Академическая, 1, тел. (057)335-68-46, e-mail: [email protected]

Лукьянова Валентина Петровна, ведущий инженер-программист Национального Научного Центра Харьковский Физико-технический институт (ННЦ ХФТИ). Адрес: Украина, 61108, Харьков, ул. Академическая, 1, тел. (057)3 35-61-48. e-mail: [email protected]

8

РИ, 2012, № 2

i Надоели баннеры? Вы всегда можете отключить рекламу.